首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular epidemiology of classical swine fever in Italy   总被引:5,自引:0,他引:5  
To gain an insight into the molecular epidemiology of classical swine fever (CSF) in Italy, virus isolates originating from outbreaks that occurred between 1985 and 2000 in wild boar or in domestic pigs in mainland Italy and in Sardinia were analysed by genetic typing. For this, a fragment (190 nucleotides) of the E2 glycoprotein gene was sequenced and phylogenetic analyses were performed, including older Italian isolates and isolates from recent outbreaks in Europe for comparison. The results show that in mainland Italy, several independent epidemiological events occurred in the last decade. In the north of the country, viruses of genotype 2.2 have persisted in wild boar, causing sporadic outbreaks in domestic pigs. In contrast, viruses of subgroups 2.1 and 2.3 appeared only intermittently in different regions of the mainland. In 1997, classical swine fever virus (CSFV) isolates belonging to the subgroup 2.1 and genetically and epidemiologically related to the Dutch isolate in Venhorst, affected domestic pigs exclusively. The isolates of subgroup 2.3, derived from wild boar as well as from domestic pigs were closely related to isolates from Germany and Poland. In Sardinia, CSF is an endemic in wild boar and affects domestic pigs also. Genetic typing showed that viruses of subgroups 1.1 and 2.3 have been present, the last ones being unrelated to the mainland viruses of the same subgroup. Due to the large quantities of pig and wild boar meat imported in some parts of Italy, it cannot be established if these viruses were always present in either the mainland or Sardinia, or if they represent recent introductions.  相似文献   

2.
Classical swine fever (CSF) is a highly contagious multi-systemic haemorrhagic viral disease of pigs. Not only domestic pigs, but also wild boar appear to play a crucial role in the epidemiology of CSF. Spleen (n = 739) and blood coagulum (n = 562) sampled from wild boars (Sus scrofa) shot in 2002, and serum samples from 746 wild boar shot in 2003 and 2004, were tested throughout Slovenia. In 2002, 17 samples were positive on enzyme-linked immunosorbent assay (ELISA) test for antibodies against classical swine fever virus (CSFV). Positive ELISA test was confirmed by a virus neutralization test. All other samples were negative. This is the first report that describes the epidemiology of CSFV from 2002 on, and the monitoring of the wild boar population in Slovenia at present.  相似文献   

3.
A classical swine fever virus (CSFV) field isolate originating from wild boar was investigated on its virulence in domestic pigs and wild boar. Three weaner pigs and two wild boars (yearlings) were intranasally inoculated with the isolate "Spante" and tested for clinical, virological, hematological and serological findings until day 31 after infection (p. i.). One day p. i. the piglets were put in contact to three sentinel pigs. During a period of 31 d neither the domestic pigs nor the wild boars showed clinical signs specific for CSF. Two infected weaner pigs became transiently viraemic, transmitted CSFV in nasal secretions, showed a slight leukopenia and reacted serologically positive. The contact infection resulted in a viraemia in two sentinel piglets on day 30. Only one contact animal developed antibodies. None of the wild boars became viraemic, excreted CSFV in nasal secretions or developed antibodies. The CSFV isolate "Spante" represents a low virulent virus. Referring to a significant higher percentage of virologically positive tissue samples after nested PCR compared with the virus isolation, persistence of CSFV is discussed.  相似文献   

4.
Background: Limited studies are available on molecular epidemiology of classical swine fever virus (CSFV) in India and are restricted to domestic pigs. These studies show the presence of 1.1. genotype.

Hypothesis/objectives: The aim of the present study was to subgenotype four CSFV isolates, two each from the outbreaks of CSF in wild (Sus scrofa) and domestic pigs of Mizoram state, India, in 2011.

Animals and methods: CSFV isolates were subjected to nucleotide sequencing in E2 and NS5B genomic regions. Phylogenetic analysis of the isolates in both genomic regions was carried out with 39 Indian isolates (4 isolates from the present study of Mizoram state and 35 isolates from the other states of India) and 57 reference sequences retrieved from the GenBank database. Two of the 39 isolates from India were collected from wild boar and were subgenotyped as 2.1. Out of 37 isolates from domestic pigs, only two were subgenotyped as 2.1.

Results: The analysis revealed the emergence of 2.1. subgenotype of CSFV in both wild and domestic pigs in India.

Conclusions and clinical importance: The isolates from domestic pigs of Mizoram state (CSF/MZ/KOL/73 and CSF/MZ/AIZ/115) were grouped in genotype 1 and subgenotype 1.1., thus confirming that the source of CSF outbreaks in domesticated pigs in Mizoram was not from wild pigs. The current study forms an essential step for better understanding of the epidemiology of 2.1 subgroup as well as the movement and spread of the disease in India.  相似文献   

5.
In Germany, eleven outbreaks of CSF in domestic pig holdings were reported in 2002. They occurred exclusively in regions where CSF virus circulated in the wild boar population. In ten cases the phylogenetic analysis revealed that the isolates from domestic pigs and wild boar had identical sequences in the 5' non-translated region (5'NTR). However, in one case a subtype was isolated which was slightly different from the virus subtype found in the wild boar population of that region. This case is decribed in detail. The epidemiological significance of different diagnostic methods is discussed, in particular the genetic typing of CSF virus isolates.  相似文献   

6.
7.
8.
Denmark has no free-range wild-boar population. However, Danish wildlife organizations have suggested that wild boar should be reintroduced into the wild to broaden national biodiversity. Danish pig farmers fear that this would lead to a higher risk of introduction of classical swine fever virus (CSFV), which could have enormous consequences in terms of loss of pork exports. We conducted a risk assessment to address the additional risk of introducing and spreading CSFV due to the reintroduction of wild boar. In this paper, we present the part of the risk assessment that deals with the spread of CSFV between the hypothetical wild-boar population and the domestic population. Furthermore, the economic impact is assessed taking the perspective of the Danish national budget and the Danish pig industry. We used InterSpreadPlus to model the differential classical swine fever (CSF) risk due to wild boar. Nine scenarios were run to elucidate the effect of: (a) presence of wild boar (yes/no), (b) locations for the index case (domestic pig herd/wild-boar group), (c) type of control strategy for wild boar (hunting/vaccination) and (d) presence of free-range domestic pigs. The presence of free-range wild boar was simulated in two large forests using data from wildlife studies and Danish habitat data. For each scenario, we estimated (1) the control costs borne by the veterinary authorities, (2) the control-related costs to farmers and (3) the loss of exports associated with an epidemic. Our simulations predict that CSFV will be transmitted from the domestic pig population to wild boar if the infected domestic pig herd is located close to an area with wild boar (<5 km). If an outbreak begins in the wild-boar population, the epidemic will last longer and will occasionally lead to several epidemics because of periodic transfer of virus from groups of infected wild boar to domestic pig herds. The size and duration of the epidemic will be reduced if there are no free-range domestic pig herds in the area with CSF-infected wild boar. The economic calculations showed that the total national costs for Denmark (i.e. the direct costs to the national budget and the costs to the pig industry) related to an outbreak of CSF in Denmark will be highly driven by the reactions of the export markets and in particular of the non-EU markets. Unfortunately, there is a substantial amount of uncertainty surrounding this issue. If hunting is used as a control measure, the average expenses related to a CSF outbreak will be 40% higher if wild boar are present compared with not present. However, a vaccination strategy for wild boar will double the total costs compared with a hunting strategy.  相似文献   

9.
Classical swine fever (CSF) is a severe multi-systemic disease that can affect both domestic pigs and wild boar. Past outbreaks in European wild boar involved high-virulent CSF virus (CSFV) strains and were mostly self-limiting. In these cases, morbidity and mortality rates were high in the affected regions. In contrast, endemic infections have been observed in several European wild boar populations in recent decades. Morbidity and mortality rates were much lower despite the fact that outbreaks were still detected via diseased or fallen animals. The virus strains involved were mostly classified as genotype 2.3 strains of moderate virulence causing age-dependent disease outcomes. The mechanisms leading to the establishment and perpetuation of endemicity are still not fully understood, but the factor "moderate virulence" seems to be of considerable importance. In this study, we aim to clarify whether the perception of declined 'CSF severity' could hypothetically reflect the adaptation of an initially high-virulent virus or whether this might be better explained as a misinterpretation of observations. A mechanistic eco-epidemiological model was employed to follow up a highly virulent strain of CSFV introduced into large connected wild boar populations. In the model, the virulence of the CSF virus is represented by case mortality and life expectancy after lethal infection. Allowing for small stochastic variation, these two characteristics of the virus are passed on with every new simulated infection that occurs. Model analysis revealed a decrease from high to moderate case mortality within a few years of simulated perpetuation of the virus. The resulting mortality corresponded to the level where the population average of the infectious period and the basic reproduction number of the disease were maximal. This shift in virulence was sufficient to prolong virus circulation considerably beyond the epidemic phase of the simulated outbreaks. Alternative mechanistic explanations for the decrease in disease severity in a CSF-affected wild boar population were evaluated in the light of the simulation experiments and the available epidemiological or virological evidence. In conclusion, the current virus isolates of subgroup 2.3 might be the ideally adapted variants of the CSF virus for long-term perpetuation in wildlife and indeed may have evolved (once) during past outbreaks in large populations. A repeated perception of a declining severity of disease pattern during the course of a CSF outbreak, however, favours the explanation based on monitoring and detection biases rather than repeated observation of selection against highly virulent virus during the time of virus perpetuation.  相似文献   

10.
11.
Active transmission of classical swine fever virus (CSFV) was studied in six birds (five ravens, one hooded crow) and two laying hens. Cloacal swabs, blood and organs of birds and hens as well as blood and organ samples of pigs which had been fed with faeces derived from CSFV infected birds or which had come in contact with faeces of infected hens were negative for CSFV. None of the animals seroconverted during the study. This result demonstrates that active virus transmission by these animals is unlikely. Dissemination of CSFV from wild boar to domestic pigs is discussed.  相似文献   

12.
Although classical swine fever (CSF) has been well known for decades and epidemics still occur, clinical diagnosis continues to cause problems for veterinary practitioners. This is due to the extensive differential diagnosis, further complicated by the emergence of new diseases such as porcine reproductive and respiratory syndrome (PRRS) and porcine dermatitis and nephropathy syndrome (PDNS). In addition, acute, chronic and prenatal courses of CSF have to be distinguished. As a cause of considerable economical losses within the EU, control of CSF requires knowledge of the primary outbreaks and spread of the disease. Genetic typing of CSF virus isolates has proved to be a potent method of supporting epidemiological investigations. Phylogenetic analysis of CSF virus strains and isolates originating from different continents has allowed three genetic groups and several subgroups within these groups to be distinguished. Whereas isolates belonging to group 3 seem to occur solely in Asia, all CSF virus isolates of the 1990s isolated in the EU belonged to one of the subgroups within group 2 (2.1, 2.2, or 2.3) and were clearly distinct from former CSF reference viruses, which belong to group 1. Within the EU, different strategies are followed for the eradication of CSF in domestic pigs and in wild boar. While a strict non-vaccination policy is followed for domestic pigs, eradication of the disease in wild boar is more complex, and oral immunisation together with special hunting strategies have been applied. Recently, marker vaccines with a companion discriminatory test designed to allow differentiation between vaccinated animals and animals having recovered from field virus infection have been developed. Preliminary studies indicated that the discriminatory tests had a reduced sensitivity and specificity. Further improvements are therefore necessary before marker vaccines can be considered for emergency use in EU Member States. Prevention of CSF remains the main objective within the EU.  相似文献   

13.
The virulence of two isolates of the classical swine fever virus (CSFV) was studied in experimentally infected wild boars of different ages. The isolates, originating from wild boars shot in Mecklenburg-Western Pomerania (isolate '1829-NVP') and in Rhineland-Palatinate (isolate '11722-WIL'), belong to the genetic subgroup 2.3 Rostock. Clinical picture, transient viraemia, virus excretion and gross lesions at necropsy as well as a failure of virus detection at the end of the experiment revealed that this virus subtype was only moderately virulent. Whereas one subadult wild boar and both 7-week-old wild boar piglets infected intranasally became sick and died, only one of three 8-week-old animals which survived after contact infection remained CSFV positive until the end of the experiment [34 days post infection (dpi)], although neutralizing antibodies were present. This underlines the role of young boars in CSF epidemics. The isolate '11722-WIL' was shed by an infected adult wild boar and was transmitted to susceptible piglets. Interestingly, all animals which became sick and died also were found to be infected with a secondary pathogen. Therefore, we assume that after infection with moderately virulent CSFV simultaneous infections with other pathogens may be important for the clinical course and the outcome of the disease as well as for a spread of the virus in field.  相似文献   

14.
Emergence of classical swine fever virus in Israel in 2009   总被引:1,自引:0,他引:1  
Classical swine fever (CSF) re-emerged in Israel in February 2009 after an absence of 62 years. The outbreak occurred on a domestic pig farm in northern Israel and affected domestic pigs and wild boar. On the basis of phylogenetic analysis of a 190 base pair fragment of the E2 glycoprotein gene, the Israeli CSF virus strain belonged to genotype 2.1 and was genetically most similar to a Chinese CSF virus strain.  相似文献   

15.
Classical swine fever (CSF), a highly contagious viral disease of pigs, is endemic in India. As there is no information concerning the accurate genetic typing of classical swine fever virus (CSFV) isolates in India, 16 CSF viruses isolated during 2005-2007 from domestic pigs in different districts of Assam were typed in 5′ UTR (150 nucleotides). To confirm the genetic typing results and to study the genetic variability, selected viruses were also analyzed in E2 (190 nt) and NS5B gene (409 nt) regions. Phylogenetic analysis revealed that all the 16 CSFV isolates analyzed belonged to group 1 and subgroup 1.1 in contrast to the situation in other Asian countries. Additionally, analysis in E2 and NS5B region placed the Indian isolates in a clearly separated clade within subgroup 1.1. The results suggest that subgroup 1.1 CSF viruses are currently circulating in India, which is important for epidemiology and control of CSF.  相似文献   

16.
The Pestivirus genus within the family of Flaviviridae consists of at least three species; classical swine fever virus (CSFV) found in swine and wild boar, bovine viral diarrhoea virus type 1 and type 2 (BVDV-I and BVDV-II) mainly isolated from cattle and border disease virus (BDV) preferably replicating in ovine species. Many features demonstrate differences between CSFV and other pestiviruses, BVDV-I, BVDV-II and BDV, here defined as nonCSFV, whereas other features show similarities between all different species of pestiviruses. Focussing on the major envelope glycoprotein E2, the immunodominant protein of pestiviruses, CSFV seems to be a more distinct species within the Pestivirus genus. Here we confirm on one hand the more separated grouping of CSFV by isolation of monoclonal antibodies (MAbs) raised against E2 of BVDV-I and BVDV-II. None of these MAbs recognize E2 of CSFV strains. On the other hand, only one MAb, MAb 912, was isolated against E2 of BDV. MAb 912 binds to E2 of CSFV strains and partly neutralizes CSFV. The epitope of MAb 912 is mapped in antigenic domain B of CSFV-E2. This common epitope of CSFV strains and nonCSFV strains could have implications for development of DIVA vaccines and serological diagnostics for CSF.  相似文献   

17.
Thirty-four pregnant wild sows and their unborn progeny derived from an endemically infected population in the district of Nordvorpommern (Mecklenburg-Western Pomerania) were investigated for classical swine fever virus (CSFV) and antibodies. During the last 2.5 years of the epidemic, 20 out of 34 pregnant wild sows investigated were serologically positive. No CSFV or viral RNA was detected in organs derived from these animals and their progeny. This indicates that young wild boars persistently infected by transplacental virus transmission do not play a crucial role in the perpetuation of CSFV in wild boar. Other factors seem to be more important for the establishment of CSF as well as for virus perpetuation in the population.  相似文献   

18.
Classical swine fever--an update   总被引:8,自引:0,他引:8  
Classical swine fever (CSF) is a serious and contagious viral disease of pigs and wild boar with a widespread worldwide distribution. The immunopathology of the disease is poorly understood, but the ability of the CSF virus to infect cells without triggering apoptosis and to kill uninfected cells is probably highly significant. The virus may be spread by various direct and indirect methods, but in most cases the exact mechanisms involved in local spread between farms are not known. Excellent diagnostic tools and typing methods are available, but tests that could be performed on-farm, in pre-clinically infected pigs or on meat would also be advantageous. A more complete picture of the viruses circulating in different parts of the world is needed. There is great interest to develop and use marker vaccines for the control of CSF in domestic pigs and in wild boar. Epidemiological modelling is increasingly used to evaluate control options.  相似文献   

19.
Genetic typing of classical swine fever viruses--a review   总被引:2,自引:0,他引:2  
Classical swine fever (CSF) is a notifiable disease of domestic pigs and wild boar. It is caused by the highly contagious CSF virus and in its acute form the disease generally results in high morbidity and mortality. Due to the great economical impact an outbreak can cause to the pig industry it is one of the most important swine diseases worldwide. To limit the damage in the case of a new outbreak it is necessary to identify the virus as fast as possible. This information helps epidemiologists to trace the origin of the virus and to follow the virus spread. Genetic typing revealed that CSF virus genotypes, subgroups and types show a regional distribution making it an important tool for epidemiologists. Meanwhile, besides epidemiological data and nucleotide sequences from European isolates, information from isolates from South- and Central America, the Caribbean, Asia and recently from South Africa have become available. The data are stored in a database in the EU Reference Laboratory for CSF, accessible by the WWW (http://viro08.tiho-hanno ver.de). A new module was implemented that allows efficient automated genotyping.  相似文献   

20.
The aim of this study was to evaluate the efficacy of lyophilised C-strain vaccine in domestic pigs and wild boar after oral application. A new spherical bait form (diameter 3 cm) containing lyophilised vaccine virus and the recent vaccine baits were used for animal experiments. Four vaccination groups were established in experiment 1 (group 1: recent liquid bait vaccine; group 2: spherical baits containing one dose of the lyophilised vaccine; groups 3 (domestic pigs) and 4 (wild boar): spherical baits containing two doses of the lyophilised vaccine) and two groups in experiment 2 (group 1: recent liquid bait vaccine; group 2: spherical baits with two doses of the lyophilised vaccine). Challenge was carried out with the highly virulent virus strain "Alfort 187" (using 100 TCID50 in the first and 1.000 TCID50 in the second experiment). Our results showed that the animals vaccinated with lyophilised C-strain vaccine developed high neutralising antibody titres comparable to those obtained after vaccination with the recent bait vaccine. All pigs which picked up the baits remained healthy after challenge. Neither clinical symptoms nor viremia or virus shedding were observed after infection except in one pig (group 2, experiment 2) which had not consumed the vaccine bait. The surviving domestic pigs and wild boar were tested negative for CSFV and viral RNA at the end of the study. This result demonstrates that lyophilised vaccine may become an effective vaccine formulation for oral immunisation of wild boar against CSF in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号