首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mature gilts classified by low (12 to 16 corpora lutea [CL], n = 6) or high (17 to 26 CL, n = 5) ovulation rate (OR) were compared for plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone, estradiol-17beta, and inhibin during an estrous cycle. Gilts were checked for estrus at 8-h intervals beginning on d 18. Blood samples were collected at 8-h intervals beginning on d 18 of the third estrous cycle and continued for one complete estrous cycle. Analysis for FSH and LH was performed on samples collected at 8-h intervals and for ovarian hormones on samples collected at 24-h intervals. The data were standardized to the peak of LH at fourth (d 0) and fifth estrus for the follicular phase and analyzed in discrete periods during the periovulatory (-1, 0, +1 d relative to LH peak), early-luteal (d 1 to 5), mid-luteal (d 6 to 10), late-luteal (11 to 15), periluteolytic (-1, 0, +1 d relative to progesterone decline), and follicular (5 d prior to fifth estrus) phases of the estrous cycle. The number of CL during the sampling estrous cycle was greater (P < 0.005) for the high vs low OR gilts (18.8 vs 14.3) and again (P < 0.001) in the cycle subsequent to hormone measurement (20.9 vs 14.7). For high-OR gilts, FSH was greater during the ovulatory period (P = 0.002), the mid- (P < 0.05) and late-luteal phases (P = 0.01), and tended to be elevated during the early-luteal (P = 0.06), but not the luteolytic or follicular periods. LH was greater in high-OR gilts during the ovulatory period (P < 0.005), but not at other periods during the cycle. In high-OR gilts, progesterone was greater in the mid, late, and ovulatory phases (P < 0.005), but not in the follicular, ovulatory, and early-luteal phases. Concentrations of estradiol-17beta were not different between OR groups during the cycle. Inhibin was greater for the high OR group (P < 0.005) during the early, mid, late, luteolytic, and follicular phases (P < 0.001). The duration of the follicular phase (from last baseline estrogen value to the LH peak) was 6.5 +/- 0.5 d and was not affected by OR group. These results indicate that elevated concentrations of both FSH and LH are associated with increased ovulation rate during the ovulatory phase, but that only elevated FSH during much of the luteal phase is associated with increased ovulation rate. Of the ovarian hormones, both inhibin and progesterone are highly related to greater ovulation rates. These findings could aid in understanding how ovulation rate is controlled in pigs.  相似文献   

2.
The aim of present study was to clarify the post-natal profile of follicle-stimulating hormone (FSH), luteinizing hormone (LH), immunoreactive (ir)-inhibin, progesterone, testosterone, and estradiol-17β, and their relationships in Thoroughbred colts. Six hundred and thirty-six colts were used for the study. Single plasma samples from each animal were harvested from the blood drawn through jugular venipuncture. The subjects were born with high amounts of progesterone, testosterone, and estradiol-17β, all of which dropped significantly and remained at lower levels till the end of 6 months. FSH decreased transiently after birth until day 12 and then gradually increased to peak at day 100 which then maintained in lesser levels towards the end of the studied period. LH was highest during birth which decreased until day 26 and then increased slowly to sub-birth levels up to day 90. Animals were born with high amounts of ir-inhibin. It dropped slowly and halved by day 20 and then decreased towards rest of the studied period. The increase in FSH is negatively correlated with the declining ir-inhibin levels. The early increase in FSH can be the indication of early post-natal maturation of the hypothalamic pituitary testicular axis that ultimately might be responsible for priming the testes for future development.  相似文献   

3.
In this study we investigated the temporal relationship between ovulation, egg formation, oviposition and the changes in plasma concentrations of progesterone, luteinizing hormone and estradiol-17beta during the egg laying cycle in farmed ostriches. In 10 egg-producing birds, transcutaneous ultrasound scanning was performed at 3h intervals and blood sampling at hourly intervals during a period of at least 48h (one egg laying cycle). In hens (n=8) that ovulated during the observational period, the ovulated egg was first detected 2h after oviposition; thus, ovulation occurred shortly after oviposition in all birds. During the period between two consecutive ovipositions, the developing egg remained for 9h in the proximal part (infundibulum, magnum or isthmus) and for 39h in the distal part of the oviduct (uterus). In ovulating hens, plasma progesterone concentrations showed a characteristic and consistent profile: from basal levels of around 0.1ng/ml concentrations started to increase 12h before oviposition, reached an average maximum of 3.5ng/ml at 3h before oviposition and returned to basal levels 3h and 30min after oviposition. Changes in plasma luteinizing hormone and estradiol-17beta concentrations showed comparable patterns of elevation and decline relative to the timing of oviposition and ovulation. However, variation in their individual basal concentrations was generally larger and peak values were less conspicuous than those of progesterone. In non-ovulating hens (n=2) neither progesterone, nor luteinizing hormone nor estradiol-17beta showed elevations to peak concentrations before oviposition. These data demonstrate that during the egg laying cycle of ostriches, events such as ovulation, egg development and oviposition evolve according to a rather strict time schedule, and that progesterone, luteinizing hormone and estradiol-17beta reach peak concentrations shortly before ovulation. Additionally, our findings also show that on-farm ultrasound scanning is a useful technique to discriminate between ovulating and non-ovulating hens.  相似文献   

4.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

5.
Cyclic gilts from Control (C, randomly selected, n = 11) and Relax Select (RS, nine generations of selection for increased ovulation rate followed by seven generations of relaxed or random selection, n = 9) lines of the University of Nebraska Gene Pool population (derived from 14 different breeds) were utilized to characterize differences in gonadotropic and ovarian steroid hormones during preovulatory and postovulatory phases of the estrous cycle. Blood samples were collected during four periods (0500, 1100, 1700 and 2300) daily beginning 2 d prior to anticipated estrus (d -2, d 18 of a 20-d estrous cycle), and continuing through d 4 postestrus (d 0 = 1st of standing estrus). Sampling within a period consisted of five blood samples at 15-min intervals. All plasma samples were analyzed for concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH). Neither mean LH nor peak concentration of LH during the preovulatory surge differed between genetic lines (P greater than .10). Concentrations of FSH increased faster (line X period, P less than .05) and tended (P less than .1) to peak at a higher concentration in RS (.88 ng/ml) than in C (.54 ng/ml) gilts (P less than .05) during the 12 h preceding the FSH and LH preovulatory peaks. The second FSH surge began approximately 24 h after the preovulatory FSH peak. Peak FSH concentrations were observed at 42 h in both lines (1.46 vs 1.74 ng/ml for C and RS gilts, respectively). The higher FSH concentration in RS gilts established during the preovulatory surge was maintained through the second FSH surge (P less than .01). No line differences were detected in plasma concentrations of estradiol-17 beta and progesterone.  相似文献   

6.
To elucidate the effects of ultrasound-guided transvaginal follicular aspiration, plasma concentrations of FSH, LH, inhibin, estradiol-17beta and progesterone, and folliculogenesis were examined in Holstein cows. Four clinically healthy cows with regular estrous cycles were scanned by ultrasound per rectum once a week for 9 weeks before the commencement of follicular aspiration. All visible follicles were divided into 3 categories based on their sizes (2 < or = small < 5 mm; 5 < or = medium < 10 mm, large > or = 10 mm). The follicular aspiration was started at random during the estrous cycle and conducted under epidural anesthesia induced with 5 ml of 2% lidocaine once a week for 6 weeks. The average number of total visible follicles > or = 2 mm in diameter at 7 days after aspiration (21.7 +/- 7.4, n = 24) was similar to that before starting aspiration (26.7 +/- 10.5, n = 36). Plasma inhibin and estradiol-17beta declined and fell to a trough on 1.5 days and returned to pre-aspiration values by 5 days after aspiration. Plasma concentrations of FSH increased and reached peak levels between 1 and 1.5 days after aspirations. Plasma concentrations of LH also increased and reached peak levels between 0.5 and 1.5 days after aspirations. Both plasma FSH and LH had returned to pre-aspiration levels by 5 days after aspirations. Plasma concentrations of progesterone did not change with the follicular aspiration. These results demonstrate that follicular aspiration decreases plasma concentrations of inhibin and estradiol-17beta, which in turn leads to a rise in plasma concentrations of FSH and LH. It is suggested that marked increases in plasma concentrations of FSH and LH after the aspiration stimulate the development and maturation of a new cohort of follicles within one week in cows.  相似文献   

7.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4-6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17beta were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17beta concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17beta, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17beta levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17beta concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

8.
In order to study the effects of steroid hormones on steroidogenesis in the avian ovary, quail granulosa cells were cultured with follicle stimulating hormone (FSH), oestradiol-17beta or testosterone. The progesterone content of the medium during the culture period of 66 h and the following 3 h of incubation with luteinising hormone (LH), was measured by radioimmunoassay. When FSH, oestradiol-17beta or testosterone were added during the 66 h culture, subsequent progesterone production by the cells during 3 h of incubation with LH was significantly increased. However, testosterone also stimulated progesterone production in the medium during the 66 h culture period, whereas FSH oroestradiol-17beta did not. Addition of staurosporine during culture inhibited both LH-stimulated progesterone production and testosterone-stimulated progesterone production. These results indicate that the processes during which granulosa cells acquired responsiveness to LH, and testosterone stimulates progesterone production might both be mediated by a staurosporine-sensitive protein kinase C-dependent pathway in quail granulosa cells.  相似文献   

9.
Levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone and estradiol-17 beta were measured in five Polled Hereford cows. Blood samples were collected once or twice daily for 5 d, then every 6 h from 1 d before weaning (d 28 to 38 postpartum) until 10 d after the second postweaning estrus. Blood samples were again collected at daily intervals until the third postweaning estrus. All cows exhibited estrus within 4 d after weaning, a second estrus 8 to 10 d after the first and a third estrus 16 to 23 d after the second. All cows had peaks in serum concentrations of LH during the first (22.6 to 81.7 ng/ml) and second (4.4 to 149.0 ng/ml) postweaning estrus. Mean levels of LH in serum during the peak and the area under the LH curve during the first and second postweaning estrus did not differ. Serum levels of LH and FSH during the first 4 d of the short cycle did not differ from LH and FSH levels the first 4 d of the subsequent normal cycle. Levels of LH in serum for 4 d before the first LH surge, associated with the first postweaning estrus, did not differ from levels of LH found 4 d before the second Lh surge, associated with the second postweaning estrus. However, serum levels of FSH during the 4 d before the first ovulatory LH surge were lower (P = .05) than those observed during the 4-d period before the second ovulatory surge of LH. Progesterone levels were similar the first 6 d after the first and second estrous periods, but were lower after d 6 of the first (short) cycle than after d 6 of the second (normal) cycle. Estradiol peaks of 1.2 to 2.8 pg/ml were detected during the first postweaning estrus and 1.4 to 12.5 pg/ml during the second postweaning estrus, but due to the variability among cows mean levels of estradiol during first estrus did not differ from second estrus. These data agree with previous reports that postpartum anestrous cows had short cycles if they exhibit estrus in response to weaning. The early decline of progesterone after the first estrus apparently did not stem from lack of LH in serum, but the lower levels of FSH observed before this first ovulation may have been an important factor contributing to the reduced life span of the subsequent corpus luteum.  相似文献   

10.
Two homologous radioimmunoassays for bovine follicle stimulating hormone (bFSH) were utilized in comparing the differential regulation of FSH and luteinizing hormone (LH) in response to ovariectomy or administration of gonadal steroids in cattle. There appeared to be significant LH cross-reactivity in one of the bFSH systems (bFSH-HS-2-17), but not in the other (bFSH-BP3). Concentrations of FSH in plasma measured by these two systems suggested both qualitative and quantitative differences. Following ovariectomy in heifers, LH concentrations in plasma were increased by 7.5 h, while FSH (measured in the bFSH-BP3 system) was not significantly elevated until 18 h. Administration of 200 micrograms of estradiol-17 beta to ovariectomized heifers inhibited levels of FSH in plasma but large doses of testosterone (100 mg), androstenedione (400 mg) and dihydrotestosterone (800 mg) had no effect. Similarly, LH was not affected by the androgens, while estradiol induced LH surges, leading to increased mean LH concentrations. In contrast to the results in heifers, LH concentrations in plasma from steers were inhibited by administration of androgens as well as by estradiol. In steers, FSH (bFSH-BP3) was marginally inhibited by estradiol and not at all by the androgens. Differences in the secretory patterns of FSH and LH also occurred in intact heifers during the estrous cycle. The 72-h period preceding estrus (follicular phase) was characterized by rapidly declining serum progesterone concentrations, followed by concurrent increases in both LH and estradiol. The circulating levels of bFSH (BP3) tended to decline during this interval. Overall, during the estrous cycle, progesterone levels were positively correlated with bFSH-BP3 (r = .37) and negatively correlated with LH (r = -.39). The gonadotropins were not significantly related (r = -.15). These relationships are consistent with the concept that LH controls the final stages of follicular development in cattle and that FSH may exert only a permissive effect.  相似文献   

11.
The luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone response of bull calves implanted with estradiol-17 beta to continuous and pulsatile infusion of luteinizing hormone releasing hormone (LHRH) has been examined. Estradiol-17 beta reduced serum LH and FSH concentrations and suppressed testosterone secretion and testicular growth when compared with sham-implanted bulls. Pulsatile iv infusion of LHRH [500 ng every 2 h (6 micrograms/d)] for a 4-wk period to estradiol-17 beta-implanted bulls resulted in elevated mean serum LH and testosterone concentrations that were characterized by discrete secretory episodes. Mean serum FSH was also increased by LHRH pulse infusion, but LHRH-coupled secretory episodes were not apparent. Continuous infusion of LHRH (6 micrograms/d) did not increase the low serum gonadotropin levels observed in estradiol-17 beta-implanted calves. Testicular growth was normal in LHRH pulse-infused calves, but was markedly curtailed in continuously infused calves. These results suggest that estradiol-17 beta inhibits testicular development by blocking gonadotropin release at the level of the hypothalamus because pulsatile administration of LHRH can override the inhibitory effect by increasing LH and FSH secretion.  相似文献   

12.
Meishan pigs are known for their early sexual maturity. On the other hand, they grow slowly. There is no information currently available about the combination of these two characteristics in Meishan pigs. To study the developmental characteristics of Meishan pigs, the plasma concentrations of LH, FSH, inhibin, testosterone, estradiol-17beta, progesterone and insulin-like growth factor-I (IGF-I) in young Meishan boars were determined using RIA and ELISA. Inhibin decreased with age in weeks, while testosterone and estradiol-17 beta increased. Testosterone increased gradually, and an increase in estradiol-17beta occurred after sexual maturity. IGF-I increased before puberty and subsequently decreased just after puberty like a pubertal IGF-1 surge. FSH, LH and progesterone did not change with age. There was no significant correlation among the hormones. During the experimental period, the Meishan boars showed large individual differences. These differences may depend on the fact that Meishan boar reach maturity at 12 weeks of age and continue to grow thereafter.  相似文献   

13.
The objective of the present study was to establish the changes in plasma concentrations of LH, FSH, estradiol 17-beta (E2) and progesterone (P4), as well as to understand their temporal relationships during oestrus in mithun (Bos frontalis). The experiment was conducted on 11 mithuns during third or fourth postpartum oestrous cycle. Since oestrus onset the jugular vein blood samples were collected every 2 h for 72 and 96 h, respectively from the animals without and with standing heat. The LH, FSH, E2 and P4 concentrations were estimated in plasma. The P4 concentration was fluctuated throughout the oestrus period and the average P4 concentration was found significantly (p<0.05) lower on the day of oestrus onset. The multiple rises in LH and FSH concentrations above the basal level in spike like fashion were observed throughout the oestrus period irrespective of the occurrence of standing heat. A significant (p<0.01) gradual increase in the average daily E2 concentration was observed till day 2 following oestrus onset irrespective of the occurrence of standing heat. A significant (p<0.05) simultaneous increase in LH, FSH and E2 concentrations and a transient increase in P4 concentration at approximately the time of standing heat onset were observed. During investigation a definite temporal coupling between LH and FSH rises was absent throughout the oestrus period. The results suggest that (1) the multiple short-duration low-amplitude LH and FSH surges during oestrus may be crucial for the final maturation of ovulatory follicle and subsequent ovulation in mithun; (2) a differential mechanism for controlling LH and FSH secretions probably exists in mithun.  相似文献   

14.
The study was conducted on six Murrah buffalo synchronized and induced to oestrus. An indwelling catheter was placed in the jugular vein of each buffalo 4 days before the expected onset of the oestrus following the induced oestrus and blood samples were collected at 8 h intervals from each animal throughout the oestrous cycle. Plasma immunoreactive inhibin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17β and progesterone were estimated by radioimmunoassay to study the variations in the peripheral levels of these hormones and their inter-relationships in order to elucidate the feedback systems controlling them during the oestrous cycle of buffalo. Plasma inhibin levels ranged between 391.25 and 631.97 pg/ml during various phases of the oestrous cycle and were found to be higher than reported in cows. Peak LH and FSH levels during oestrus were 38.40 ± 9.21 and 24.04 ± 4.75 ng/ml, respectively and estradiol-17β and progesterone were 19.50 ± 5.51 pg/ml and 0.61 ± 0.25 ng/ml, respectively. The mean plasma inhibin concentration on the day of oestrus was 562.5 ± 18.9 pg/ml. Levels of FSH in the plasma showed three mid-cycle elevations which corresponded to comparatively lower inhibin and elevated estradiol-17β levels during the same period. From this observation it was deduced that both inhibin and estradiol-17β have a feed-back regulatory effect on FSH secretion in buffalo.  相似文献   

15.
Until 1999 it was accepted that pheromones act exclusively by stimulating the dendritic receptors present in olfactory epithelium. Cycling gilts with an experimentally-disrupted neural olfactory pathway were used to test the hypothesis that boar pheromone 5alpha-androstenol may affect the secretion of hormones involved in the regulation of the estrous cycle by the humoral pathway. On day 12 of the estrous cycle the nasal cavity of gilts (n=15) was irrigated with zink sulfate solution. From day 16 to 20, the experimental group (n=10) was injected intramuscularly with 5alpha-androstenol (20 microg) twice a day. Blood samples were collected from the jugular vein at 4 h intervals on days 17-21 to estimate plasma concentration of LH, oxytocin, estradiol-17beta, testosterone and progesterone. The experimental group displayed a significantly lower mean concentration of LH than the control animals (P<0.0001). The decrease in concentration of LH was accompanied by the reduction of oxytocin (P<0.001), estradiol-17beta (P<0.001) and testosterone (P<0.01) secretion. These results demonstrated that 5alpha-androstenol influenced hormonal regulation by humoral pathway and might be considered to be the priming pheromone in gilts.  相似文献   

16.
A study was conducted to determine the effect of charcoal-extracted, bovine follicular fluid (CFF) on plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations, the interval from luteolysis to estrus, and subsequent luteal function in heifers. Fifteen Angus, Simmental and Hereford heifers were allotted by age, weight and breed to a control (C, n = 8) or a CFF (n = 7) group. Heifers received injections of saline or CFF (iv, 8 ml/injection) every 12 h from d 1 (d 0 estrus) through d 5 of the estrous cycle. On d 6, each heifer was injected (im) with 25 mg of prostaglandin F2 alpha (PGF2 alpha). Blood samples were collected every 12 h by venipuncture starting just before the first saline or CFF injection and continuing until estrus. Thereafter, blood samples were collected every other day during the subsequent estrous cycle and assayed for FSH, LH, estradiol-17 beta and progesterone by radioimmunoassay. Injections of CFF had no effect (P greater than .05) on circulating FSH or LH concentrations from d 1 to 5 relative to the C group; however, there was a transient rise (P less than .05) in FSH concentrations 24 h following cessation of CFF injections. This transient rise in FSH was not immediately followed by an increase in plasma estradiol-17 beta concentrations. Although CFF injections did not interfere with PGF2 alpha-induced luteolysis, the interval from PGF2 alpha injection to estrus was delayed (P less than .05) by 5 d in the CFF group compared with the C group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Effects of an increased level of dietary energy (flushing) on plasma concentrations of FSH, LH, insulin, progesterone and estradiol-17 beta and ovulation rate were studied in 16 gilts. Gilts received 5,400 kcal ME/d for one estrous cycle and the first 7 d of a second. On d 8 of the second estrous cycle, gilts received either 5,400 kcal ME/d (control [C], n = 8) or 11,000 kcal ME/d (flushed [F], n = 8) for the remainder of the estrous cycle. Blood was collected daily at 15-min intervals for 6 h from d 8 through estrus. Gilts were examined by laparotomy 6 d after estrus. Ovulation rate was greater (P less than .05) in F than C gilts (16.0 vs 9.4). Mean daily concentrations of FSH were greater (P less than .05) in F gilts at 5 d, 4 d and 3 d prior to estrus compared with C females. In both C and F gilts, FSH decreased (P less than .05) prior to estrus. Mean daily concentrations of LH and LH pulse amplitude were not different (P greater than .05) between treatments. Mean number of LH pulses/6 h at 4 d, 3 d and 2 d prior to estrus were greater (P less than .05) in F than in C gilts. In both treatments, LH pulse amplitude decreased (P less than .05) and pulse frequency increased (P less than .07) prior to estrus. Mean plasma concentrations of insulin tended to be higher (P less than .07) in F than in C females during the 7-d period before estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The concentration of peripheral plasma progesterone was measured by a double isotope derivative assay in hens slaughtered at various stages during the ovulatory cycle. A peak value was obtained 2 to 6 h before ovulation and basal levels were reached at ovulation. No secondary peaks were observed during the cycle. Similar results were obtained using a protein‐binding assay on plasma from individual birds taken serially during the cycle. Birds which did not ovulate on a particular day showed no peak of progesterone. In two birds sampled at the beginning of a laying cycle, the progesterone peak was of longer duration.  相似文献   

19.
Gonadal function in the male golden hamster (Mesocricetus auratus) was investigated during exposure to a short photoperiod condition. Within 3 weeks of exposure to the short photoperiod condition, FSH and testosterone in the plasma significantly decreased, and subsequently immunoreactive (ir)-inhibin significantly decreased. Testicular contents of ir-inhibin and testosterone, and pituitary contents of LH and FSH also significantly decreased by 3 weeks with regression of weight of testes, epididymis and seminal vesicles and sperm head count. Circulating LH varied but not significantly. Thereafter, all reproductive parameters and secretion of LH, FSH, ir-inhibin and testosterone gradually recovered after 17 weeks of exposure even though animals continued to be subjected to the short photoperiod condition. Plasma concentrations of inhibin B and inhibin pro-alphaC were detectable and were significantly decreased after 15 weeks of exposure to the short photoperiod, but their levels were still detectable. Immunopositive reaction of inhibin alpha and betaB subunits was found in Sertoli cells and Leydig cells in the regressed testes of animals subjected to short photoperiod as was also seen in animals before exposure to the short photoperiod. Although the spermatogenic cycle was suppressed like prepubertal animals, the present study showed that the testicular recovery, so-called refractoriness, is functionally different from the developing stage of immature animals, especially with regard to inhibin secretion. The present results showed that changes in FSH preceded changes in inhibin during the regression and recovery phases, indicating that FSH is a major regulatory factor of inhibin secretion in male golden hamsters. The present study also demonstrated that regressed testes still secrete a small amount of bioactive inhibin during exposure to a short-photoperiod condition.  相似文献   

20.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号