首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The spatial distribution of soil carbon (C) is controlled by ecological processes that evolve and interact over a range of spatial scales across the landscape. The relationships between hydrologic and biotic processes and soil C patterns and spatial behavior are still poorly understood. Our objectives were to (i) identify the appropriate spatial scale to observe soil total C (TC) in a subtropical landscape with pronounced hydrologic and biotic variation, and (ii) investigate the spatial behavior and relationships between TC and ecological landscape variables which aggregate various hydrologic and biotic processes. The study was conducted in Florida, USA, characterized by extreme hydrologic (poorly to excessively drained soils), and vegetation/land use gradients ranging from natural uplands and wetlands to intensively managed forest, agricultural, and urban systems. We used semivariogram and landscape indices to compare the spatial dependence structures of TC and 19 ecological landscape variables, identifying similarities and establishing pattern–process relationships. Soil, hydrologic, and biotic ecological variables mirrored the spatial behavior of TC at fine (few kilometers), and coarse (hundreds of kilometers) spatial scales. Specifically, soil available water capacity resembled the spatial dependence structure of TC at escalating scales, supporting a multi-scale soil hydrology-soil C process–pattern relationship in Florida. Our findings suggest two appropriate scales to observe TC, one at a short range (autocorrelation range of 5.6 km), representing local soil-landscape variation, and another at a longer range (119 km), accounting for regional variation. Moreover, our results provide further guidance to measure ecological variables influencing C dynamics.  相似文献   

2.

Context

Landscape spatio-temporal heterogeneity is regarded as an important driver of biodiversity. In agricultural landscapes, the composition and configuration of cultivated fields and their multi-year dynamics should be considered. But the habitat-matrix paradigm in landscape ecology has resulted in little consideration of cropped areas.

Objectives

The main objective of our study was to determine the influences of spatial and multi-year temporal heterogeneity of the crop mosaic on carabid beetle assemblages of agricultural landscapes.

Methods

Carabids were sampled in 40 cereal fields in western France, and their species richness, total abundance and abundance of species groups with different dispersal abilities were measured. For each sampling site, we computed different metrics that characterized crop mosaic spatial and temporal heterogeneity. We quantified relationships between carabid assemblages and heterogeneity metrics and tested their significance.

Results

Total carabid abundance increased with increase in temporal heterogeneity of the crop mosaic. However, all species were not influenced in the same way by spatial and temporal heterogeneity metrics. Some species with high dispersal power such as Trechus quadristriatus were more abundant in landscapes with high spatial heterogeneity, whereas the abundance of less mobile species such as Poecilus cupreus were only positively influenced by temporal crop dynamics.

Conclusions

Our results suggest that both the spatial and temporal heterogeneity of the crop mosaic affects farmland biodiversity, at least for species that use crops during their life cycle or disperse through fields. We highlight the importance of taking this heterogeneity into account in further ecological studies on biodiversity in agricultural landscapes.
  相似文献   

3.
There is increasing interest in developing criteria to evaluate the environmental implications of intensive agricultural land use. This implies discriminating between nature and man-made effects upon structural and functional attributes of agroecosystems. Adequate indicators of these combined effects should be cost efficient yet compatible with the core of ecological theory on biodiversity, spatial organization and ecosystem stability. We developed resistance-resilience metrics of plant growth to evaluate the intensity of agricultural use in a temperate irrigated basin in southern Argentina. The metrics are based on an analysis of the components of a temporal series of vegetation indices computed at a low resolution from available globally remote sensed reflectance imagery. We related the developed metrics to the properties of the soils and plant canopies observed at field scale and high-resolution imagery of the basin. Soil depth, soil erosion status and land fragmentation account for large fractions of the variance of the distribution of functional groups of the plant canopies and are also correlated with smaller scale attributes of land vegetation cover. Resistance-resilience indicators constitute a cost-efficient and adequate approach to evaluate the degree of intensification of land agricultural use.  相似文献   

4.
Since the mid eighties, agricultural development and increased population growth in Vietnam’s northern highlands have modified land use patterns and thus, increased the runoff process and soil degradation induced by water erosion. In the last decade, Vietnamese literature has focused on the computation of soil losses over large areas. Most of these spatial and quantitative soil erosion studies do not consider the impact of agricultural land use diversity (spatial heterogeneity), particularly at the watershed scale, and the annual variability of seasonal landscape factors on soil erosion vulnerability and hence, landscape dynamics. We present an integrated approach combining field measurements and observations, GIS and modeling to determine the spatial and temporal dynamics of soil erosion vulnerability according to watershed units and hence, the impact of physical environment components and agricultural land use patterns on landscape evolution. Tables and graphics showing the cropping systems, the periods within a year, and the watershed units that are most vulnerable are presented. The double cultivation cycles for paddy rice fields not only imply two periods of land preparation and establishment that expose the soil surface to raindrop impacts, but also increased soil management practices that decrease the soil’s resistance to detachment. Despite the low levels of soil management practices for the shifting cultivation system, the near absence of soil conservation practices clearly increases their vulnerability. Hence, rainfed cropping systems, mainly soya and cassava, cultivated on sloping lands (hills and mountains) where soil erosion vulnerability is the highest represent the watershed units which are the most prone to soil loss.  相似文献   

5.
填闲作物阻控设施菜田土壤功能衰退研究进展   总被引:1,自引:0,他引:1  
土地集约化经营的设施农业是我国农业的重要组成部分。然而,集约化种植体系中传统的连作和简单轮作更多地依赖农药和化肥,由此引发了温室土壤质量的下降和作物生长障碍,从而使得作物产量下降。如何阻控土壤功能衰退,修复并保持土壤健康,实现设施蔬菜产业可持续发展是设施蔬菜生产上亟待解决的问题。填闲作物是维持集约化种植体系土壤功能的生物途径,随着填闲作物改善土壤养分循环研究的深入,人们对填闲作物生态效应及其机制的认识也越来越深入。本文阐述了国内外填闲作物阻控土壤功能衰退研究进展,并在此基础上分析了填闲作物阻控设施菜田土壤功能衰退的可行性。  相似文献   

6.
Human land-use practices have dramatically altered the composition and configuration of native habitats throughout many ecosystems. Within heterogeneous landscapes generalist predators often thrive, causing cascading effects on local biological communities, yet there are few data to suggest how attributes of fragmentation influence local population dynamics of these species. We monitored 25 raccoon (Procyon lotor) populations from 2004 to 2009 in a fragmented agricultural landscape to evaluate the influence of local and landscape habitat attributes on spatial and temporal variation in demography. Our results indicate that agricultural ecosystems support increased densities of raccoons relative to many other rural landscapes, but that spatial and temporal variation in demography exists that is driven by non-agricultural habitat attributes rather than the availability of crops. At the landscape scale, both density and population stability were positively associated with the size and contiguity of forest patches, while at the local scale density was positively correlated with plant diversity and the density of tree cavities. In addition, populations occupying forest patches with greater levels of plant diversity and stable water resources exhibited less temporal variability than populations with limited plant species complexity or water availability. The proportion of populations comprised of females was most strongly influenced by the availability of tree cavities and soft mast. Despite the abundance of mesopredators in heterogeneous landscapes, our results indicate that all patches do not contribute equally to the regional abundance and persistence of these species. Thus, a clear understanding of how landscape attributes contribute to variation in demography is critical to the optimization of management strategies.  相似文献   

7.
Calvete  C.  Estrada  R.  Angulo  E.  Cabezas-Ruiz  S. 《Landscape Ecology》2004,19(5):531-542
Populations of European wild rabbit (Oryctolagus cuniculus) have been decreasing since the 1950s. Changes in agricultural practices have been suggested as reasons for their decline in Mediterranean landscapes. We evaluated the environmental variables affecting rabbit distribution in a semiarid agricultural landscape of Northeastern Spain. Sampling was performed in 147 sites randomly distributed across Zaragoza province. At each site, data were recorded in five 100 m segments along a 1 km transect, following ecotones between crops and natural-vegetation areas. A rabbit abundance index was estimated from latrine count, pellet density and number of plots with pellets. In addition to environmental variables that have been shown to be related to rabbit abundance in other habitats, as climate, soil hardness and topography of the site, we measured landscape components related to agricultural use, such as structure of natural vegetation in remaining areas non-devoted to agricultural use and distances to different types of crops and to ecotone between crop and natural vegetation. Our results showed that rabbit abundance was positively correlated to yearly mean temperature, February and May mean rainfall, and negatively correlated to September and November mean rainfall, hardness of soil, and site topography. In relation to agricultural use, rabbit abundance was positively correlated to the scrub structure of natural-vegetation areas and negatively correlated to distance to edge between cultivated unirrigated cereal crops (wheat or barley) and yearly resting cereal crops. Rabbit abundance increased only when the edge between alternate cereal crops was less than 50 m from the ecotone between crops and natural vegetation.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

8.
In long term studies the following climatological characteristics were measured or calculated: air and soil temperature, sunshine, wind speed, vapor pressure, saturation deficit, precipitation, humidity, incoming and reflected solar energy, energy emitted by active surfaces and primary production. Taking into account the relationships between climatological characteristics, the growth stages of vegetation, and relations between heat balance components, the fluxes of energy used for evapotranspiration, air, and soil heating were estimated in various ecosystems composing the agricultural landscape. The energy contained in biomass production of various crops was estimated also. Aggregate estimates of energy flow connected with evapotranspiration, and soil and air heating were calculated for eight model landscapes which differed by the plant cover structure. A higher variability of energy fluxes was observed for individual ecosystems than for agricultural land-scapes. It was shown that the structure of the plant cover has an important bearing on energy flow and water cycling both by direct and indirect influences. Shelterbelts are especially important in their influence on energy flow and water cycling.Studies carried out within the project CPBP.04.10.03.  相似文献   

9.
There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services.  相似文献   

10.
Roads are conspicuous components of landscapes and play a substantial role in defining landscape pattern. Previous studies have demonstrated the link between roads and their effects on ecological processes and landscape patterns. Less understood is the placement of roads, and hence the patterns imposed by roads on the landscape in relation to factors describing land use, land cover, and environmental heterogeneity. Our hypothesis was that variation in road density and landscape patterns created by roads can be explained in relation to variables describing land use, land cover, and environmental factors. We examined both road density and landscape patterns created by roads in relation to suitability of soil substrate as road subgrade, land cover, lake area and perimeter, land ownership, and housing density across 19 predominantly forested counties in northern Wisconsin, USA. Generalized least squares regression models showed that housing density and soils with excellent suitability for road subgrade were positively related to road density while wetland area was negatively related. These relationships were consistent across models for different road types. Landscape indices showed greater fragmentation by roads in areas with higher housing density, and agriculture, grassland, and coniferous forest area, but less fragmentation with higher deciduous forest, mixed forest, wetland, and lake area. These relationships provide insight into the complex relationships among social, institutional, and environmental factors that influence where roads occur on the landscape. Our results are important for understanding the impacts of roads on ecosystems and planning for their protection in the face of continued development.  相似文献   

11.
We need an integrated assessment of the bioenergy production at landscape scale for at least three main reasons: (1) it is predictable that we will soon have landscapes dedicated to bioenergy productions; (2) a number of “win–win” solutions combining several dedicated energy crops have been suggested for a better use of local climate, soil mosaic and production systems and (3) “well-to-wheels” analyses for the entire bioenergy production chain urge us to optimize the life cycle of bioenergies at large scales. In this context, we argue that the new generation of landscape models allows in silico experiments to estimate bioenergy distributions (in space and time) that are helpful for this integrated assessment of the bioenergy production. The main objective of this paper was to develop a detailed modeling methodology for this purpose. We aimed at illustrating and discussing the use of mechanistic models and their possible association to simulate future distributions of fuel biomass. We applied two separated landscape models dedicated to human-driven agricultural and climate-driven forested neighboring patches. These models were combined in the same theoretical (i.e. virtual) landscape for present as well as future scenarios by associating realistic agricultural production scenarios and B2-IPCC climate scenarios depending on the bioenergy type (crop or forest) concerned in each landscape patch. We then estimated esthetical impacts of our simulations by using 3D visualizations and a quantitative “depth” index to rank them. Results first showed that the transport cost at landscape scale was not correlated to the total biomass production, mainly due to landscape configuration constraints. Secondly, averaged index values of the four simulations were conditioned by agricultural practices, while temporal trends were conditioned by gradual climate changes. Thirdly, the most realistic simulated landscape combining intensive agricultural practices and climate change with atmospheric CO2 concentration increase corresponded to the lowest and unwanted bioenergy conversion inefficiency (the biomass production ratio over 100 years divided by the averaged transport cost) and to the most open landscape. Managing land use and land cover changes at landscape scale is probably one of the most powerful ways to mitigate negative (or magnify positive) effects of climate and human decisions on overall biomass productions.  相似文献   

12.
In the last few years, landscape researchers have sought to understand temporal and spatial patterns of landscape changes in order to develop comprehensive models of land cover dynamics. To do so, most studies have used similar methods to quantify structural patterns, usually by comparing various landscape structural indices through time. Whereas the necessity for complementary approaches which might provide insights into landscape dynamics at some finer scale relevant to local managers has been expressed, few studies have proposed alternative methodologies. Moreover, the important relationship between the physical constraints of the landscape and land use dynamics has been seldom emphasized. Here we propose a methodological outline which was applied to the study of a rural landscape of Southern Quebec, Canada, to detect spatial and temporal (1958 to 1993) patterns of land cover changes at field, patch and landscape level. We then relate these patterns to the underlying physical structure of landscape elements using GIS and canonical correspondence analyses. We use the different geomorphological deposit types as stable discriminant factors which may constrain land use.Canonical correspondence analyses showed relations of land use and land use changes to the physical attributes of the landscape elements, whereas spatial analyses revealed very dynamic patterns at finer spatial and temporal scales. They highlighted the fact that not only the physical attributes of the landscape elements but also their spatial configuration were important determinants of land use dynamics in this area. Thus more land use changes occurred at the boundary between geomorphological deposit types than in any other locations. This trend is apparent for specific small-size changes (e.g. forest to crop), but not for the large-size ones (e.g. abandoned land to forest). Although land use changes are triggered by socioeconomic forces in this area, these changes are nevertheless constrained by the underlying physical landscape structure. A thorough comprehension of historical changes will enhance our capability to predict future landscape dynamics and devise more effective landscape management strategies.  相似文献   

13.
Landscape dynamics result from forestry and farming practices, both of which are expected to have diverse impacts on ecosystem services (ES). In this study, we investigated this general statement for regulating and supporting services via an assessment of ecosystem functions: climate regulation via carbon sequestration in soil and plant biomass, water cycle and soil erosion regulation via water infiltration in soil, and support for primary production via soil chemical quality and water storage. We tested the hypothesis that patterns of land-cover composition and structure significantly alter ES metrics at two different scales. We surveyed 54 farms in two Amazonian regions of Brazil and Colombia and assessed land-cover composition and structure from remote sensing data (farm scale) from 1990 to 2007. Simple and well-established methods were used to characterize soil and vegetation from five points in each farm (plot scale). Most ES metrics were significantly correlated with land-use (plot scale) and land-cover (farm scale) classifications; however, spatial variability in inherent soil properties, alone or in interaction with land-use or land-cover changes, contributed greatly to variability in ES metrics. Carbon stock in above-ground plant biomass and water infiltration rate decreased from forest to pasture land covers, whereas soil chemical quality and plant-available water storage capacity increased. Land-cover classifications based on structure metrics explained significantly less ES metric variation than those based on composition metrics. Land-cover composition dynamics explained 45 % (P < 0.001) of ES metric variance, 15 % by itself and 30 % in interaction with inherent soil properties. This study describes how ES evolve with landscape changes, specifying the contribution of spatial variability in the physical environment and highlighting trade-offs and synergies among ES.  相似文献   

14.
We developed a spatially-explicit, quantitative Nitrogen Leaching Index to assess the potential for non-point source subsurface nitrogen pollution to wetlands. The index was based on the leaching potential of the watershed soils, the amount of nitrogen available for leaching, and the spatial position of nitrogen sources in the watershed. A raster or cell-based geographic information system (GIS) was used to estimate the necessary data inputs for calculating the index, such as soil hydrologic group, land use/soil type combination, groundwater residence time, and location of septic systems. The Total and Average Watershed Nitrogen Leaching Index (TWNLI and AWNLI) were calculated by summing and averaging, respectively, individual cell contributions over a watershed.Analysis of nine wetland watersheds in central New York state, USA, with mixed forest and agricultural land uses illustrated the use of the index for identifying and ranking wetlands with potential nitrogen pollution. Results showed that the spatial characteristics of a watershed potentially can effect subsurface nitrogen delivery to groundwater-dominated wetlands. The use of an index based on watershed soils, topography, and land use may be useful for assessing potential nitrogen pollution to wetlands at a regional scale.  相似文献   

15.
In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.  相似文献   

16.
The effects of time on the evolution of land use intensity and soil nutrients distribution were studied in a reclamation zone of the Yangtze Estuary. Land use types were grouped into five intensity levels according to the extent of human disturbance. We used the “space for time substitution” method to test the impact of time on changes in land use intensity after reclamation and found that land use levels increased quickly within the first 35 years, then slowed. Soil salinity was relatively higher in aquaculture ponds than that in areas with other types of land cover due to the use of saline water from underground and the sea. Soil organic matter, available phosphorous and nitrate nitrogen were relatively high in agricultural fields, while nitrate nitrogen was highly variable in agricultural fields. The variations of all four soil properties in the built-up zone were much higher than those in the other land use groups. The spatial distribution of different nutrients is the combined effect of time and land use post reclamation. The results will provide a sound basis for future land use planning of newly reclaimed land, and for further studies on ecological consequences of salt marsh reclamation.  相似文献   

17.
The sourcing of food plays a significant role in assessing the sustainability of a city, but it is unclear how much food a city can produce within its city limits. In this study, we propose a method for estimating the maximum food crop production capacity of a city and demonstrate the method in Seattle, WA USA by taking into account land use, the light environment, and a mix of food crops necessary to supply a year-round vegetarian diet. By artificially removing trees from the city, we estimate the effect of tree shading on food crop production capacity. We find that at maximum food production, urban food crops can produce between 1% and 4% of the city's food needs under the most realistic land use scenarios, and that tree shading reduces food crop production capacity between 19% and 35%. We expand beyond the city Seattle limits to find that a buffer of 58 km around the city is required to meet 100% of the city's food needs.  相似文献   

18.
19.
Land area planted to row crops has expanded globally with increased demand for food and biofuels. Agricultural expansion in the Dakota Prairie Pothole Region (DPPR), USA affects a variety of agricultural and non-agricultural land-use types, including grasslands and wetlands that provide critical wildlife habitat and other ecosystem services. The purpose of this study was to quantify recent changes in rural land cover/land use, analyze trends, and interpret results in relation to climate, agronomic practice, and ethanol production. The primary data sources were 1980–2012 statewide cropland data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service, and the USDA Cropland Data Layer, produced annually for the DPPR from 2006 through 2012. Area planted to corn or soybean row crops increased, and small grain (e.g., wheat, barley) area decreased significantly over the analysis period. Corn and soybean expanded by 27 % in the DPPR between 2010 and 2012 alone, an areal increase (+15,400 km2) larger than the U.S. state of Connecticut. This expansion displaced primarily small grains and grassland (e.g., pastures, haylands, remnant prairies). Grassland regularly exchanged land with corn and soybean, small grains, and wetlands and water. Corn and soybean had high inter-annual self-replacement values (68–80 %), and continuous corn/soy row cropping was the second most common combination over a three-year period, ranking after continuous grassland. Small grain self-replacement values were only 22–35 %, indicating frequent relocation in the landscape. Temporary gains in wetland and grassland area were attributed to unusually wet climatic conditions and late snowfalls that prevented crop planting. Nearly all of the region’s ethanol refineries were located where corn and soybean crops constituted 50 % or more of the land area. Quantification of grassland losses in the U.S. Northern Plains requires evaluation of all land uses that interact with grasslands, and a longer term perspective that incorporates grassland as part of a normal land-use rotation.  相似文献   

20.
为进一步提高设施蔬菜生产技术水平,对涞水县设施蔬菜生产温室进行调查,通过调查设施设备、主栽作物、种植模式、销售渠道、经济效益等基本情况,发现存在基础配套设备落后、种植户管理水平差异较大等问题;通过调查涞水县温室蔬菜栽培中化肥、农药使用情况,发现存在过度依赖化学农药、施用方式粗放、缺乏合理施用方案、化肥农药安全使用意识差...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号