首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic parameters relating isoflavone and protein content in soybean seeds   总被引:3,自引:0,他引:3  
Isoflavones are a class of compounds present in high amounts in soybean seeds, which can be used for prevention and treatment of several chronic diseases. Proteins present in soybean seeds are the basis for the high nutritional value and versatility of this leguminous species in animal and human feeding. The main goals of this work were to estimate heritabilities for isoflavone contents in soybean seeds and the correlation between isoflavone and protein contents. Commercial variety IAC-100 (high isoflavone and normal protein contents) and the line BARC-8 (low isoflavone and high protein contents) were crossed, and one single F1 plant derived 97 F2 seeds, which were used to obtain F3 seeds. A sample of F3 seeds from each F2 plant was used for isoflavone determination by HPLC and protein by the Kjeldahl method. Six isoflavone forms were detected: daidzin, genistin, glycitin, malonyldaidzin, malonylgenistin and malonylglycitin. Total isoflavone contents ranged from 427.92 to 965.89 μg per gram of dry seed and the protein content ranged from 45.17 to 34.95% in BARC-8 and IAC-100, respectively. Our results indicate that it is possible to select for high isoflavone content in early breeding generations because the broad sense heritabilities for the contents of the various isoflavone forms were higher than 90%. In addition, high correlation values among the contents of the individual isoflavone forms were observed (between 0.80 and 0.98). However, negative correlation values were obtained between isoflavone and protein contents, ranging from −0.51 to −0.37 for the different isoflavone forms. The correlation value of −0.47 between total isoflavone and protein contents confirmed the negative correlation between these two parameters, as reported by other authors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Selective herbicides are valuable weed control tools; however, selectivity is not always complete, resulting in crop damage. Stem breakage, lodging, and enlarged hypocotyls (brittle bean syndrome) limit yields of soybean [Glycine max (L.) Merr.] genotypes treated with pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine]. Developing genotypes with resistance to pendimethalin injury would eliminate or reduce this problem. Genetic studies were conducted to determine the inheritance of resistance to pendimethalin induced stem damage. The F2:3 progeny of crosses involving resistant ('Asgrow A4715' and 'Flyer') and susceptible (`Essex' and K87-7-95) genotypes were screened in a greenhouse. Each genotype was treated with 1.68 kg ha-1 pendimethalin preemergence and irrigated as needed. Plants were scored at V4 for stem breakage. Progeny distributions indicated that resistance to brittle bean syndrome damage behaved as a quantitative trait. Dominance for stem breakage was expressed in the population of A4715 × Essex. Flyer was more sensitive to herbicide damage than Asgrow A4715 because it has fewer genes for resistance or different alleles. The F2:3 variance component heritability estimates ranged from 0.19 to 0.52. Gain from selection for resistance to pendimethalin injury is possible, and resistant progeny can be recovered from segregating populations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Inheritance of resistance to Soybean mosaic virus in FT-10 soybean   总被引:1,自引:0,他引:1  
The occurrence of a new isolate from the G5 strain of Soybean mosaic virus (SMV), which broke the resistance of soybean cultivar FT-10, was first reported in Brazil in 1995. Cultivar Davis is an ancestor of ‘FT-10’ and the likely source of resistance to the virus. Diallel crosses among resistant cultivars Epps (PI 96983), Ogden and FT-10, and susceptible cultivar Hill were made to investigate the inheritance of SMV resistance in FT-10. The experiments for genetic studies were performed undergreen house conditions. Plants of the F2 population and F3 families from each cross and the parents were inoculated with SMV G1 and G5 strains. Plants were classified as: symptom less (R), susceptible with typical symptoms of mosaic (S), and systemic necrosis (N). Plants showing necrosis or no symptoms were classified as resistant. Each F3 family was classified as resistant (homozygous),susceptible (homozygous), or segregating (heterozygous). The results of both F2 and F3 were analyzed by Chi-square tests. The results suggested that FT-10 carries an allele at the Rsv 1 locus for resistance to SMV. However, the allele is different from those in Epps and Ogden. The symbol Rsv 1 d is a tentatively named for the newly detected allele in FT-10. This allele probably originated from Davis cultivar. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
G. O. Myers  S. C. Anand 《Euphytica》1991,55(3):197-201
Summary The objectives of this study were to determine if genes for resistance to soybean cyst nematode (SCN) in soybean PI 437654 were identical or different from the genes in Peking, and PI 90763. The F2 plants and F3 families were studied from crosses between PI 437654, Peking, and PI 90763. The cross PI 437654 × susceptible Essex was included to determine inheritance of resistance to SCN. For Race 3, PI 437654 was found to have genes in common with Peking and PI 90763. The segregation in PI 437654 × Essex indicated the presence of one dominant and two recessive genes. For Race 5, PI 437654 indicated the presence of similar genes as those in PI 90763 and Peking whereas, PI 437654 × Essex indicated the action of the segregation ratios of two dominant and two recessive genes. For Race 14, the data from the cross PI 437654 × PI 90763 indicated monogenic inheritance with resistance being dominant; whereas PI 437654 × Peking showed a recessive gene controlling resistance. The segregation in PI 437654(R) × Essex(S) suggested one dominant and two recessive genes for Race 14 reaction.  相似文献   

5.
Y. N. Bai  J. Y. Gai 《Euphytica》2005,145(1-2):25-32
At present, no report on inheritance of male fertility restoration has been released, yet more than 10 cytoplasmic-nuclear male-sterile soybean lines as well as their maintainers and restorers have been developed. Based on our previous work, 25 restorers for the male-sterile line NJCMS1A were identified and the inheritance of male fertility restoration for these restorers was studied. The results showed that F1s between NJCMS1A and its restorers were completely male-fertile. The numbers of fertile and sterile plants in the F2 population of Cross I (NJCMS1A × N23601) and Cross II (NJCMS1A × N23683) corresponded to a segregation ratio of 15:1, and the numbers of non-segregation lines, 3:1 segregation lines and 15:1 segregation lines in F2:3 of the same two crosses fitted a 7:4:4 genotypic segregation ratio. The testcross BC1F1s between the F1s of the above two crosses and NJCMS1A, NJCMS1B showed a 3:1 segregation ratio. Accordingly, it was inferred that two pairs of duplicate dominant genes controlled the male fertility restoration of NJCMS1A in both crosses. Meanwhile, F2 of other 23 crosses between NJCMS1A and its 23 restorers showed a fertility segregation ratio of 3:1 or 15:1. The F1s of the five testcrosses between NJCMS1A and the F1s of five crosses selected from the above 23 crosses showed that fertility segregation was 3:1 in BC1F1s between NJCMS1A and F1s of the crosses of which fertility segregation fitted 15:1 in F2 population, while fertility segregation in BC1F1s was 1:1 for those fertility segregation fitted 3:1 in F2 population. Allelism tests showed that restore genes of all restorers in the experiment were allelic to two pairs of dominant genes. All results showed that some restorers bore one pair of dominant restore gene and the others bore two pairs of duplicate dominant gene. The mechanism of F1 male sterility of the cross N8855 × N2899 was discussed.  相似文献   

6.
Soybean [Glycine max (L.) Merr.] is the principal oilseed crop in the world. Soybean oil has various industrial and food applications. The quality of soybean oil is determined by its fatty acid composition. Palmitic, stearic, oleic, linoleic and linolenic are the predominant fatty acids in soybean oil. The objective of this study was to determine the associations of simple sequence repeat (SSR) molecular markers with minor differences in fatty acids in soybean oil thereby detecting modifier quantitative trait loci (QTL) which could further improve soybean oil quality. To achieve this objective, 101 F6-derived recombinant inbred lines (RIL) from a population whose parents did not contain major mutant fatty acid alleles were developed from a cross of N87-984-16 × TN93-99. Fatty acids were determined by gas chromatography. Heritability estimates on an entry mean basis for fatty acids ranged from 65.8 to 77.3% for palmitic and linoleic acids, respectively. Molecular marker Satt537 located on molecular linkage group (MLG) D1b was associated with palmitic acid and Satt168 and Satt249 located on MLG B2 and J, respectively were associated with stearic acid. Molecular markers Satt185 or Satt268 (which are within 0.6 cM of each other) located on MLG E were consistently associated with oleic and linoleic acid, and Satt263 and Satt235 located on MLG E and G, respectively were associated with linolenic acid. The lack of markers associated with multiple fatty acids suggests the possibility of independently changing fatty acid levels to achieve a desirable composition, except for regions common to all saturated fatty acids. Phenotypic variation explained by the fatty acids modifier QTL ranged from 10 to 22.5%. These modifier QTL may be useful in making minor improvements to further enhance the quality of soybean oil.  相似文献   

7.
Summary Two crosses between Glycine max (L.) Merr. and G. soja Sieb. & Zucc. parents were used to study the association between isozyme marker loci and agronomic and seed composition traits in soybean. The parents possessed different alleles at six isozyme loci for Cross 1 (A80-244036 × PI 326581) and at eight isozyme loci for Cross 2 (A81-157007 × PI 342618A). A total of 480 BC2F4:6 lines from the two crosses was evaluated for 13 traits in two environments. Lines were grouped in locus classes from 0 to 5 according to the number of loci homozygous for the G. soja alleles that they possessed. Within each locus class, each isozyme genotype was represented by five random lines.Selection for G. max alleles at the isozyme loci was not effective in recovering the recurrent parent phenotype in either cross. In cross 1, however, BC2F4-derived lines in the 0- or 1- locus class more closely resembled the G. max parent than lines in the 4- or 5- locus classes for most of the agronomic and seed composition traits evaluated. Significant associations were found between particular isozyme genotypes and every trait analyzed. The estimated effect of genes linked to the Pgm1 locus was a delay in maturity of 6.0±3.4 days. In cross 1, the Idh2 locus was associated with a significant effect on linolenic acid content. The percentage of variation accounted for by the models of estimation varied according to the heritability of the trait. The R2 was high (up to 78%) for maturity, lodging, and vining, and low (up to 21%) for seed yield. Most of the variation was associated with the BC2F1 family from which the lines were derived. There was little evidence that digenic epistasis was an important source of variation.Journal Paper No. J-13505 of the Iowa Agric. Home Econ. Exp. Stn., Ames, IA, Project 2475.  相似文献   

8.
A cluster analysis of wild and domesticated soybean phenotypes   总被引:1,自引:0,他引:1  
Summary Cluster analysis techniques were used to examine phenotypic variation within the USDA Soybean Germplasm Collection. This study included ten Plant Introductions each of the domesticated soybean, Glycine max (L). Merr., the wild soybean, G. soja Sieb. & Zucc., and a disputed species, G. gracilis Skvortz. G. max and G. soja were found to be morphologically distinct entities and G. gracilis was found to be conspecific with G. max. Because G. gracilis probably represents weedy races associated with the cultivated soybean and because gracilis phenotypes can be distinguished from G. max, the designation, G. max forma gracilis, is recommended.Joint contribution: North Central Region, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, and Journal Paper No. J-9389 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011; Project 2107.  相似文献   

9.
The long juvenile period characteristic (LJP), which delays flowering under short day conditions, has been identified in soybean cultivars (Glycine max L. Merrill). This characteristic may be especially important as it increases the range of adaptation of soybean in low latitudes and gives greater flexibility for sowing periods within the same latitude. The inheritance of the long juvenile period was studied in the BR80-6778 soybean line to provide knowledge to support the development of cultivars adapted to short day conditions. Cultivars with classic flowering, Paraná, Bossier, Bragg and Davis, which flower early under short day conditions, were also used as parents in single crosses. They were crossed among themselves and with the genotypes with LJP, BR80-6778 and MG/BR 22 (Garimpo). The study was carried out under short day conditions (early sowings) in greenhouses and in the field at Embrapa National Soybean Research Center, Londrina, PR. Flowering was assessed daily. The results indicated that the BR89-6778 line shares a pair of alleles with the Paraná cultivar, and when associated with the cc allele retards flowering under short day conditions. The following genotype constitutions were attributed to the cultivars: Paraná (aaBBCC), Bossier (AabbCC), and BR80-6778 (aaBBcc). The combination of the genes aabb and aabbcc has a pronounced effect on the manifestation of the trait. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
It is very important to efficiently study and use genetic diversity resources in crop breeding and sustainable agriculture. In this study, different sampling methods and sample sizes were compared in order to optimize the strategies for building a rationally sized core collection of Chinese soybean (Glycine max). The diversity in the core collection captured more than 70% of that in the pre-core collection, no matter what sampling methods were used, at a sampling proportion of 1%. Core collections established with both simple sequence repeat (SSR) marker data and agronomic traits were more representative than those chosen on an independent basis. An optimal sampling method for a soybean core collection was determined, in which strategy ‘S’ (allocating accessions to clusters according to the proportion of square root of the original sample size within each ecotype) was used based on SSR and agronomic data. Curve estimation was used to estimate the allelic richness of the entire Chinese soybean germplasm and a minimum sample size for a core collection, on which a sampling proportion of about 2% was determined to be optimal for a core collection. Further analysis on the core collection with fourteen agronomic traits and allelic constitution at 60 SSR loci suggested that it highly represented the entire collections both on genetic structure and diversity distribution. This core collection would provide an effective platform in proper exploitation of soybean germplasm resources for the study of complex traits and discovering important novel traits for crop genetic development.  相似文献   

11.
Genetic analysis of resistance to soybean cyst nematode in PI 438489B   总被引:2,自引:0,他引:2  
Soybean (Glycine max L. Merr.) plant introduction PI 438489B is a unique source that has resistance to all known populations of soybean cyst nematode (Heterodera glycines Ichinohe, SCN). This PI line also has many desirable agronomic characteristics, which makes it an attractive source of SCN resistance for use in a soybean breeding program. However, characterization of SCN resistance genes in this PI line have not been fully researched. In this study, we investigated the inheritance of resistance to populations of SCN races 1, 2, 3, 5, and 14 in PI 438489B. PI 438489B was crossed to the susceptible cultivar ‘Hamilton’ to generate F1 hybrids. The random F2 plants and F3 lines were evaluated in the greenhouse for reaction to these five populations of SCN races. Resistance to SCN races 1, 3, and 5 were mostly conditioned by three genes (Rhg Rhg rhg). Resistance to race 2 was controlled by four genes (Rhg rhg rgh rgh). Three recessive genes were most likely involved in giving resistance to race 14. We further concluded that resistance to different populations of SCN races may share some common genes or pleiotropic effects may be involved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
An important factor in the natural spread of soybean mosaic virus (SMV) is that viruliferous aphid landing must be followed by probing. Previous studies showed that increased pubescence density of soybean provided resistance to SMV by inhibiting the probing activities of aphids. In this study we compared the incidence level of SMV infection in six `Clark' isolines with different pubescence densities and fit the disease progress curves (increase with time in the percent of plants infected with SMV) in three Clark isolines with normal, dense, and extra-dense pubescence to compare patterns of SMV spread in the field. Our objectives were (1) to corroborate the effects of dense pubescence on the incidence level of SMV infection and extend this to soybean with extra-dense pubescence; (2) to characterize the effects of pubescence density on occurrence of SMV epidemics. Each increase in pubescence density reduced the incidence level of SMV infection. The pubescence density of soybean affected the disease progress curves of SMV. The dense pubescence isoline had a lower upper asymptote parameter, and the extra-dense pubescence isoline had both a lower upper asymptote parameter and a larger delay parameter than the normal pubescence isoline. On the other hand, denser pubescence did not significantly affect the rate of SMV spread. Therefore, dense pubescence provided resistance to SMV by reducing the maximum incidence of SMV infection while extra-dense pubescence provided resistance by both reducing the maximum incidence of infection and delaying the time at which maximum SMV spread occurred. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary A chromosome interchange in soybean (Glycine max (L.) Merr.) was studied agronomically and genetically, and comparisons of seed or abortion position within the pod were related to chromosome structure. Comparisons were among plants heterozygous for a chromosome interchange (N/T), plants homozygous for the interchange (T/T), and homozygous normal-chromosome plants (N/N). The latter two genotypes were male fertile and female fertile. Heterozygous interchange plants, which are about 50% pollen sterile and ovule sterile, are typical of a large number of plants that have equally frequent alternate and adjacent chromosome segregation. Yield, lodging, plant height, and seed oil and protein percentages among all three genotypes were similar even though significant differences existed for seed weight, seed number, and pod number per plant. Seed abortions were more frequent in the basal position of the pod than in either the middle or apical positions in N/N and T/T genotypes. Ovule abortions in N/T plants were equally frequent among all positions both in two- and three-ovule pods. The middle seed in a three-ovule pod was heavier than the basal or apical seed among all three genotypes.Joint contribution: USDA ARS, and Journal Paper No. J-11300 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011, USA, Project 2471.USDA ARS, Department of Agronomy and Genetics, Iowa State University, Ames, Iowa 50011, USA.Department of Agronomy, Iowa State University, Ames, Iowa 50001, USA.  相似文献   

14.
Summary Improvement of cookability is an important objective in breeding of food legumes. The present study was undertaken to investigate variation in cookability in soybean. Genetic variation was observed among lines from two crosses. Absence of associations between cookability and protein content, oil content and grain yield indicate that selection for cookability can be achieved without adversely affecting the expression of these characters.  相似文献   

15.
Summary Cultivar Peking has been extensively used as a source of resistance to Race 3 and Race 5 of soybean cyst nematode, Heterodera glycines I., and Peking genes for resistance are present in a wide range of resistant soybean cultivars. Peking is also used as a host differential in the soybean cyst nematode race classification system. Thirteen Peking lines maintained in the USDA Soybean Germplasm Collection and in several breeding programs were surveyed using RFLP and RAPD markers for genetic characterization. Based on the molecular diversity combined with reaction to soybean cyst nematode, Peking genotypes from a common original source were identified. Peking lines PI 297543 (introduction from Hungary), and PI 438496A, PI 438496B and PI 438496C (introductions from Russia) represented unrelated germplasms. Identified molecular polymorphism can be used to validate the genetic purity of Peking lines used as host differentials for soybean cyst nematode classification system as well as utilization of an individual germplasm line in genetic-breeding programs.  相似文献   

16.
Conditions affecting Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merr.], including seed vigor of explant source, selection system, and cocultivation conditions, were investigated. A negative correlation between seed sterilization duration and seed vigor, and a positive correlation between seed vigor and regenerability of explants were observed in the study, suggesting that use of high vigor seed and minimum seed sterilization duration can further improve transformation efficiency. Selection schemes using glufosinate or bialaphos as selective agents in vitro were assessed. Glufosinate selection enhanced soybean transformation as compared to bialaphos. The use of 6 mg L-1 glufosinate during shoot induction and shoot elongation stages yielded higher final transformation efficiency ranging from 2.0% to 6.3% while bialaphos at 4 to 6 mg L-1 gave 0% to 2.1% efficiency. Including cysteine and DTT during cocultivation increased the transformation efficiency from 0.2–0.9% to 0.6–2.9%. This treatment also improved T-DNA transfer as indicated by enhanced transient GUS expression. Shoot regeneration and Agrobacterium infection were attained in twelve soybean cultivars belonging to maturity groups I-VI. These cultivars maybe amenable to genetic transformation and may provide a valuable tool in soybean improvement programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Soybean cultivars carrying the `long juvenile trait' show a delayed flowering response under short day conditions. The incorporation of this character into genotypes of agronomic interest may allow a broader range of sowing dates and latitudes for a single cultivar adaptation. The objective of this work was to identify molecular markers linked to the juvenile locus in soybean. Experiments were carried out using two pairs of near isogenic lines(NILs) differing in the presence of the long juvenile trait, and RAPD markers. Four hundred primers were first screened to find polymorphism associated with the trait. Additional differences between NILs were sought by digesting the genomic DNA with five restriction enzymes. Polymorphic fragments detected between NILs were tested for linkage to the juvenile locus in the corresponding F2 segregating populations. Marker bc357-HaeIII was linked (χ2L = 46.316) to the juvenile locus with an estimated recombination frequency of 0.13 ± 0.03in one of the genetic backgrounds studied. The fragment was cloned, sequenced and converted into a SCAR marker. Moreover,bc357-HaeIII was used as RFLP probe. Both, SCAR and RFLP generated markers linked to the juvenile locus in the two genetic backgrounds analysed. Results presented in this work can be utilised for both, the localisation of the gene associated with the character and for tagging the juvenile trait in soybean breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Worldwide, cyst nematode (SCN) Heterodera glycines is the most destructive pathogen on cultivated soybean (Glycine max (L.) Merr.). In the USA yield losses in 2001 were estimated to be nearly 60 million dollars. Crop losses are primarily reduced by the use of resistant cultivars. Nematode populations are variable and have adapted to reproduce on resistant cultivars overtime because resistance primarily traces to two soybean accessions. Recently cv. Hartwig was released which has comprehensive resistance to most SCN populations. A virulent nematode population LY1 was recently selected for its reproduction on Hartwig. LY1 population originated from a mass mating of Race 2 (HG Type 1.2.5-) females with Race 5 (HG Type 1.2-) males. LY1 nematode population infects currently known sources of resistance except PI 567516C. The female indices obtained on PI 567516C and Hartwig were 7% (resistant) and 155% (susceptible), respectively. However, the genetic basis of LY1 resistance in soybean PI 567516C is not known. Resistant PI line 567516C was crossed to susceptible cultivar Hartwig to generate 105 F2:5 families. These families together with parents, seven indicator lines and a susceptible control cv. Lee-74 were evaluated for response to LY1 nematode population in the greenhouse. Chi-square analysis showed resistance in PI567516C to LY1 was conditioned by one dominant and two recessive genes (Rhg, rhg, rhg). Chi-square value was 0.15 and P = 0.70. This information will be useful to soybean researchers for developing resistant cultivars to nematode population that infects Hartwig.  相似文献   

19.
Combining ability of seed vigor and seed yield in soybean   总被引:4,自引:0,他引:4  
Youngkoo Cho  Roy A. Scott 《Euphytica》2000,112(2):145-150
Studies have shown no consensus in relationships between seed yield and vigor in soybean [Glycine max (L.) Merrill]. The lack of information regarding the inheritance of seed vigor prompted this study to determine the types of gene action and combining ability estimates for seed vigor and its related traits. Five high and six low seed vigor soybean genotypes were crossed in a diallel, and selfed to produce 55 F2 progenies, which were examined, along with the parents, for seed vigor, yield, and seed weight. Significant genotype and environment effects were found for seed vigor and yield. General combining ability (GCA) effects for seed vigor and seed yield were significant (p≤ 0.01) and larger than specific combining ability (SCA) effects. Significant GCA and SCA effects were found for seed weight, indicating that both additive and non additive genetic effects were involved in conditioning seed weight. The ratios of mean square, 2GCA / (2GCA+SCA), were 0.96 for seed vigor and 0.93 for seed yield. These ratios indicated that additive gene effects were more important than non additive gene effects for seed vigor and seed yield in these crosses. Mean seed vigor(83.8%), as determined by accelerated aging germination, and mean seed yield (2,155 kg ha-1)in high vigor × high vigor crosses were higher than the high vigor × low vigor and low vigor × low vigor crosses. Mean percent accelerated aging germination rates in F2 populations from diallel crosses were significantly related to mid-parent seed vigor(r2 = 0.52**) and midparent seed size (r2 = 0.31**). These results indicated that levels of seed vigor can be improved through breeding, while maintaining high yields because of the predominance of GCA effects in both seed vigor and seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
New aspects of soybean somatic embryogenesis   总被引:4,自引:0,他引:4  
Somatic embryo formation from immature cotyledons was improved in the following ways: by cutting into sections, supplementing culture media with spermine and using solid/liquid/solid type of culture. Cut cotyledons of the eight genotypes examined expressed a higher ability for somatic embryogenesis than whole cotyledons. Of the three polyamines tested, spermine considerably stimulated and putrescine slightly inhibited induction of somatic embryos. The ability of embryoid formation on medium with spermidine depended on the genotype. The solid/liquid/solid type of culture was better than the continuous solid culture. The best nitrogen ion content for the subculture of somatic embryos was 10 mM NH4NO3 and 30 mM KNO3. The possibility of using these modifications in Agrobacterium transformation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号