首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Excess phosphorus (P) in freshwater systems has been associated with eutrophication in agro-ecosystems of the US Midwest and elsewhere. A better understanding of processes regulating both soluble reactive phosphorus (SRP) and total phosphorus (TP) exports to tile-drains is therefore critical to minimize P losses to streams while maintaining crop yield. This paper investigates SRP and TP dynamics at a high temporal resolution during four spring storms in two tile-drains in the US Midwest. Depending on the storm, median concentrations varied between 0.006-0.025 mg/L for SRP and 0.057-0.176 mg/L for TP. For large storms (>6 cm bulk precipitation), for which macropore flow represented between 43 and 50% of total tile-drain flow, SRP transport to tile-drains was primarily regulated by macropore flow. For smaller tile-flow generating events (<3 cm bulk precipitation), for which macropore flow only accounted for 11-17% of total tile-drain flow, SRP transport was primarily regulated by matrix flow. Total P transport to tile-drains was primarily regulated by macropore flow regardless of the storm. Soluble reactive P (0.01-1.83 mg m−2/storm) and TP (0.10-8.64 mg m−2/storm) export rates were extremely variable and positively significantly correlated to both mean discharge and bulk precipitation. Soluble reactive P accounted for 9.9-15.5% of TP fluxes for small tile-flow generating events (<3 cm bulk precipitation) and for 16.2-22.0% of TP fluxes for large precipitation events (>6 cm bulk precipitation). Although significant variations in tile-flow response to precipitation were observed, no significant differences in SRP and TP concentrations were observed between adjacent tile-drains. Results stress the dominance of particulate P and the importance of macropore flow in P transport to tile-drains in the US Midwest. Although only spring storms are investigated, this study brings critical insight into P dynamics in tile-drains at a critical time of the year for water quality management.  相似文献   

2.
In a small, extensively artificially drained lowland catchment (15.5 km2) in Mecklenburg-Vorpommern (North-Eastern Germany), the dynamics and the extent of total phosphorus (TP) and total reactive phosphorus (TRP) losses as well as the discharge were monitored at different scales for three winter seasons of 6 months each. Ranging from 0.036 to 0.044 mg TP l−1 and from 0.030 to 0.037 mg TRP l−1, average phosphorus concentrations in the discharge of a collector drain, a ditch draining arable land and a small brook were low. Elevated concentrations occurred during intensive snowmelt events. Probably due to the re-mobilisation of phosphorus under anaerobic conditions, concentrations (0.137 mg TP l−1 and 0.076 mg TRP l−1) in a ditch draining grassland on degraded peat were significantly higher than at the other sites characterised by mineral soils. Generally, phosphorus concentrations increased with discharge at all sites except for the grassland, although not during each single discharge event. Surprisingly, a dependency on the fertilisation practices could not be found. The phosphorus losses per winter season were low, with a maximum of 270 g TP ha−1 and 211 g TRP ha−1. Using a two-component mixing model based on baseflow separation and parameter optimisation, it was estimated that around 53, 60 and 56% of the TP losses from the collector drain, from the ditch and from the brook as well as 53, 68 and 45% of the TRP loads were exported via a fast flow component. This component accounted for 18-23% of the total discharge. At all measurement stations, there were large differences between the partitioning patterns of the single discharge events. Our study has not only shown the event-based behaviour of the P losses and the possible occurrence of high P concentrations due to preferential flow, but also that the highest potential of eutrophication in this lowland landscape originates from drained, degraded, and intensively used peatlands.  相似文献   

3.
The application of polymer for controlling erosion and the associated nutrient transport has been well documented. However, comparatively less information is available on the effect of polymer application together with soil amendments. In this study, the effect of polyacrylamide (PAM) in combination with surface application of gypsum and Milorganite™ (MILwaukee ORGAnic NITtrogEn) biosolid for reducing sediment and phosphorus transport under laboratory rainfall simulations was investigated. The treatments considered were bare soil, gypsum, Milorganite™, gypsum + Milorganite™, PAM-coated gypsum and PAM-coated Milorganite™. Application rates for gypsum and Milorganite™ were 392 kg ha−1 (350 lb/acre) and 726 kg ha−1 (650 lb/acre), respectively. The PAM was coated on gypsum and Milorganite™ at an application rate of 11.2 kg ha−1 (10 lb/acre) and 22.4 kg ha−1 (20 lb/acre), respectively. Rain simulation experiments were conducted using a rainfall intensity of 6.0 cm h−1 for 1 h on a 10% slope. Surface runoff was collected continuously from each soil box over 10 min intervals and leachate was collected continuously over the 60 min simulation. The reduction in runoff or in leachate for all treatments was not significantly different from the bare soil control. The sediment loss for PAM coated Milorganite™ was reduced by 77%, when compared to bare soil. However, the sediment loss was not significantly reduced for any other treatment compared to bare soil. The PAM-coated gypsum was not effective for erosion control in our study, and there appears to be a correlation between effectiveness and prill size. However, the gypsum (coated and uncoated) contributed about half of the dissolved reactive phosphorus (DRP) export (in the runoff) compared to bare soil. The PAM-coated Milorgante™ reduced the DRP and total phosphorus (TP) export to 0.3-0.5 times that of Milorganite™ and to levels similar to bare soil. The decreased sediment and phosphorus export for the PAM-coated Milorganite™ treatment is a signal for a potential management practice for controlling erosion and nutrient transport in fertilized agricultural landscapes.  相似文献   

4.
Agricultural drainage ditches are considered as wetland ecosystems when they possess the characteristic hydrology, soil and vegetation of wetlands. In arid and semi-arid regions, wetlands receiving agricultural drainage have to cope with the conservative nature of salts leached from soils. Excessive accumulation of salts in wetlands may threaten the ecological functions of the system, thus endanger the sustainability of the drainage disposal system and the productivity of the farmlands. Based on the salt and water balance in a farmland drainage and wetland disposal system in arid regions, this paper presents a thorough investigation on salinity dynamics of wetland ditches receiving agricultural drainage. Theoretical equations were derived to describe salinity changes in water and soils of wetlands under both equilibrium and pre-equilibrium conditions; a case example was then used to display model predictions of salinity variations over time under different salinity management goals. The example wetlands are de facto drainage ditches that possess wetland characteristics, and the ditch to farmland area ratio is 9.1%. The results showed that salt as a conservative substance will eventually concentrate in the ditches to a very high level if there is little outflow discharge; but the salt accumulation process may develop over a relatively long time, which opens a time window for management practice, such as flushing the salts when fresh water is available. By assuming different threshold salinity levels in the ditches, the proposed analytical models were used to predict time intervals when fresh water recharge is needed to bring down the salinity level in the ditches. For the study area under current drainage practice, the predicted outflow to inflow ratio for salinity was 58.2% and reached an equilibrium level of 9.60 g L−1 in the ditches; salinity levels in the ditches reached threshold values of 5, 7 and 9 g L−1, in about 1, 4 and 12 years, respectively. Salinity analysis showed that the salt retention capacity of the ditch soil is limited, the soil salinity varied according to the ditch water; salt removal through plant uptake and harvest was insignificant. This study indicates that although salt concentration in wetlands receiving agricultural drainage may eventually build up to a critical level, timely recharge with fresh water may bring down salt content in the wetlands and sustain adequate environmental and ecological functions of such a drainage disposal system in arid and semi-arid regions.  相似文献   

5.
Studies quantifying winter annual cover crop effects on water quality are mostly limited to short-term studies at the plot scale. Long-term studies scaling-up water quality effects of cover crops to the watershed scale provide more integrated spatial responses from the landscape. The objective of this research was to quantify N loads from artificial subsurface drainage (tile drains) in a subbasin of the Walnut Creek, Iowa (Story county) watershed using the hybrid RZWQ-DSSAT model for a maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] and maize-maize-soybean rotations in all phases with and without a winter wheat (Triticum aestivum L.) cover crop during a 25-year period from 1981 to 2005. Simulated cover crop dry matter (DM) and N uptake averaged 1854 and 36 kg ha−1 in the spring in the maize-soybean phase of the 2-year rotation and 1895 and 36 kg ha−1 in the soybean-maize phase during 1981-2005. In the 3-year rotation, cover crop DM and N uptake averaged 2047 and 44 kg ha−1 in the maize-maize-soybean phase, 2039 and 43 kg ha−1 in the soybean-maize-maize phase, and 1963 and 43 kg ha−1 in the maize-soybean-maize phase during the same period. Annual N loads to tile drains averaged 29 kg ha−1 in the maize-soybean phase and 25 kg ha−1 in the soybean-maize phase compared to 21 and 20 kg ha−1 in the same phases with a cover crop. In the 3-year rotation, annual N loads averaged 46, 43, and 45 kg ha−1 in each phase of the rotation without a cover crop and 37, 35, and 35 kg ha−1 with a cover crop. These results indicate using a winter annual cover crop can reduce annual N loads to tile drains 20-28% in the 2-year rotation and 19-22% in the 3-year rotation at the watershed subbasin scale over a 25-year period.  相似文献   

6.
In the design of wood-based, enhanced-denitrification bioreactors to treat nitrate in agricultural drainage, the consideration of the highly variable flow rates and nitrate concentrations inherent to many drainage systems is important. For optimized mitigation of these nitrate loads, it may be best to contain drainage water prior to treatment in order to facilitate longer, more constant retention times rather than to allow cycles of flushing and dry periods in the denitrification bioreactor. Simulated containment prior to bioreactor treatment compared to passing drainage directly through a bioreactor was investigated with the use of six pilot-scale denitrification bioreactors constructed with plywood and filled with Pinus radiata woodchips at Massey University No. 4 Dairy Farm (Palmerston North, New Zealand). Initial bromide tracer tests were followed with a series of five simulated drainage events each at successively declining inflow nitrate concentrations. During each drainage event, three pilot bioreactors received a simulated hydrograph lasting 1.5 days (Non-Containment treatment) and three pilot bioreactors received the same total drainage volume treated over 4 days at a constant flow rate (i.e. constant retention time; Containment treatment). Results showed significantly different total mass removal efficiencies of 14.0% vs. 36.9% and significantly different removal rates of 2.1 g N m−3 day−1 vs. 6.7 g N m−3 day−1 for the Non-Containment and Containment treatments, respectively, which indicated that treating drainage at constant retention times provided more optimized nitrate removal. While this work was done to evaluate treatment under New Zealand drainage conditions, it also provides valuable information for optimizing agricultural drainage denitrification bioreactor performance in general.  相似文献   

7.
Salt balance methods are generally applied in the root-zone and at local scales but do not provide relevant information for salinity management at irrigation scheme scales, where there are methodological impediments. A simple salt balance model was developed at irrigation scheme and yearly time scales and applied in Fatnassa oasis (Nefzaoua, Tunisia). It accounts for input by irrigation, export by drainage and groundwater flow, and provides novel computation of the influence of biogeochemical processes and variations in the resident amount of salt for each chemical component in the soil and shallow groundwater. Impediments were overcome by limiting the depth of the system so that the resident amount of salt that remained was of the same order of magnitude as salt inputs and allowed indirect and reliable estimation of groundwater flow. Sensitivity analyses as partial derivatives of groundwater salinity were carried out according to non-reactive salt balance under steady-state assumption. These analyses enabled the magnitude of the salinization process to be foreseen as a function of hydrological changes linked to irrigation, drainage, groundwater flow and extension of the irrigated area. From a salt input of 39 Mg ha−1 year−1 by irrigation, 21 Mg ha−1 year−1 (54%) and 10 Mg ha−1 year−1 (26%) were exported by groundwater flow and drainage, respectively. 7 Mg ha−1 year−1 (18%) were removed from groundwater by geochemical processes, while a non-significant 2 Mg ha−1 year−1 were estimated to have been stored in the soil and shallow groundwater where the residence time was only 2.7 years. The leaching efficiency of drainage was estimated at 0.77. With a water supply of 1360 mm by irrigation and 90 mm by rainfall, drainage, groundwater flow and actual evapotranspiration were 130, 230, and 1090 mm, respectively. The current extension of date palm plantations and salinization of groundwater resources are expected to significantly increase the salinity hazard while the degradation of the drainage system is expected to be of lesser impact. The approach was successfully implemented in Fatnassa oasis and proved to be particularly relevant in small or medium irrigation schemes where groundwater fluxes are significant.  相似文献   

8.
In northeast Italy, a regimen of controlled drainage in winter and subirrigation in summer was tested as a strategy for continuous water table management with the benefits of optimizing water use and reducing unnecessary drainage and nitrogen losses from agricultural fields.To study the feasibility and performance of water table management, an experimental facility was set up in 1996 to reproduce a hypothetical 6-ha agricultural basin with different land drainage systems existing in the region. Four treatments were compared: open ditches with free drainage and no irrigation (O), open ditches with controlled drainage and subirrigation (O-CI), subsurface corrugated drains with free drainage and no irrigation (S), subsurface corrugated drains with controlled drainage and subirrigation (S-CI). As typically in the region free drainage ditches were spaced 30 m apart, and subsurface corrugated drains were spaced 8 m apart.Data were collected from 1997 to 2003 on water table depth, drained volume, nitrate-nitrogen concentration in the drainage water, and nitrate-nitrogen concentration in the groundwater at various depths up to 3 m.Subsurface corrugated drains with free drainage (S) gave the highest measured drainage volume of the four regimes, discharging, on average, more than 50% of annual rainfall, the second-highest concentration of nitrate-nitrogen in the drainage water, and the highest nitrate-nitrogen losses at 236 k ha−1.Open ditches with free drainage (O) showed 18% drainage return of rainfall, relatively low concentration of nitrate-nitrogen in the drainage water, the highest nitrate-nitrogen concentration in the shallow groundwater, and 51 kg ha−1 nitrate-nitrogen losses.Both treatments with controlled drainage and subirrigation (O-CI and S-CI) showed annual rainfall drainage of approximately 10%. O-CI showed the lowest nitrate-nitrogen concentration in the drainage water, and the lowest nitrogen losses (15 kg ha−1). S-CI showed the highest nitrate-nitrogen concentration in the drainage water, and 70 kg ha−1 nitrate-nitrogen losses. Reduced drained volumes resulted from the combined effects of reduced peak flow and reduced number of days with drainage.A linear relationship between daily cumulative nitrate-nitrogen losses and daily cumulative drainage volumes was found, with slopes of 0.16, 0.12, 0.07, and 0.04 kg ha−1 of nitrate-nitrogen lost per mm of drained water in S-CI, S, O, and O-CI respectively.These data suggest that controlled drainage and subirrigation can be applied at farm scale in northeast Italy, with advantages for water conservation.  相似文献   

9.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

10.
Changes in soil fertility status were evaluated for 10 years, from 1996 to 2006 to examine the impact of drip fertigation in a laterite soil and to determine the nutrient uptake pattern of arecanut (Areca catechu L.). Four fertigation levels (25%, 50%, 75% and 100% of recommended fertilizer dose, 100:18:117 g N:P:K palm−1 year−1), three frequencies of fertigation (10, 20 and 30 days) and two controls (control 1: drip irrigation without fertilizer application and control 2: drip irrigation with 100% NPK soil application) were studied. The soil pH increased to 6.0 at the end of experiment in 2006 compared to the pre-experimental soil pH of 5.6 in 1996. In 0-25-cm depth interval, the soil organic carbon (SOC) increased significantly from 1.06% in 1999 to 1.84% in 2006, and in 25-50-cm depth interval, it increased from 0.68% to 1.13%. Temporal variation in available P and K content in arecanut root zone was significant due to drip fertigation. Pooled analysis of data, from 2000 to 2005, revealed significant impact of level and frequency of fertigation and their interaction on available P and K content. At 0-25-cm depth interval, increase in fertigation dose from 50% to 100% NPK did not result in significant increase of Bray’s P content, which remained at par ranging from 5.24 to 5.32 mg kg−1. Fertigation every 30 days resulted in significantly higher available P (5.32 mg kg−1) than fertigation every 10 days (4.49 mg kg−1), while it was at par with fertigation every 20 days (5.09 mg kg−1). The K availability at 0-25-cm depth interval was significantly lower at 25% NPK level (114 mg kg−1) than at 75% (139 mg kg−1) and 100% (137 mg kg−1). With respect to fertigation frequency, the 30-day interval resulted in higher available K of 139 mg kg−1 than 20-day (128 mg kg−1) and 10-day intervals (120 mg kg−1). Availability of P and K at 25-50-cm depth interval followed similar trend as that of 0-25-cm depth interval. The total N uptake (g palm−1 year−1) by leaves, nuts and husk varied between 143 in 0% NPK to 198 in 75% NPK fertigation level. Similarly, the total P uptake (g palm−1 year−1) ranged between 15 for the 0% NPK and 25 for the 75% NPK treatment. The total K uptake (g palm−1 year−1) was 62 for the 75% NPK treatment followed by 56 for the 25%, 56 for the 50%, 54 for the 100% and 46 for the 0% NPK treatments. The nutrient uptake pattern and marginal availability of soil P and K highlight the importance of drip fertigation during post-monsoon season to improve and sustain the yield of arecanut in a laterite soil.  相似文献   

11.
A study was conducted to understand the contributions of tile flow and baseflow to total nitrate-N (NO3-N) loadings in two subsurface (tile)-drained watersheds, namely the Big Ditch (BD) and the Upper Embarras River (UER) watersheds in Illinois. Two stream sections were selected in the watersheds and rectangular cutthroat flumes were installed at the upstream and downstream ends of the stream sections to calculate the flow mass balance for separating baseflow. The stream section at BD site had two tile outlets draining into it. The stream section at UER watershed did not have any tile drain. Tile flow was also measured along with stream flow. Water samples were collected not only from the stream sections using auto-samplers but also manually from the tile drains. Average baseflow rates per unit lengths of the stream sections at BD and UER sites were 3.5 × 10−04 and 9.4 × 10−05 m2 s−1, respectively. At BD site, for six study periods, the percentages of baseflow and tile flow contributions of NO3-N loads within the stream section were 90 and 10%, respectively. Annual NO3-N contributions by the upstream subwatersheds for BD and UER stream sections were 61,819 and 16,155 kg, respectively. Annual NO3-N loss from these two subwatersheds within BD and UER watersheds was 42.9 and 7.0 kg ha−1, respectively. For the stream section at BD site, baseflow seemed to play a more important role than tile flow in raising the NO3-N concentration level in the stream water. Land use seemed to play a major role in the significant difference in NO3-N concentrations at the two subwatersheds upstream from the project sites. Nitrate-N loadings primarily depended on precipitation, antecedent moisture condition (AMC), fertilizer application time, and evapotranspiration (ET).  相似文献   

12.
Cover cropping is a common agro-environmental tool for soil and groundwater protection. In water limited environments, knowledge about additional water extraction by cover crop plants compared to a bare soil is required for a sustainable management strategy. Estimates obtained by the FAO dual crop coefficient method, compared to water balance-based data of actual evapotranspiration, were used to assess the risk of soil water depletion by four cover crop species (phacelia, hairy vetch, rye, mustard) compared to a fallow control. A water stress compensation function was developed for this model to account for additional water uptake from deeper soil layers under dry conditions. The average deviation of modelled cumulative evapotranspiration from the measured values was 1.4% under wet conditions in 2004 and 6.7% under dry conditions in 2005. Water stress compensation was suggested for rye and mustard, improving substantially the model estimates. Dry conditions during full cover crop growth resulted in water losses exceeding fallow by a maximum of +15.8% for rye, while no substantially higher water losses to the atmosphere were found in case of evenly distributed rainfall during the plant vegetation period with evaporation and transpiration concentrated in the upper soil layer. Generally the potential of cover crop induced water storage depletion was limited due to the low evaporative demand when plants achieved maximum growth. These results in a transpiration efficiency being highest for phacelia (5.1 g m−2 mm−1) and vetch (5.4 g m−2 mm−1) and substantially lower for rye (2.9 g m−2 mm−1) and mustard (2.8 g m−2 mm−1). Taking into account total evapotranspiration losses, mustard performed substantially better. The integration of stress compensation into the FAO crop coefficient approach provided reliable estimates of water losses under dry conditions. Cover crop species reducing the high evaporation potential from a bare soil surface in late summer by a fast canopy coverage during early development stages were considered most suitable in a sustainable cover crop management for water limited environments.  相似文献   

13.
Like many intensive vegetable production systems, the greenhouse-based system on the south-eastern (SE) Mediterranean coast of Spain is associated with considerable NO3 contamination of groundwater. Drip irrigation and sophisticated fertigation systems provide the technical capacity for precise nutrient and irrigation management of soil-grown crops which would reduce NO3 leaching loss. The VegSyst crop simulation model was developed to simulate daily crop biomass production, N uptake and crop evapotranspiration (ETc). VegSyst is driven by thermal time and consequently is adaptable to different planting dates, different greenhouse cooling practices and differences in greenhouse design. It will be subsequently incorporated into a practical on-farm decision support system to enable growers to more effectively use the advanced technical capacity of this horticultural system for optimal N and irrigation management.VegSyst was calibrated and validated for muskmelon grown in Mediterranean plastic greenhouse in SE Spain using data of four melon crops, two grown in 2005 and two in 2006 using two management strategies of water and N management in each year. VegSyst very accurately simulated crop biomass production and accurately simulated crop N uptake over time. Model performance in simulating dry matter production (DMP) over time was better using a double radiation use efficiency (RUE) approach (5.0 and 3.2 g MJ−1 PAR for vegetative and reproductive growth phases) compared to a single RUE approach (4.3 g MJ−1 PAR). The simulation of ETc over time, was very accurate in the two 2006 muskmelon crops and somewhat less so in the two 2005 crops. The error in the simulated final values, expressed as a percentage of final measured values was −1 to 6% for DMP, 2-11% for crop N uptake, and −11 to 6% for ETc. VegSyst provided effective simulation of DMP, N uptake and ETc for crops with different planting dates. This model can be readily adapted to other crops.  相似文献   

14.
Gully erosion is one of the main causes of soil loss in drylands. Understanding the dominant mechanisms of erosion is important to achieve effective erosion control, thus in this study our main objective was to quantify the mechanisms involved in gully bank retreat as a result of three processes, falling of entire soil aggregates, transport of soil material by splash and by water running along gully banks (runoff), during rainfall events. The study was conducted in the sloping lands of the KwaZulu-Natal province, a region that is highly affected by gully erosion. Artificial rain was applied at 60 mm h−1 for 45 min at the vertical wall of a gully bank typical to the area. The splash material was collected by using a network of 0.045 m2 buckets. The sediments in the running water were assessed by sampling the runoff collected from a microplot inserted within the base of the bank, and collecting the fallen aggregates after the rainfall simulation was complete. Results indicated that the overall erosion for the simulation was 721 g m−2 h−1. Runoff erosion proved to be the dominant mechanism and amounted to 450 g m−2 h−1, followed by splash and fall down of aggregates (about 170 g m−2 h−1). Gully bank retreat occurred at a rate of 0.55 mm h−1 and assuming that the soil bulk density is 1.3 g cm−3, this corresponds to a retreat of 8.8 mm y−1. Extrapolations to the watershed level, where about 500 m2 of gully bank are observed per hectare, would lead to an erosion rate of 4.8 t ha−1 y−1. These limited results based on a simulated storm show that the three main mechanisms (runoff, splash and fall down of aggregates) are responsible for the retreat of gully banks and that to mitigate gully erosion, appropriate measures are required to control all three mechanisms. Further research studies are needed to confirm and to scale up, both in time and space, as these data are obtained at one location and from a single artificial storm.  相似文献   

15.
One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L−1), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m−1, respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m−1 for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m−1. Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl and Na+ in leaves up to 24.0 and 8.5 g kg−1, respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L−1). Leaves of plants irrigated with 240 mmol NaCl L−1 became chlorotic after 30 days exposure. However, concentrations of N, P, Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K+ and Ca2+ were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L−1 of NaCl contained the greatest K+ concentration. Na+/K+ increased with salinity, due to an elevated Na+ content but K+ uptake was also enhanced, which alleviated some Na+ stress. Ca2+ concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species.  相似文献   

16.
Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m−3 and 21 kg kg−1, respectively, while under the improved treatment, they were 2.2 kg m−3 and 26 kg kg−1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.  相似文献   

17.
Water quality is a significant environmental issue in the Montagu River and its estuary in north-west Tasmania. Groundwater is the major contributor to baseflow for about half of the year. ‘Hump and hollow’ surface drainage is increasingly being used to reduce the effects of seasonal waterlogging on pasture production. However, little is known about the effects of ‘hump and hollow’ structures on watertable levels or intensive grazing on groundwater quality in the catchment. The objectives of this study were to evaluate the impacts of ‘hump and hollow’ drainage by comparing watertable levels in drained and undrained paddocks and to quantify the effects of intensive grazing on groundwater quality underlying pastures.In December 2004, 10 wells and 2 piezometers were installed at depths of 2-6 m at seven sites along two transects across the dairying area of Togari. Water levels were monitored and water samples collected every 2 months were analysed for pH, electrical conductivity, total dissolved solids, ammonium, nitrate, nitrite, total nitrogen, dissolved reactive phosphorous, Ca, Mg, K and Na. Thermotolerant coliforms and Enterococcus were measured when watertable levels were low and high.Watertable levels were within 0.5 m of ground level for over 3 months on undrained sites. ‘Hump and hollow’ surface drainage increased the depth of the unsaturated zone under the ‘humps’ but did not lower the watertable. Watertable levels on the crests of the ‘hump and hollow’ structures rose and fell daily in response to periods of rainfall and drought. Gradients of the groundwater surface, albeit very low, indicated the potential for groundwater flow from the base of the hills to the Montagu River in the centre of the valley.The median nitrate concentration of all samples was 0.018 mg NO3-N L−1 but one site had nitrate concentrations in excess of that recommended for potable water for a period of 1-2 months. Nitrate concentrations varied seasonally by 20-1000 times with an early winter pulse of nitrate evident both in the groundwater and in the Montagu River. In contrast, the median ammonium concentration in the groundwater was 0.274 mg NH4-N L−1 which was well above the trigger value for lowland streams. The median concentration of dissolved reactive phosphorus was 0.008 mg P L−1 which was slightly higher than the trigger value. There was some evidence of low levels of faecal bacterial contamination of the shallow aquifers.Transects across the dairying area did not clearly demonstrate increasing concentrations of analytes due to intensive grazing though lower levels of nutrients were generally found at sites adjacent to undisturbed native forest. Variation in water quality parameters along the transects suggested water quality at a site was mostly related to local conditions and hazards.  相似文献   

18.
Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient nutrient concentration, nutrient retention and transport in drainage ditches. Grab water samples were collected during three flow regimes for the determination of soluble phosphorus (SP), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N) concentrations and their retention in three drainage ditches. Measured nutrient concentration indicated lower SP and NH4+-N, and greater NO3-N concentrations in tile effluents compared to the ditch water. Net uptake lengths were relatively long, especially for NO3-N, indicating that nutrients were generally not assimilated efficiently in these drainage systems. Results also indicated that the study reaches were very dynamic showing alternating increases or decreases in nutrient concentration across the flow regimes. The drainage ditches appeared to be nutrient-rich streams that could potentially influence the quality of downstream waters.  相似文献   

19.
Excessive nutrient loadings from rice paddy fields has been a great concern in Korea as rice paddy area spans over 1,153,000 ha, which covers approximately 60% of the total agricultural land area in Korea. The principal tasks of this study included undertaking work to better identifying the scope of the nutrient loadings from paddy fields to assess their adverse effects. Hydro-meteorological factors, rainfall and surface discharge, were considered as the major driving forces of nutrients into the water. A Generalized Regression Neural Network (GRNN) model was applied and its capability evaluated to predict the nutrient loading into the neighboring water. The 15 ha paddy fields surrounded by drainage and irrigation channels were chosen as a study area. Field data, such as rainfall, quantities of irrigation and discharge water, and nutrient contents (total nitrogen (T-N) and total phosphorus (T-P)) from two different water sources, were obtained throughout the study period. Simulation results showed that surface discharge had a positive correlation with rainfall (R = 0.84). In addition, the resulting predictions for nutrient concentrations corresponding to surface discharge were varied (R = 0.72 and 0.40 in total nitrogen and total phosphorus, respectively). This study found that both natural and artificial variations of nutrient contents in irrigation streams were significantly influenced the model results of nutrient predictions. Therefore, the nutrient loadings into the neighboring water can be accurately described with a more comprehensive and sufficient representation of both environmental inputs and hydrological processes.  相似文献   

20.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号