首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decades of irrigation on the west side of the San Joaquin Valley without sufficient drainage have created large areas where shallow ground water (<1.5 m) has become a problem for agriculture. Because drainage outflow is restricted as a result of environmental concerns, reducing the amount of irrigation applied is a farm management solution for this situation. One option to reduce the amount of irrigation water is to include shallow ground water use as a source of water for crop production when scheduling irrigation. The objective for this study is to describe soil water fluxes in the presence of saline, shallow ground water under a safflower crop. Two weighing lysimeters, one with and one without shallow saline ground water were used to measure crop evapotranspiration of surface drip irrigated safflower. A saline water table (14 dS/m) was maintained in one of the lysimeters. Ground water use as part of crop evapotranspiration was characterized using hourly measurements of the water level in a ground water supply tank (Mariotte bottle). Ground water contribution of up to 40% of daily crop water use was measured. On a seasonal basis, 25% of the total crop water use originated from the ground water. The largest ground water contribution was shown to occur at the end of the growing season, when roots are fully developed and stored soil water in the root zone was depleted. The applied irrigation on the crop grown in the presence of a water table was 46% less than irrigation applied to the crop without a water table. The reduction of irrigation was obtained by using the same irrigation schedule as on the lysimeter without ground water, but through smaller applied depths per irrigation event.  相似文献   

2.
Modeling water table contribution to crop evapotranspiration   总被引:1,自引:0,他引:1  
Summary A model was developed to account for the time-dependent contribution of the water table to crop evapotranspiration. The same numerical approximation used to solve the water flow in the unsaturated zone was also modified for saturated conditions. For unsaturated flow, the hydraulic conductivity changes with water content and the specific water capacity has finite values. For saturated flow, hydraulic conductivity is constant, and the specific water capacity is zero. The proposed approach considers saturated flow as a special case of unsaturated flow with a constant saturated water content and very small but not zero specific water capacities. Thus flow can be simulated in either unsaturated or saturated zones. The contribution of upward flow to crop evapotranspiration was evaluated during lysimeter experiments in the greenhouse. Spring wheat was planted on asilty clay loam and a fine sandy loam with either no water table or constant water table depths at 50, 100 or 150 cm. Irrigation was applied whenever soil water was depleted below about 50% plant available water. Model predictions of water content and cumulative upward flux as a function of time, for the different water table depths and soils, agreed closely with measured values. The contribution of the water table to evapotranspiration (ET) was found to be 90, 41 and 7% for 50, 100, and 150 cm water table depths respectively for the silty clay loam. Corresponding computed values were 89, 45 and 6%. For the fine sandy loam measured contribution of the water table to ET was 92, 31, and 9% for 50, 100 and 150 cm water tables respectively. Corresponding computed values were 99, 29, and 11 %. It was not practical to simulate the saturated-unsaturated (moving water table) predictions of the model under greenhouse conditions because of the height of the lysimeters needed. Therefore the model was also used to simulate field irrigation management options under several bottom boundary conditions where the water table contributions were significant to crop water use. Results from a one-year simulation were consistent with data for sugarcance grown under similar conditions in the Cauca Valley of Colombia.Contribution No. 3641 from the Utah Agricultural Experiment Station, Utah State University, Logan, Utah, USA  相似文献   

3.
Drainage water from the lower boundary of the root zone is an important factor in the irrigated agricultural lands for prediction of the water table behavior and understanding and modeling of water and chemical movement in the soil profile. The drainage coefficient is an important parameter for the design of subsurface drainage. On a 33,138 ha of the Nile Delta in Egypt, this study is conducted using 90 irrigation periods over a 3-year crop rotation to estimate the time-dependent drainage from the root zone and the design subsurface drainage coefficient with different cropping seasons and irrigation management levels.The results showed that the cropping seasons and the irrigation management levels as indicated by different irrigation efficiency are significantly affected the drainage rate from the root zone and the design value of subsurface drainage coefficient. Drainage rates from the root zone of 1.72 mm/d and 0.82 mm/d were estimated for summer and winter seasons, respectively. These rates significantly decreased in a range of 46% to 92% during summer season and 60% to 98% during winter season when the irrigation efficiency is increased in a range of 5% to 15%. The subsurface drainage coefficient was estimated to be 1.09 mm/d whereas the design drain pipe capacity was estimated to be 2.2 mm/d, based on the peak discharge of the most critical crop (maize), rather than 4.0 mm/d which is currently used. A significant decrease of the drainage coefficient and the drain pipe capacity ranges from 18% to 45% was found with the increase of irrigation efficiency in a range of 5% to 15%. The leaching requirement for each crop was also estimated.  相似文献   

4.
UPFLOW is a simple software tool developed to estimate with limited data availability and appropriate assumptions the expected upward water movement from a shallow water table to the root zone during a specific period (typically 10-day) in a specific environment. The program contains various sets of soil water retention curves that are considered as representative for various soil classes and indicative values for root water extraction for a number of crops. The environmental conditions are specified in fields of a spreadsheet type Main Menu by specifying: (i) the average evapotranspiration (ET) demand of the atmosphere during the period under consideration, (ii) the expected soil wetness in the topsoil as a result of rain during that period, (iii) the depth of groundwater below the soil surface, (iv) the water extraction pattern of the plant roots, (v) the thickness and characteristics of successive layers of the soil profile and (vi) the salt content of the water table. A steady state upward flow is assumed during the period. The simulations are in line with indicative values presented in literature. Additionally, the software displays the deficient aeration conditions in the root zone and its effect on crop evapotranspiration when the groundwater is close to the soil surface.The model was used to estimate the capillary rise from shallow groundwater (1–1.5 m) to the root zone (0.4–0.6 m) of horticultural crops in loamy sand and sandy loam soils in Belgium. The field measurements confirm that UPFLOW simulates the correct order of magnitude of the capillary rise to the root zone.UPFLOW is public domain software and hence freely available. An installation disk and manual can be downloaded from the web.  相似文献   

5.
There are regions in Europe such as Italy, Portugal, or Holland in which capillary water rise plays an important role in crop water regimes. The objectives of this work were: to modify an existing simulation model (CERES-maize) by including a capillary rise submodel; to use it for predicting the production function of corn grown above a shallow ground water table; and to compare model prediction with experimental results in Portugal. It is assumed that the capillary rise determines the initial conditions of soil water profile within the root zone, just before the sowing day. The model was used to simulate several theoretical and experimental situations for forage corn. Simulation results showed that the production function reaches an optimal yield when the best combination of soil, air and water is obtained. Capillary rise has a negative effect on yield, at high irrigation level. At low irrigation level, the best combination of air and water was obtained when ground water table depth was about 1 m below surface. The good determination coefficient (r2=0.92) indicated that results of simulations were in good agreement with experimental results. It is concluded that upward flow from shallow water is a significant component in the irrigation water balance of corn.  相似文献   

6.
A detailed field experiment was carried out in the Jordan Valley, south of Lake Kinneret, Israel for evaluation of the water management model DRAINMOD. This field was chosen to represent the local agro-climate conditions of that zone. Banana crop was grown and was irrigated daily with about 3200 mm/year and 0.5 leaching fraction. Subsurface drainage system with 2.5 m drain depth and 160 m drain spacing existed in the field. The water table depth was measured with about 100 piezometers, in which most of them were observed weekly, and four were continuosly recording piezometers. Five identical drainage plots were selected, out of 10 existing, as replicates for the evaluation of DRAINMOD. Deviations in a range of 0.3–1.7 m between observed water table depth and that simulated by DRAINMOD were found in four out of the five replicates. A reasonable agreement was found only in one drainage plot out of the five tested. These findings contradict the world wide convention that DRAINMOD simulation is in a good agreement with observed field data. An additional study was therefore conducted to explore the reasons for these large deviations. Three reasons were suggested: (i) a strong side effect by the Jordan River, which flows some 350 m west to the test field; a very steep 4.6% gradient was found toward the Jordan River; (ii) presence of sandy permeable layers below the depth of the drains which magnifies the boundary condition effect of the Jordan River; (iii) a very significant component of deep and lateral seepage (more than 50% of the yearly irrigation plus rainfall). A combination of these three reasons was suggested as an explanation to the apparent large disagreement. It was therefore recommended not to use DRAINMOD or similar vertical flow models for simulation of water table depths in irrigated fields with subsurface drain pipe systems in the Jordan Valley.  相似文献   

7.
Phreatic groundwater pumping is affecting water availability for crops in areas with a shallow water table. This can reduce crop growth and so affect farm income. There is a need for a generic and transparent method to assess the agricultural damage caused by water table drawdown. This paper proposes such a method that consists of ‘damage tables’ relating agricultural production losses to the groundwater regime for different soil/crop combinations found in Northern Belgium. The damage tables are constructed based on numerous simulations with the agrohydrological model SWAP, in which the bottom boundary conditions are gradually changed to reflect different groundwater regimes. The credibility of the resulting metamodel is assessed in three ways: using (1) field data, (2) an existing local expert system for land suitability assessment and (3) literature applying to a wider region. Field data of actual transpiration for two grasslands do not systematically deviate from the model predictions. This provides some credibility to the claim that the model captures the processes determining evapotranspiration and agricultural production. The local expert system allows us to evaluate the range of groundwater regimes where optimal growth is expected for maize and grassland across different soil types. Diverging predictions of the optimal groundwater regime between the metamodel and the local expert system can be explained in terms of differences in assumptions underlying both models. One notable limitation of the damage tables is that only direct physiological stress is reckoned while indirect effects of wet conditions (decreased accessibility of the terrain, soil structural damage) may also limit growth on soils with a water table near the surface. Further comparison with literature data focused on two issues: the contribution of groundwater to evapotranspiration and the extinction depth, i.e., the depth at which groundwater no longer contributes to evapotranspiration. This comparison revealed that damage tables developed for our area of interest are only valid under similar climatic conditions for the following two reasons: they assume a relatively small groundwater contribution to evapotranspiration, which is typical for humid climates, and they take into account temporal variations in plant characteristics such as root depth, which is also climate dependent.  相似文献   

8.
Summary Irrigation is essential for economic production of some crops in semiarid climates. Benefits from irrigation may be partially offset by detrimental effects of rising water tables and salinization. Drainage systems are usually installed when the water table rises to the root zone, but installation of a drainage system and safe disposal of drainage water are expensive. The long-term consequences of a high saline water table on crop production, particularly as related to irrigation scheduling, has not been firmly established. A multiseasonal transient state model, known as the modified van Genuchten-Hanks model, was used to simulate cotton (Gossypium hirsutum L.) production using a three or four in-season irrigation schedule (3irr or 4irr) under both free drainage and water table conditions. Under drainage conditions, irrigation scheduling to avoid applying more water than the soil water-holding capacity during any irrigation event is important, whereas this factor is less important under water table conditions. Excess water during an irrigation causes a rise in the water table, but this water remains available for later crop use which lowers the water table. In the presence of a water table the simulations indicate, (1) higher yields are achieved by applying less irrigation during the crop season and more during the preirrigation for salt leaching purposes, (2) annual applied water must equal evapotranspiration to avoid long-term water table rise or depletion, and (3) high cotton yields can be achieved for several years even if the water table is saline and no drainage occurs if the irrigation water is low in salinity.  相似文献   

9.
The Sorraia Watershed has a long history of continuous irrigated maize. Imprecise water and fertiliser management has contributed to increase nitrate in the groundwater. Solving this problem requires the identification of problem sources and the definition of alternate management practices. This can be performed by an interactive use of selective experimentation and modelling. This paper presents the experimentation phase, where the field experiments were conducted under the irrigation and fertilisation management commonly found in the watershed. Two different soil representatives of the watershed were selected, presenting different water and solute transport properties. One is a silty loam alluvial soil, with a shallow water table, and the other is a sandy soil with a very low water retention capacity. The various terms of the water (consumption, drainage, soil storage) and nitrogen balance (plant uptake, mineralisation and leaching) were obtained from intensive monitoring in the soil profile up to 80 cm, corresponding to the crop root zone. The results showed that in the alluvial soil, up to 70 kg N ha−1 was produced by mineralisation. Current fertiliser management fail in that it does not consider the soil capability to supply mineral nitrogen from the organic nitrogen stored in the profile at planting. This leads to a considerable amount of NO3-N stored in the soil at harvesting, which is leached during the winter rainy season. In the sandy soil, the poor irrigation management (45% losses by deep percolation), leads to NO3-N leaching during the crop season and to inefficient nitrogen use by the crop.  相似文献   

10.
The application of deficit irrigation (DI) to stabilize yield and to increase water productivity of quinoa (Chenopodium quinoa Willd.) raises questions in the arid Southern Altiplano of Bolivia where water resources are limited and often saline. Rainfed quinoa and quinoa with irrigation restricted to the flowering and early grain filling were studied during the growing seasons of 2005–2006 and 2006–2007 in a location with (Irpani) and without (Mejillones) water contribution from a shallow water table. It was found that the effect of additional irrigation was only significant above a basic fulfillment of crop water requirements of around 55%. Below this threshold, yields, total water use efficiency (TWUE) and marginal irrigation water use efficiency (MIWUE) of quinoa with DI were low. Capillary rise (CR) from groundwater was assessed using the one-dimensional UPFLOW model. The contribution of water from capillary rise in the region of Irpani ranges from 8 to 25% of seasonal crop evapotranspiration (ETc) of quinoa, depending mostly on the depth of the groundwater table and the amount of rainfall during the rainy season. DI with poor quality water and cultivation of crops in fields with a shallow saline groundwater table pose a serious threat for sustainable quinoa farming. To assess the impact of saline water resources, soil salinity and required leaching were simulated by combining the soil water and salt balance model BUDGET with UPFLOW. The results indicate that irrigation of quinoa with saline water and/or CR from a saline shallow water table might, already after 1 year, result in significant salt accumulation in the root zone in the arid Southern Altiplano. A farming system with only 1 year fallow is often insufficient to leach sufficient salts out of the root zone. In case the number of fallow years cannot be increased, leaching by means of an important irrigation application before sowing is an alternative. Although potentially beneficial, DI of quinoa in arid regions such as the Southern Bolivian Altiplano should be considered with precaution.  相似文献   

11.
Simulating root water uptake from a shallow saline groundwater resource   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal to deal with this problem is sequential biological concentration (SBC), which is the process of recycling drainage water on increasingly more salt tolerant crops until the volume of drainage water has been reduced sufficiently to enable its final disposal by evaporation in a small area. For maximum effectiveness this concept will require crop water reuse from shallow groundwater. To evaluate the concept of sequential biological concentration, a column lysimeter study was used to determine the potential crop water use from shallow groundwater by alfalfa as a function of ground water quality and depth to ground water. However, lysimeter studies are not practical for characterizing all the possible scenarios for crop water use related to ground water quality and depth. Models are suited to do this type of characterization if they can be validated. To this end, we used the HYDRUS-1D water flow and solute transport simulation model to simulate our experimental results. Considering the precision of the experimental boundary and initial conditions, numerical simulations matched the experimental results very well. The modeling results indicate that it is possible to reduce the dependence on experimental research by extrapolating experimental results obtained in this study to other specific sites where shallow saline groundwater is of concern.  相似文献   

12.
In this study deterministic, multivariate and stochastic methods are applied to a combined temporal and spatial monitoring data set, in order to assess nitrate and pesticide levels and contamination risk in shallow groundwater. The case study involves an area in the Mondego River alluvial body in central Portugal, where agriculture is the main land use, with predominantly maize, rice and some vegetable crops supported by river water irrigation. Factorial correspondence analysis (FCA), reducing the original data matrix to a small number of independent orthogonal factors, is applied to detect associations between nitrate levels, land use (crop type), lithology and groundwater depth. Indicator-geostatistical techniques are used to create maps indicating the probability of nitrate concentrations in groundwater exceeding predetermined threshold values, including the drinking water standard (98/83/EC) and vulnerable zone designation criterion (91/676/EEC) of 50 mg/l NO3. For pesticides the leaching potential is determined by calculating the Groundwater Ubiquity Score (GUS), based on the sorption coefficient and soil half-life for each pesticide compound. Results for nitrate show an overall very low risk of exceeding 50 or 25 mg/l, whereas the risk of exceeding 9.5 mg/l (third data quartile) is particularly high in areas where FCA shows correlation of nitrate contamination with vegetable and maize crops, aerobic conditions, lower groundwater levels and to some extent, coarser grained sediments. On the contrary, nitrate levels under rice are lowest and correlated to a reduced environment, finer-grained sediments and a higher water table. Denitrification is found to be an important attenuation process, as well as dilution by surface water irrigation and precipitation. Crop type and irrigation source are seen to have a large influence on the nitrate contamination potential of groundwater. Total concentrations of the analysed pesticide compounds above the regulatory limit of 0.5 μg/l are observed in 32% of the analysed water samples, with a maximum value of 16.09 μg/l. The probability maps provide a particularly interesting example of how multiple-well monitoring results over a certain period can be condensed into single maps and used by water engineers, managers and policy-makers.  相似文献   

13.
The salinity in the root zone increases with the application of relatively saline groundwater. Therefore, a limited water supply coupled with high pumping cost and salinity hazards, makes it more important than ever that irrigation water be used efficiently and judiciously. In the present study, farmer's practices of irrigation application methods (Field 1) were compared with the water saving techniques (Field 2) for crop yield and salinization for two years with maize–wheat–dhanicha cropping pattern. For maize crop, regular furrow method of irrigation was used in Field 1 and alternate furrow method of irrigation was used in Field 2. For wheat experiments, basin irrigation method of water application was compared with bed and furrow method. For dhanicha, basin irrigation was applied in both the fields. The results showed that about 36% water was saved by applying irrigation water in alternate furrows in each season without compromising the maize crop yield. The salt accumulation in root zone in alternate furrow field was less than that in regular furrow field. The salinity level near the surface increased substantially in both the fields. The water saving in wheat crop under bed and furrow was 9–12% in both seasons. The salinization process in both fields during wheat crop was almost same except redistribution of salts throughout the root zone in basin field of wheat. The salinity developed in root zone during two major growing seasons was leached in monsoon.  相似文献   

14.
ISAREG is a model for simulation and evaluation of irrigation scheduling. The model performs the soil water balance and evaluates impacts of water stress on yields for different crops. It is now being used to support a water saving irrigation scheduling program in a pilot area in the North China plain. This paper reports on the calibration and validation of the model using independent data sets relative to winter wheat and summer maize. Data are originated from the Wangdu experimental station and concern a set of drainage lysimeters where diverse irrigation treatments were applied representing different strategies of deficit irrigation. The calibration of the model was performed by deriving the crop coefficients adapted to the local climatic conditions, and considering the soil freezing during winter. The validation of the model was performed using different data sets. Results show that the relative errors to estimate the soil water content averaged 5.3% for summer maize and 7.3% for the winter wheat. These results support the use of the model in the practice.  相似文献   

15.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

16.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

17.
无人机多光谱遥感技术可以快速、无损地监测农作物叶面积指数(LAI)。为研究水分胁迫条件下,利用无人机多光谱植被指数估算夏玉米LAI的可行性,本研究基于无人机多光谱遥感系统,结合同时期实地采集的夏玉米LAI,选择5种植被指数,包括归一化差值植被指数(NDVI)、土壤调节植被指数(SAVI)、增强型植被指数(EVI)、绿度归一化植被指数(GNDVI)和抗大气指数(VARI),作为模型输入参数,使用随机森林回归算法建立全生育期不同灌溉条件下大田玉米冠层植被指数与LAI之间的关系模型,并与一元线性回归和多元线性回归算法建立的模型进行对比分析。结果表明,在充分灌溉条件下,植被指数的多元线性回归模型可以较好地估算LAI(R2 = 0.83);在水分胁迫条件下,植被指数的随机森林回归模型可以较好地估算LAI(R2 = 0.74~0.87),水分胁迫因素对该模型影响较小,且NDVI和VARI对估算LAI的贡献最大。上述结果表明基于无人机多光谱遥感技术,使用随机森林回归算法估算多种灌溉条件下的夏玉米LAI是可行的。该研究为实现快速、准确地监测全生育期不同灌溉条件下的大田夏玉米LAI提供了技术和方法支持。  相似文献   

18.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

19.
DRAINMOD is a water management model developed to simulate the performance of drainage and water table control systems for shallow water table soils, and it has been widely used in the United States over the last 20 years. This model has been evaluated and applied for predicting water table fluctuations in a sugarcane field for acid drainage management in north-eastern New South Wales, Australia. The reliability of the model has been evaluated using 2-year experimental field data from water level recorders installed in a sugarcane field. Good agreement was found between the observed and simulated values with a standard error of about 0.07 m. However, the model is not readily applicable to daily water management in Australian soils since it requires extensive soil and climate data, which are normally not available for most Australian sugarcane areas. In this application, refinements have been attempted in evapotranspiration estimation and in soil input data preparation so that the model requires only easily obtainable input data but still retains acceptable accuracy. With these improvements, the model can be used as a practical tool for investigating drainage management options for different site conditions. This will assist decision-makers in providing appropriate subsurface drainage management policies, such as acid drainage management, in Australian estuarine sugarcane areas.  相似文献   

20.
地下水埋深对再生水灌溉的夏玉米生长影响   总被引:1,自引:0,他引:1  
为探讨地下水埋藏较浅地区再生水灌溉对夏玉米生长的影响,利用地中蒸渗仪控制不同地下水埋深(2、3和4 m),对夏玉米进行再生水灌溉试验,灌水量设900 m3/hm2和1200 m3/hm2二个处理,并与清水灌溉进行对比。试验表明,与对照相比,再生水灌溉叶面积指数和株高最大值出现时间要提前近10 d左右;不同地下水埋深的低水和高水处理叶面积指数变化趋势相同,都为埋深2 m>埋深3 m>埋深4 m;地下水埋深2 m3、m处理,低水和高水的株高非常接近,且都大于相应灌水量4 m地下水埋深处理;地下水埋深2 m、3 m处理再生水灌溉理论产量明显大于对照。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号