首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Fifteen spring barley cultivars were evaluated in two years for their tolerance to leaf rust, Puccinia hordei. The consistency between the results obtained in the two experiments was rather poor. The most tolerant cultivars produced low seed yields, the least tolerant ones high seed yields. A strongly negative relationship existed between harves-index and tolerance.  相似文献   

2.
Summary The cultivar effect on infection frequency (IF) was studied in the seedling and adult plant stages of 15 spring barley cultivars. In both stages the cultivar effects were highly significant. The cultivars L94 and Vada represented the extremes. Vada having about 2 1/2 times fewer uredosori than L94. Between cultivars and development stage clear interactions occurred. Pauline f.i. had the same low IF as Vada in the seedling stage, but in the adult plant stage its IF was about 70% higher. Also other effects could influence the cultivar effects. Increasing leaf age appears to increase IF. The cultivar effect also seemed to depend on the level of IF. At high levels the cultivars differed far less than at low levels of IF. The cultivar effect on IF appeared correlated with partial resistance in the field (r=0.7) through a high correlation with the cultivar effect on latent period (r=0.8).  相似文献   

3.
J. E. Parlevliet 《Euphytica》1976,25(1):249-254
Summary The three Dutch isolates studied carried virulence genes against the resistance genes Pa, Pa-2, Pa-4 and Pa-5, substantiating the widespread occurrence of these virulences in Western Europe as reported by others. The cultivars Cebada Capa, La Estanzuela, Gondar and Dabat carry the same dominant to semi-dominant gene, which is also found in Forrajera Klein and H2212. It is proposed to designate this gene Pa-7. This gene segregated independently from the Pa-3 gene in Rika x (Baladi x Rika) substantiating the data of Johnson (1968), but disagreeing with those of Roane & Starling (1970). EP 75 seems to carry a single dominant or semi-dominant gene conferring an intermediate resistance to the isolates used. This gene, tentatively designated as Pa-z, is different from the Pa, Pa-2, Pa-4, Pa-5 and Pa-7 genes. The intermediate resistance of Monte Christo is probably based on gene(s) different from EP 75.  相似文献   

4.
为使菊花白锈病的抗性鉴定在可控条件下进行,本文将目测观察与显微镜检方法相结合,制定了菊花白锈病6级抗性鉴定标准,并优化了人工离体接种方法。结果表明,培养瓶内茎段扦插法、培养皿内平铺叶片法均可用于菊花白锈病的离体鉴定;培养瓶内茎段扦插法优于培养皿内平铺叶片法,是最佳的人工离体接种鉴定方法。该优化方法是评价菊花白锈病抗性的既安全又简单的接种方法。  相似文献   

5.
Summary Eight lines from the cross between Vada and Cebada Capa with long to very long latent periods and four barley cultivars representing the known range of partial resistance to barley leaf rust, caused by Puccinia hordei, were evaluated in the field for partial resistance and in the greenhouse for the latent period (LP) in the young flag leaf.Each of the 12 entries was sown (15-4-1983) on a plot of 1.0 m2. There were four replicates. To reduce interplot interference the plots were separated from each other by 4.0 m of spring rye. The number of urediosori per tiller was evaluated at 27-6, 4-7, 12-7 and ten days after heading. The LP was measured on 10 to 15 plants per entry in 1982 and on 10 plants in 1983.The levels of partial resistance varied greatly. The difference in number of sori per tiller between the most susceptible cultivar, Akka, and the most resistant cultivar, Vada, was about 50 times. Between Akka and the most resistant line this was approximately 5000 times. The LP's varied similarly. Vada had a LP 64% longer than that of Akka, the LP of line 26-6-11 was 15% longer. The range of partial resistance has been extended more than twofold.The correlation coefficients between LP and the level of barley leaf rust, expressed in transformed scale units, varied from -0.99 for the first sampling date to -0.97 for the third sampling date. Sampling the same development stage, ten days after heading, did not improve the r-value (r=–0.98). The LP evaluated in the young flag leaf is shown to be a very reliable criterion for partial resistance in the barley-Puccinia hordei pathosystem.Earliness tends to be associated with susceptibility. The correlation of days to heading with LP was 0.63, and with the level of barley leaf rust in the field 0.64.  相似文献   

6.
Diploid wheat, Triticum monococcum s.l., is a host for the wheat leaf rust fungus, Puccinia triticina. Some accessions have been reported to show a high degree of prehaustorial resistance. This is non-hypersensitivity resistance, which acts before the formation of haustoria by the pathogen. To assess the frequency of prehaustorial resistance 598 accessions of diploid wheat were inoculated with the wheat leaf rust isolate Felix. Most T. monococcum s.s. accessions (84%) were resistant whereas all T. urartu and all but three T. boeoticumaccessions were susceptible. Histological components analysis revealed that a high percentage of prehaustorial resistance to P. triticina was found in only three T. monococcum accessions. No haustoria were observed in such infection units confirming the prehaustorial nature of the resistance. Prehaustorial abortion of certain infection units in an accession always coincided with posthaustorial abortion of the other infection units. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
J. E. Parlevliet 《Euphytica》1978,27(2):369-379
Summary The latent period (LP) is a crucial component of partial resistance. Five cultivars, L94, Sultan (Su), Volla (Vl), Julia (Ju) and Vada (Va), representing the known range in partial resistance and LP were crossed in a diallel, and the F1, F2 and F3 tested. The LP effectuated by the five cultivars is about 9, 101/2, 101/2, 13 and 151/2 days, respectively. The crosses Su×L94, Vl×L94 and Ju×L94 had an F2 positively skewed. Their F2 means were similar or only slightly larger than the F1 means. The F2 frequency distributions in the crosses Vl×Su, Ju×Su and Ju×Vl were normal or nearly so with F1 and F2 means similar to each other and to the mid-parent value. The crosses involving Va as a parent again showed a positive skewness but with F2 means considerably larger than the F1 moans.Most F2's ranged from the low parent to the high parent values without transgression. In the crosses Va×L94 (reported earlier) and Ju×L94 the parental values were not recovered among 216 and 154 F2 plants, respectively. The cross Ju×Va showed transgression beyond the low parent, Ju.From these data it is concluded, assuming no linkage, that seven loci are involved. The + alleles (governing a longer LP) are thought to be distributed over the parents as follows: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqGmb% GaaeyoaiaabsdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaab2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGTaGaaeylaiaabccacaqGGaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeylaiaab2caca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa% b2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae% iiaiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGaGaaeiiaiaabc% cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTaGaaeyl% aiaabccaaeaacaqGtbGaaeyDaiaabccacaqGGaGaaeiiaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaa% bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae% 4kaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqG% RaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2% cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii% aiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGTaGaaeylaa% qaaiaabAfacaqGSbGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGaaeiiaiaabc% cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGaaeii% aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeylaiaab2cacaqGGa% GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUca% caqGRaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aab2cacaqGTaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGTaGaaeylaiaabccacaqGGaGaaeiiaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2cacaqGTaaabaGaaeOs% aiaabwhacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaae4kaiaabUcacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaae4kaiaabUcacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaabccacaqGGaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaabccaca% qGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGRaGaae4kaiaa% bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab2cacaqGTaGaae% iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeylaiaab2caaeaacaqGwbGaaeyyaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcacaqGRaGa% aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabUcaca% qGRaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae4kaiaa% bUcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae% 4kaiaabUcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG% GaGaaeylaiaab2cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc% cacaqGGaGaae4kaiaabUcacaqGGaGaaeiiaiaabccacaqGGaGaaeii% aiaabccacaqGGaGaaeiiaiaabUcacaqGRaaaaaa!1BBA!\[\begin{gathered} {\text{L94 - - - - - - - - - - - - - - }} \hfill \\ {\text{Su + + + + + + - - - - - - - - }} \hfill \\ {\text{Vl + + + + - - + + - - - - - - }} \hfill \\ {\text{Ju + + + + + + + + + + - - - - }} \hfill \\ {\text{Va + + + + + + + + - - + + + + }} \hfill \\ \end{gathered} \]The genes are supposed to act additively (intermediate inheritance) with the exception of one locus (the 6th or 7th locus) which shows dominance for the shorter LP (for the-alleles). The effect of this locus on LP seems considerably larger than that of the other loci. There are indications of physiological barriers, which means that LP's shorter than the one of L94 or much longer than that of Va are not possible.The effect of + genes in genotypes governing LP's close to these barriers (with very few or very many + alleles respectively) is smaller than in genotypes governing intermediate LP's.  相似文献   

8.
An inventory of 481 lines derived from 12 Ethiopian barley (Hordeum vulgare L.) landraces and the checks was made for partial resistance to Puccinia hordei under greenhouse and field conditions at Adet, Ambo and Sinana Agricultural Research Centers in 2003 and 2004 cropping seasons in Ethiopia. The experiments were laid out in a triple lattice design. Each plot consisted of two rows of 1–m long with spacing of 0.20 m between rows. The overall mean leaf rust epidemics varied from area under disease progress curve (AUDPC) of 86 to 1,835. The disease was as high as AUDPC 1,378 on the susceptible check L94. Highly significant variations were recorded between and within the landraces/lines in leaf rust incidence, severity, days to heading, plant height, thousand seed weight and yield. Similarly, the variations between and within barley groups from three altitude areas and three ear-types were significant. Landraces 1686, 3255, 3262 and 3783 had the least and landraces 219900, 3975 and 3980 had the highest leaf rust severity. Of the 481 lines tested, 413 (86%) had significantly lower disease than the susceptible check, but not than the partial resistant check Vada. In contrast, the yields were more for lines with less disease than for those with high. The frequency of resistant landraces/lines was more in altitude 2,301–2,500 m, and irregular and two rows ear-types than in lower altitude areas and six rows ear-type. Nevertheless, the correlation and regression analysis revealed the adverse effect of the disease in the yields of barley. The 413 lines with high infection types at seedling stage and lower AUDPC under field conditions possess partial resistance to leaf rust.  相似文献   

9.
Summary The partial resistance to leaf rust (Puccinia hordei) of 40 West-European spring barley cultivars was measured in plots isolated from one another to reduce inter plot interference. The leaf area affected by leaf rust was also measured in small plots of 0.5 m2 adjacent to each other, and on individual plants. The latent period was measured in the seedling stage and the adult plant stage, the infection frequency in the seedling stage only. The cultivars varied widely for partial resistance, many cultivars carrying a considerable level. Both the small adjacent plots and the single plants showed a marked inter plot interference strongly reducing the difference between cultivars. H wever, the ranking order of the cultivars was hardly, if at all, affected. Both latent period and the infection frequency showed large differences between cultivars, the latent period in the adult plant stage being highly correlated (r=0.82) with partial resistance, infection frequency in the seedling stage only rather weakly (r=–0.33).Selection for partial resistance appeared very effective in all stages tested; the seedling, the single adult plant, and the small plot stage. Selection in the small plot stage was the most effective followed by selection in the seedling stage. Selection for partial resistance therefore appears very well possible at all stages of the selection program.  相似文献   

10.
Summary The barley cultivar Cebaba Capa was crossed to the cultivar L94, which is assumed to carry no genes for increased latent periods, and Vada, which is assumed to carry five to six minor genes for a longer latent period (LP). In the F2 selection was carried out for short and long LP's in the young flag leaves to Puccinia hordei in both crosses. In the F3, F4 and F5 the selection for short as well as for long LP continued by selecting the extreme plants in the extreme lines, a typical pedigree selection approach.The LP's are given relative to those of L94, set at 100 and of Vada, set at 185. From the cross with L94 homogeneous lines were obtained with relative LP's of 100 and of 220. From the cross with Vada the extreme lines had LP's of 135 and around or even beyond 300.Cebaba Capa is thought to carry four to six minor genes with an average gene effect slightly larger than those of the five to six minor genes in Vada. From the four to six minor genes one or two may be identical to or closely linked with minor genes of Vada, the others appeared to be different. In the lines with LP's of close to 300 or even more the number of minor genes accumulated is thought to be in the order of eight or nine. These gene number estimates are based on independent assortment. If linkage occurs the number of genes involved may be larger.Because of the high correlation between LP in the young flag leaf and the partial resistance in the field the selected lines are assumed to have a partial resistance to barley leaf rust far beyond that of Vada, which represents almost the highest level of partial resistance in European cultivars.  相似文献   

11.
L. H. M. Broers 《Euphytica》1989,44(3):273-282
Summary Partial resistance (PR) in wheat to wheat leaf rust (Puccinia recondita f.sp. tritici) is characterized by a slow epidemic build-up despite a susceptible infection type. Two greenhouse tests and two field tests, in which 11 spring wheat cultivars were exposed to five wheat leaf rust races, revealed some indication for race-specificity of PR.In the greenhouse, the expression of PR was highly dependent on the environment. Significant cultivar-race interactions in the first experiment were lost in the second experiment probably due to cultivar-environment and cultivar-race-environment interactions.In the polycyclic field tests several factors played a role in explaining the inconsistency of the cultivar-race interactions, such as differences in initial inoculum, genotypic differences in earliness, interplot interference or environmental conditions.One cultivar-race combination showed a significant but small interaction towards susceptibility in both field experiments. The interaction was probably too small to detect in the monocyclic greenhouse tests. The results do not conflict with the idea that a gene-for-gene relationship could exist between PR-genes in the host and genes in the pathogen.Some problems with regard to the selection of PR in wheat to wheat leaf rust are discussed.  相似文献   

12.
Summary The barley cultivars Akka, highly susceptible, and Vada, partially resistant to barley leaf rust, Puccinia hordei, were evaluated for the amount of leaf rust in five experimental field plot situations over three successive years. The field plot situations were: A) plots well isolated from each other by distance and non-leaf rust contributing host plants; B) adjacent plots of 4×41/2 m (18 rows); C) adjacent plots of 4×11/2 m (6 rows); D) adjacent plots of 4×1/4 m (1 row); E) adjacent plots of only one plant (cultivar mixtures).The sporulating leaf area of each plot was measured from samples of 20 tillers taken at random from each plot. In each year the difference in sporulating area between Akka and Vada was large to very large in the absence of interplot interference in the isolated plots, ranging from 150 to 2100 times. In the adjacent plots the partial resistance of Vada was greatly underestimated, 5 to 16 times in the situation B, 14 to 30 times in C, and 75 to 130 times in D and E.Testing lines or cultivars in adjacent plots is the standard procedure in use in breeding programs and in tests of cultivars for their agricultural value. To avoid such under estimation the following procedure is suggested. A few cultivars representing the known range of partial resistance and whose level of partial resistance is well known are evaluated together with the lines and cultivars whose partial resistance has to be assessed. This is demonstrated with a number of cultivars of which resistance values are know from the recommended variety lists for England and Wales. Cultivars have been assessed in Wageningen over four years together with the check cultivars Akka, Sultan, Julia and Vada representing the range of partial resistance with values (on a 1 to 10 scale) of 1, 3–4, 7 and 8 respectively, based on isolated plots experiments.  相似文献   

13.
Monosomic analysis indicated that a seedling leaf rust resistance gene present in the Australian wheat cultivar ‘Harrier’(tentatively designated LrH) is located on chromosome 2A. LrH segregated independently of the stripe rust resistance gene Yr1 located in the long arm of that chromosome, but failed to recombine with Lr17 located in the short arm. LrH was therefore designated Lr17b and the allele formerly known as Lr17 was redesignated as Lr17a. The genes Lr17b and Lr37 showed close repulsion linkage. Tests of allelism indicated that Lr1 7b is also present in the English wheats ‘Dwarf A’(‘Hobbit Sib’), ‘Maris Fundin’ and ‘Norman’. Virulence for Lr17b occurs in Australia, and pathogenicity studies have also demonstrated virulence in many western European isolates of the leaf rust pathogen. Despite this, it is possible that the gene may be of value in some regions if used in combination with other leaf rust resistance genes.  相似文献   

14.
J. E. Parlevliet 《Euphytica》1976,25(1):241-248
Summary The latent period (LP) in the barley-leaf rust relationship is an important component of the partial resistance complex. The inheritance of the host plant effect on LP was studied in five crosses between four cultivars. The LP, effectuated by the susceptible cultivars L94 and L92, were 8.0 and 8.6 days resp., those of the resistant cultivars Minerva (Mi) and Vada (Va) 16.9 and 17.1 days resp. The mean F1 and F2 values of the crosses L92×L94 and Mi x Va were intermediate between the parental ones. The variances of the F2's were slightly larger than those of the parents and the F1's indicating some segregation. In the crosses between a susceptible and a resistant cultivar the F1 value was half way between the mid-parent and susceptible parent value. The F2 mean lay approximately half way between the mid-parent and F1 value, with a distribution positively skewed and slightly bimodal. There was no transgression, in fact not even the parental values were recovered among nearly 500 F2 plants. The F3-lines of the crosses between susceptible and resistant cultivars showed within line variances from as low as the parental values to as high as or higher than those of the F2. In hte F3's the parental values could be recovered although no transgression occurred.L94 is supposed to carry no genes effecting a longer LP. The long LP of Mi and Va, assuming no linkage, is thought to be effectuated by the cumulative action of a recessive gene with a fairly large effect and some four to five minor genes with additive inheritance. One of these minor genes is supposed to be carried by L92, while Mi and Va are thought to differ for one minor gene only. In case linkage exists, the number of minor genes involved could be higher.  相似文献   

15.
Summary Eight spring barley cultivars, respresenting the known range in partial or slow rusting resistance to leaf rust, Puccinia hordei, were investigated for their effects on the components of partial resistance; infection frequency, latent period, infectious period and spore production per uredosorus per day. Considerable variation was observed among the cultivars for each of the components. The cultivar effects on the components tend to be associated. Cultivar L94 for instance, shows the highest infection frequency, the shortest latent period and a long infectious period. Julia and Vada both have a low infection frequency, a long latent period and a low spore production per sorus per day. This association, though, is only a partial one.The total spore production per unit leaf area (the combined result of the four components) appeared highly correlated with the partial resistance in the field (r=0.85). Only a relatively small portion of the variation in partial resistance cannot be explained by the four components studied. Several other aspects, which might affect the rate of epidemic development, are discussed.Latent period, measuring the onset of the new spore production, estimated partial resistance as well as total spore production did (r=–0.85). In order to evaluate the partial resistance of barley genotypes in the greenhouse the latent period is preferred above total spore production as it is measured more easily, more accurately and sooner after inoculation.  相似文献   

16.
Summary The investigation involved three barley genotypes that varied from extremely susceptible (Akka) to an extreme level of partial resistance (17-6-16). The barley leaf rust colony size was measured in primary leaves 3, 6, 12 and 18 days after inoculation and in flag leaves 6, 12, 18, 24 and 30 days after inoculation with race 1-2-1. Akka always had the largest colonies, 17-5-16 the smallest, with Vada at an intermediate position. The genotypic differences were proportionally largest at the second sampling day and smallest at the last sampling day. The rate of colony growth decreased rapidly over time for all genotypes and in both plant stages. Measured at the same time (colony age the same) the rate of colony growth was largest for 17-5-16 and smallest for Akka in most periods. The time needed to reach a given colony size showed already large differences in the very early states especially in the flag leaves. Akka took 3.9 days to reach a size of 17 × 10-3 mm2 (only 5 to 10% of the colony size at the start of sporulation), Vada needed 8.3 days and 17-5-16 even 12.0 days. To reach a size of 320 × 10-3 mm2 the three genotypes needed 12.7, 18.0 and 22.8 days respectively, differences that are only slightly larger than those at the very small colony size.It was concluded that the partial resistance of barley to barley leaf rust is not primarily due to a reduced fungal growth in the partially resistant host tissue but predominantly so to an initial and temporary stagnation at the site of penetration. The longer this stagnation lasts, the longer the latent period and the higher the partial resistance are. Once this stagnation has been overcome the fungal growth rates do not vary much between genotypes with different levels of partial resistance.  相似文献   

17.
Resistance to stripe rust (caused by Puccinia striiformis Westend.) of 34 Triticum turgidum L. var.durum, 278 T. tauschii, and 267 synthetic hexaploid wheats (T. turgidum x T. tauschii) was evaluated at the seedling stage in the greenhouse and at the adult-plant stage at two field locations. Mexican pathotype 14E14 was used in all studies. Seedling resistance, expressed as low infection type, was present in all three species. One hundred and twenty-eight (46%) accessions of T. tauschii, 8 (23%) of T. turgidum and 31 (12%) of synthetic hexaploid wheats were highly resistant as seedlings. In the field tests, resistance was evaluated by estimating area under disease progress curve (AUDPC). Synthetic hexaploid wheats showed a wide range of variability for disease responses in both greenhouse and field tests, indicating the presence of a number of genes for resistance. In general, genotypes with seedling resistance were also found to be resistant as adult plants. Genotypes, which were susceptible or intermediate as seedlings but resistant as adult plants, were present in both T. turgidum and the synthetic hexaploids. Resistances from either T. turgidum or T. tauschii or both were identified in the synthetic hexaploids in this study. These new sources of resistance could be incorporated into cultivated hexaploid wheats to increase the existing gene pool of resistance to stripe rust.  相似文献   

18.
The resistance to yellow rust (Puccinia striiformis f. sp. hordei) of 500 advanced barley lines from the ICARDA/CIMMYT breeding programme in Mexico was evaluated on seedlings in the greenhouse and on adult plants in the field. A high frequency of advanced lines (85.8%) showed a susceptible reaction (infection type ≥ 7) on seedlings after inoculation with isolate Mex-1, representing a Mexican variant of race 24. This indicates the absence of effective hypersensitive resistance. In addition, the same advanced lines showed a large variation in disease severity in the field, ranging from 0 to 95%. More than 76% of the advanced lines with a susceptible reaction in the seedling stage demonstrated low disease severity (10% or less in the adult plant). Consequently, these advanced lines possess high levels of quantitative resistance. Two aspects in the ICARDA/CIMMYT barley breeding programme may explain the large number of advanced lines with high levels of quantitative resistance. First, a recurrent selection approach is applied when advanced (F5) lines reaching homozygosity are intercrossed. Second, low levels of disease are accepted in the selection process instead of selecting the ultimate green plant. Both aspects combined allow the accumulation of quantitative resistance. Certain cultivars released from South-American national programmes in the late 1970s and early 1980s in Peru (UNA-80), Bolivia (IBTA 80) and Ecuador (Teran) are still resistant, demonstrating the durable nature of quantitative resistance to yellow rust.  相似文献   

19.
Previous studies established that the Australian barley cultivar ‘Prior’ possessed resistance to Puccinia hordei (RphP), displaying the same specificity as an uncharacterized resistance in the differential cultivar ‘Reka 1’ (also possessing Rph2). Multipathotype tests confirmed the presence RphP in nine additional barley cultivars and indicated that RphP differed in specificity to the genes Rph1 to Rph15 and Rph18, plus the gene RphX present in the barley cultivar ‘Shyri’. RphP was inherited as a single dominant gene. Mapping studies using a doubled haploid population derived from ‘Chebec’/‘Harrington’ located RphP to the long arm of chromosome 7H, and demonstrated linkage with an restriction fragment length polymorphism marker (pTAG732), a resistance gene analogue marker (RLch4(Nc)), and two microsatellite markers (HVM11 and HVM49) at genetic distances of about 4‐10 cM. RphP showed linkage of 28 ± 4.3 cM with Rph3. RphP was designated Rph19, with the allele designation Rph19.ah. Previous studies have established that virulence for Rph19 occurs in many barley growing regions of the world.  相似文献   

20.
D. Singh  R.F. Park  R.A. McIntosh 《Euphytica》2001,120(2):205-218
Multi-pathotype tests on 70 U.K. wheat cultivars permitted postulation of eight known seedling genes for resistance to Puccinia recondita f. sp.tritici either singly or in combinations. The most commonly detected gene was Lr13 (present in approximately 57% of cultivars), followed by Lr26 (22%), Lr37 (20%), Lr10 (17%), Lr17b (LrH) (10%), Lr1 (7%), Lr3a (6%) and Lr20(4%). This information permitted assessments of adult plant resistance (APR) in some cultivars, in field nurseries inoculated with pathotypes of P. recondita f. sp. tritici of known pathogenicities for characterized seedling resistance genes. APR was identified in eleven cultivars, including Avalon and Maris Ranger, which lacked detectable seedling resistance genes. The results provided a better understanding of specific resistances in the cultivars tested than was available from previous reports. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号