首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于分形理论的设施土壤水分特征曲线研究   总被引:3,自引:0,他引:3  
采用现场调查取样与室内分析相结合的方法,研究了设施栽培条件下原状土壤和扰动土壤分形维数及其与水分特征曲线的关系,结果表明:在相同质地的情况下,分形维数随土壤容重的增大而增大;设施土壤水分特性曲线原状土分形维数与扰动土分形维数具有良好的线性关系;通过原状土与扰动土分形维数的关系来预测的原状土水分特征曲线在整个含水率范围内预测结果与实测值一致性较好,表明根据土壤扰动土分形维数来预测原状土水分特征曲线是可行的。  相似文献   

2.
基于黏粒量的土壤水分特征曲线预测模型   总被引:1,自引:0,他引:1  
【目的】建立基于黏粒量的土壤水分特征曲线预测模型。【方法】设计12种不同黏粒量的质量混合比处理,获得一系列合成土样,通过测定合成土样的土壤水分特征曲线,研究了在体积质量一致的条件下,黏粒量对土壤水分特征曲线参数和孔隙分布的影响。【结果】在体积质量为1.55 g/cm3条件下,黏粒量增加1.9倍,土壤中传导孔隙(0.03~1 mm)体积减小28.6%,储存孔隙(200nm~0.03 mm)体积增加6倍,土体的持水性增强。合成土样的土壤水分特征曲线参数θs和α均与黏粒量显著正线性相关,θr与黏粒量显著负线性相关,n和m均与黏粒量呈指数衰减关系。【结论】基于黏粒量确定的土壤水分特征曲线预测模型具有较高的精度,能够快速预测土壤水分特征曲线,预测值与实测值之间相对误差<15%。  相似文献   

3.
对田间同深度土壤水分特征曲线进行了标定,探讨了其标定系数的半方差特征,并对其标定系数进行了Kriging估值。研究表明,田间同深度不同点的土壤水分特征曲线存在显著的空间变异性, 通过确定不同点的标定系数可以将田间不同点的土壤水分特征曲线用一个统一的曲线来表达,同时田间同深度不同点的标定系数存在显著空间相关性,利用 Kriging估值方法可对其标定系数进行最优估值,用较少点的实测土壤水分特征曲线确定整个田块的土壤水分特征曲线的空间分布。  相似文献   

4.
喀斯特地区黄壤土壤水库蓄存能力及分形估算   总被引:2,自引:0,他引:2  
以重庆市黔江区喀斯特地区3种典型黄壤为研究对象,分析了其土壤水库蓄存能力,通过构建2种土壤粒径分形模型对3种土壤的土壤水库蓄存能力做了推导预测。结果表明,喀斯特地区黄壤土壤水库蓄存能力受到土壤密度、有机质、土壤颗粒和土层厚度的共同作用;以土粒粒径与颗粒数量关系求得的土壤分形维数(D1),以及以土粒粒径与颗粒质量关系求得的土壤分形维数(D2),可以用来推求喀斯特地区黄壤的田间持水率和萎蔫系数;利用土壤粒径分布进行的土壤水库蓄存能力预测,萎蔫系数的预测情况较田间持水率较差,这也造成了无效水库容与有效水库容预测精度比贮水库容和通透库容的预测低。  相似文献   

5.
Soil physical characteristics are important input parameters for simulation modelling of unsaturated flow in soils and associated solute flow. The determination of soil water retention and hydraulic conductivity curves in the laboratory is laborious and expensive. For modelling studies that require characteristics for many soil horizons, such as regional studies or scenario studies, it may be impossible to measure all the necessary characteristics. An alternative would be to use characteristics inferred from readily available soil data by class-pedotransfer functions. In this study such a comparison was made for six sites on sandy soils in the Netherlands using the soil-water model SWACROP with soil physical characteristics from either laboratory measurements or from a standard series as input. For this the simulated pressure head values and moisture content values were compared with measured values at eight different depths using statistical criteria. Furthermore two functional criteria, i.e. the number of workable days and number of days with possible drought, were inferred from simulated pressure head values and again the different results were compared. It was found that simulation results were not significantly different, implying that standard series or class-pedotransfer functions could be used in studies like these for simulating the unsaturated water flow regime in sandy soils on field/farm level or regional level. Differences for specific criteria for individual sites were sometimes substantial and in such cases (at field level) it will make a difference which soil physical characteristics are used.  相似文献   

6.
Modeling water uptake by roots   总被引:12,自引:0,他引:12  
Summary Most current models of the water uptake by plant roots from the soil profile solve the equation for flow of water in unsaturated soils. The boundary condition at the root-soil interface is represented, whether explicitly or implicitly by some kind of root distribution function. Such models have sufficient number of parameters so that they can be fitted to data reasonably well. Most water uptake patterns, when normalized with respect to root zone depth and plant extractable water reveal, remarkable similarities regardless of soil texture, plant species, or root distribution. This similarity is not predictable with current models. A model based upon non-linear behavior of the root membranes and described by a distributed sink moving downward through the soil profile adequately represents the uptake process. The shape of the sink function is not critical and only two parameters, a root depth parameter, and an extractable water parameter are needed.  相似文献   

7.
Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root density distributions, which is tedious to measure in situ and prone to uncertainty because of the complexity of root architecture hidden in the opaque soils. As a result, developing alternative methods that do not explicitly need the root density to estimate the root water uptake is practically useful but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken as a demonstrating example. The inputs to the neural network model included soil moisture, electrical conductivity of the soil solution, height and diameter of plant shoot, potential evapotranspiration, atmospheric humidity and air temperature. The outputs were the root water uptake rate at different depths in the soil profile. To train and test the model, the root water uptake rate was directly measured based on mass balance and Darcy's law assessed from the measured soil moisture content and soil water matric potential in profiles from the soil surface to a depth of 100 cm. The ‘measured’ root water uptake agreed well with that predicted by the neural network model. The successful performance of the model provides an alternative and more practical way to estimate the root water uptake at field scale.  相似文献   

8.
The spatial and temporal variations commonly found in the infiltration characteristic for surface-irrigated fields are a major physical constraint to achieve higher irrigation application efficiencies. Substantial work has been directed towards developing methods to estimate the infiltration characteristics of soil from irrigation advance data. However, none of the existing methods are entirely suitable for use in real-time control. The greatest limitation is that they are data intensive. A new method that uses a model infiltration curve (MIC) is proposed. In this method a scaling process is used to reduce the amount of data required to predict the infiltration characteristics for each furrow and each irrigation event for a whole field. Data from 44 furrow irrigation events from two different fields were used to evaluate the proposed method. Infiltration characteristics calculated using the proposed method were compared to values calculated from the full advance data using the INFILT computer model. The infiltration curves calculated by the proposed method were of similar shape to the INFILT curves and gave similar values for cumulative infiltration up to the irrigation advance time for each furrow. More importantly the statistical properties of the two sets of infiltration characteristics were similar. This suggests that they would return equivalent estimates of irrigation performance for the two fields and that the proposed method could be suitable for use in real-time control.  相似文献   

9.
UPFLOW is a simple software tool developed to estimate with limited data availability and appropriate assumptions the expected upward water movement from a shallow water table to the root zone during a specific period (typically 10-day) in a specific environment. The program contains various sets of soil water retention curves that are considered as representative for various soil classes and indicative values for root water extraction for a number of crops. The environmental conditions are specified in fields of a spreadsheet type Main Menu by specifying: (i) the average evapotranspiration (ET) demand of the atmosphere during the period under consideration, (ii) the expected soil wetness in the topsoil as a result of rain during that period, (iii) the depth of groundwater below the soil surface, (iv) the water extraction pattern of the plant roots, (v) the thickness and characteristics of successive layers of the soil profile and (vi) the salt content of the water table. A steady state upward flow is assumed during the period. The simulations are in line with indicative values presented in literature. Additionally, the software displays the deficient aeration conditions in the root zone and its effect on crop evapotranspiration when the groundwater is close to the soil surface.The model was used to estimate the capillary rise from shallow groundwater (1–1.5 m) to the root zone (0.4–0.6 m) of horticultural crops in loamy sand and sandy loam soils in Belgium. The field measurements confirm that UPFLOW simulates the correct order of magnitude of the capillary rise to the root zone.UPFLOW is public domain software and hence freely available. An installation disk and manual can be downloaded from the web.  相似文献   

10.
以不同生物炭配比的土壤样品为研究对象,通过低温真空抽提和稳定同位素光谱技术,进行不同抽提时间下的土壤水稳定同位素分析,采用绘制土壤抽提曲线和计算抽提贡献率的方法,探讨生物炭对土壤持水性的影响。结果表明,低温真空抽提下,砂土的最短抽提时间(T_(min))为30 min,壤土为45 min,粘土为60 min。土壤持水性的变化会导致抽提过程中水稳定同位素值、T_(min)和抽提贡献率发生变化,通过分析不同生物炭配比下土壤的T_(min)、水稳定同位素分馏情况以及计算贡献率可得出,生物炭显著影响砂土持水性,且与生物炭添加量呈线性正相关;而对壤土和粘土的持水性有一定影响,但过量或过少则不明显,壤土对生物炭更为敏感。  相似文献   

11.
通过对连续土壤切片CT图像的分析,定量获取了土壤孔隙的大小分布情况。在此基础上建立了基于土壤孔隙形态学特征的随机网络模型,在孔隙尺度模拟了土壤中的水分运动过程,并预测了近饱和土壤水分特征曲线。结果表明,通过选取合适的模型参数,基于土壤孔隙形态学特征建立的随机网络模型可以模拟出与土壤样本实测值非常接近的水分特征曲线,可以作为一种快速测量的方法。  相似文献   

12.
为了探讨振动深松耕作措施对不同类型土壤的水分特征曲线的影响,利用吸力平板仪和压力膜仪对黑龙江省5种典型土壤,即黑土、黑钙土、水稻土、苏打盐碱土、沙土进行了测定。得到振动深松区和对照区的原状土壤在脱湿过程中不同吸力下的土壤含水率,并利用van Genuchten数学模型对5种土壤的水分特征曲线的实测值进行数值拟合,对比研究了5种土壤水分特征曲线及模型拟合参数、土壤当量孔径、土壤水分有效性及比水容量的变化。结果表明,振动深松前后土壤水分特征曲线差异显著。同一吸力下,深松区土壤含水率高于对照区,振动深松显著提高了土壤的有效供水能力,其中效果最佳的是苏打盐碱土和黑土。振动深松通过改善土壤结构,调整了孔隙孔径的比例,进而提高了土体的有效供水能力。  相似文献   

13.
土壤结构改良剂影响下的土壤水分有效性研究   总被引:5,自引:0,他引:5  
以聚丙烯酰胺(PAM)与磷石膏(PG)为土壤结构改良剂,利用离心机法,测定土壤水分特征曲线,从分析土壤的吸水能力和持水能力的角度出发,研究土壤结构改良剂对土壤水分有效性的影响。研究结果表明,土壤的吸水能力、持水能力与释水能力均表现出与用量密切相关;在使用土壤结构改良剂的情况下,仍然可用van Genuchten方程很准确的模拟土壤吸力与含水率之间的关系,即可作为使用土壤结构改良剂后的土壤水分特征曲线的模拟表达式;在试验的用量范围内,土壤结构改良剂的使用不会影响植物对水分的吸收和利用。  相似文献   

14.
斥水土壤的水力参数及水平吸渗规律   总被引:1,自引:0,他引:1  
为了对不同斥水程度土壤的水力性质进行分析,对比了van Genuchten和Brooks-Corey模型对于不同斥水程度下的塿土、砂姜黑土、盐碱土和砂土的适用性;进行了一维水平吸渗试验,分别运用Philip模型和Kostiakov公式对入渗规律进行了模拟,并分析了吸渗率和斥水持续时间的关系;采用水平吸渗法推求了土壤非饱和扩散率,并用指数函数拟合了非饱和扩散率和体积含水率的关系.结果表明:van Genuchten和Brooks-Corey模型对亲水和斥水土壤均具有较好的适用性;斥水性土壤的累积入渗量随时间变化曲线在一定时刻发生转折,未转折前Kostiakov公式的模拟结果比Philip模型好;当斥水时间大于40 s时,吸渗率的变化趋于稳定并在0~0.1 cm/min0.5内变化;非饱和扩散率和体积含水率关系的模拟可采用指数关系,且其对亲水性土壤的模拟效果优于斥水性土壤.斥水土壤的水力参数与亲水土壤的有明显差别,且表现出特殊性.  相似文献   

15.
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately.  相似文献   

16.
【目的】探究不同粒径珍珠岩对土壤水分运移的影响。【方法】设置大(1~3 mm)、中(50~200μm)、小(<50μm)3种粒径珍珠岩处理,对其表面结构进行扫描电镜观察研究各处理的吸水及在不同温度下的保水性能;向土壤中施加大、中、小3种粒径珍珠岩,通过盆栽与土壤水分入渗试验,探究其对土壤水分的影响。【结果】通过扫描电镜观察到珍珠岩表面孔隙随粒径的减小,孔隙数量减少,且孔径也减小,小粒径(<50μm)珍珠岩不具有孔隙;通过不同温度下珍珠岩持水量测定,表明大粒径(1~3 mm)与中粒径(50~200μm)珍珠岩在常温下具有一定的吸水性和保水性,中粒径珍珠岩在3个处理中吸水量最大,保水性最好;通过盆栽试验,发现大粒径与小粒径珍珠岩能促进土壤水分的蒸发,减少土壤水分,中粒径珍珠岩在土壤中具有一定的保水性;通过水分入渗试验,发现大粒径与中粒径珍珠岩能促进土壤水分入渗,土壤累积入渗量和湿润锋深度随着珍珠岩粒径增大而减小,Horton公式拟合更适合本试验的入渗模型。【结论】不同粒径的珍珠岩对土壤水分运移影响不同。大粒径珍珠岩具有疏松土壤,增加土壤水分散失的作用;中粒径珍珠岩能良好地协调土壤水气状况,促进土壤水分入渗,并且有一定的保水能力;小粒径珍珠岩会对土壤造成不良影响,不宜作为土壤添加基质。  相似文献   

17.
A priori knowledge of the in situ soil field water capacity (FWC) and the soil-water retention curve for soils is important for the effective irrigation management and scheduling of many crops. The primary objective of this study was to estimate the in situ FWC using the soil-water retention curve developed from volumetric water content (θ), and water potential (ψ) data collected in the field by means of soil moisture sensors in two contrasting-textured soils. The two study soils were Lihen sandy loam and Savage clay loam. Six metal frames 117 cm × 117 cm × 30 cm high were inserted into the soil to a depth of 5–10 cm at approximately 40 m intervals on a 200 m transect. Two Time Domain Reflectrometry (TDR) sensors were installed in the center of the frame and two Watermark (WM) sensors were installed in the SW corner at 15 and 30 cm depths to continuously monitor soil θ and ψ, respectively. A neutron probe (NP) access tube was installed in the NE corner of each frame to measure soil θ used for TDR calibration. The upper 50–60 cm of soil inside each frame was saturated with intermittent application of approximately 18–20 cm of water. Frames were then covered with plastic tarps. The Campbell and Gardner equations best fit the soil–water retention curves for sandy loam and clay loam soils, respectively. Based on the relationship between soil ψ and elapsed time following cessation of infiltration, we calculated that the field capacity time (t FWC) were reached at approximately 50 and 450 h, respectively, for sandy loam and clay loam soils. Soil-water retention curves showed that θ values at FWC (θ FWC) were approximately 0.228 and 0.344 m3 m−3, respectively, for sandy loam and clay loam soils. The estimated θ FWC values were within the range of the measured θ FWC values from the NP and gravimetric methods. The TDR and WM sensors provided accurate in situ soil–water retention data from simultaneous soil θ and ψ measurements that can be used in soil-water processes, irrigation scheduling, modeling and chemical transport.  相似文献   

18.
【目的】探讨煤炭企业生产视角下水土资源损毁的关键影响因素。【方法】借助EViews软件对研究区内12个煤炭企业共15个水土资源损毁影响因素进行散点拟合,定量分析了各因素对水土资源损毁的影响;选取7个影响因素进行核密度估计并描述了其曲线特征,结合多元回归模型分析了多因素对研究区水土资源损毁的综合影响并确定了其主要影响因素。【结果】影响研究区水资源耗损的主要因素是地下水径流量和总用水量,二者对数的核密度曲线双峰不明显,地下水径流量核密度曲线变化区间较大;服务年限与井田面积是土地资源损毁主要的影响因素,其对数的核密度曲线都是单峰,服务年限核密度曲线走势陡峭。【结论】研究区水土资源损毁的主要影响因素是地下水径流量、总用水量、服务年限与井田面积。  相似文献   

19.
Containerized plant production represents an extremely intensive agricultural practice with large amounts of moisture and fertilizer application. Hydro-physical characteristics such as water infiltration, texture and structure, particle size distribution affect the quality of the media used in containerized agricultural systems and the water availability to plants. Water retention characteristics depend on particle size distribution as well as the composition of the media used. Materials with coarser particles allow faster percolation of water and also retain relatively higher amounts moisture per unit weight due to higher porosity, while draining faster due to smaller surface area per unit weight. Faster drainage can result into airflow through coarser materials causing the media to dry. The objectives of this study were to characterize the selected hydro-physical properties of plant growth media that are commonly used by nurseries in South Florida. Characterization of the plant growing media can allow modeling of soil-water interactions and development of best management practices for more efficient use of water and agrochemicals by nurseries. Experimental analyses were performed to characterize the plant growth mixtures in terms of particle size distribution and hydraulic conductivity using three different methods (i.e., constant head permeability, falling head permeability test, and tension infiltrometer test). The saturated hydraulic conductivity of the mixtures measured by constant head method ranged from 0.029 to 0.042 cm/s (104-151 cm/h) and by falling head method ranged from 0.078 to 0.112 cm/s (281-403 cm/h). The saturated hydraulic conductivity of the mixtures measured by tension infiltrometer ranged from 0.02 to 0.34 cm/h. Understanding water retention and permeation characteristics of the plant growing media could assist development of best management practices (BMP) for containerized agricultural systems for efficient management of irrigation water and agrochemical use.  相似文献   

20.
为获取冬小麦根系层水量转化情况,该文采用系统动力学的建模思想和Vensim软件构建了冬小麦一维逐日土壤水量平衡模型。模型将2m土层概化为十个串联的水箱,计算了灌溉降雨后的土壤水分下渗、土壤蒸发、作物蒸腾、毛管上升补给和水分重分配等物理过程。利用河北省石津灌区军齐干渠北二支一斗渠2007-2009年两季冬小麦的田间试验资料对模型进行了率定和验证,结果显示率定期和验证期的平均残差比例和分散均方根比例均在15%以内。三种极端条件测试和六种参数的敏感性测试以及与Hydrus-1模型的比较表明模型假定合理,没有发生结构性错误。对灌区两季冬小麦生育期的土壤水分转化进行模拟,结果表明降雨和灌溉是主要供水水源,毛管水上升量很小,底部渗漏较大,而土壤储水量变化很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号