首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马尾松天然次生林生物量的结构与分布   总被引:11,自引:0,他引:11  
对位于重庆铁山坪的46年生马尾松天然次生林的生物量结构与分布特征及生产力的研究结果表明,林分的初级生产力为8.34 t/(hm2.a),生物量为146.08 t/hm2,其中各层次的生物量分配顺序为:乔木层(87.43%)>枯枝落叶层(5.65%)>下木层(5.46%)>草本层(1.46%)。乔木层的生物量为127.72 t/hm2,其中各器官生物量比例的顺序是:树干(72.82%)>树枝(11.19%)>树根(9.27%)>树皮(4.43%)>针叶(2.29%)。在林分的各器官生物量的垂直结构方面,10 m以下树干生物量占其总量的81.13%;树枝的生物量主要集中在12~16 m,占其总量的82.25%;针叶的生物量主要集中在12~18 m,其中1年生针叶占其总量的93.25%;根系生物量主要集中在距地表深40 cm的土层内,占其总量的76.45%。当前,该林分生产力低,群落结构不合理,应对该种类型的森林群落进行林相改造,调整乔木层产量结构,以提高群落的综合效应。  相似文献   

2.
为了探明单株马尾松生物量的生长模型及其林分的净生产力,为马尾松珠防林的规划、实施,珠防林配置、结构调整以及全省防护林的经营、管理提供理论依据,采用实地调查的方法,对黔南珠防工程马尾松幼林生物量及林分生产力进行了研究。结果表明:1)该区马尾松幼林林分生物量为16.58t/hm2,各层次的生物量分配依次为乔木层(66.59%)>草本层(19.36%)>灌木层(9.35%)>枯落物层(4.70%);乔木层的生物量为11.04t/hm2,各器官所占比例为树干(55.38%)>树叶(16.44%)>树枝(14.35%)>树根(13.96%)。2)该区马尾松幼林林分平均净生产力为7.44t/(hm2.a),各层次的平均净生产力依次为乔木层〔3.45t/(hm2.a)〕>草本层〔3.21t/(hm2.a)〕>灌木层〔0.78t/(hm2.a)〕。林分乔木层生物量和净生产力均随着林龄的增加而增加,且在5a后增长速率明显加快,表现为连年净生产力大于平均净生产力,说明,该林分在5a后将进入生长的速生期,此期间对其施行抚育间伐、施肥、调整林分结构等管护措施,可促进林分生长,提高林分生产力和群落整体生态效应。  相似文献   

3.
蔡清楼 《安徽农业科学》2011,39(12):7122-7124
通过对将乐县5年生马尾松人工林生物量空间分布格局进行研究。结果表明,马尾松人工林生物总量为35.512 t/hm2,其中乔木层、草本层和凋落物层生物量分别为28.608、3.861、3.043 t/hm2,分别占总生物量的80.56%、10.87%及8.57%;乔木层各器官生物量占乔木层总生物量的比例大小依次为:干(40.90%)〉枝(25.73%)〉根(23.87%)〉叶(9.50%);就乔木层地上部分生物量分配格局而言,马尾松枝和叶主要分布在1~3 m区分段,而干则主要分布在0~2 m区分段。  相似文献   

4.
【目的】研究秦岭中段南坡不同区域华山松林生物量、能量现存量、灰分储量和碳储量的空间分布特征,以期为华山松林的管理和抚育经营提供科学依据。【方法】采用标准木法和样方收获法测定华山松群落中乔木层、灌木层和草本层的生物量,分别用OR-2010型快速量热仪、马弗炉和Liqui TOCⅡ总有机碳元素分析仪,测定乔木层(干、皮、枝、叶、根)、灌木层(枝、叶、根)和草本层(地上和地下部分)的热值、灰分含量和含碳率。【结果】秦岭中段南坡华山松林总生物量、能量现存量、灰分储量和碳储量分别为81.39t/hm2、1 539.04GJ/hm2、3 765.86kg/hm2和33.70t/hm2。其中乔木层生物量、能量现存量、灰分储量和碳储量分别为79.45t/hm2、1 494.89GJ/hm2、1 950.41kg/hm2和32.95t/hm2,分别占林分总量的97.62%,97.13%,51.79%和97.78%;灌木层生物量、能量现存量、灰分储量和碳储量分别为1.34t/hm2、23.99GJ/hm2、987.81kg/hm2和0.54t/hm2,分别占林分总量的1.64%,1.56%,26.23%和1.60%;草本层生物量、能量现存量、灰分储量和碳储量分别为0.60t/hm2,20.16GJ/hm2,827.64kg/hm2和0.21t/hm2,仅占林分总量的0.74%,1.31%,21.98%和0.62%。从不同器官来看,华山松树干的生物量、碳储量和能量现存量显著高于其他器官(P<0.05),其生物量、碳储量和能量现存量分别为40.36t/hm2,16.10t/hm2和712.09GJ/hm2,分别占各器官总量的50.80%,48.87%和47.63%;树枝的灰分储量显著高于皮和叶(P<0.05)。华山松树枝的干质量热值、去灰分热值和含碳率显著高于其他器官(P<0.05),树皮的灰分含量显著高于其他器官(P<0.05)。【结论】乔木层在华山松天然林生物量、能量和灰分储备中占主要地位,树干是华山松林生物量、能量储量和碳储量的重要组成部分。  相似文献   

5.
研究4种12年生不同造林密度试验林的生物量变化特点及其分配规律.结果表明:林分及各器官生物量均随密度增加而增加,但当林分密度大于1800株/hm2后,增加速度减缓.下木层、草本层、林分平均木及其各器官生物量,随密度增加而降低.乔木层林分生物量23.78~86.90t/hm2,占群落生物量96%以上.树干、树皮和根所占比例,随密度增加而增加,枝、叶刚好相反;树干生物量占54%~64%,枝占12.45%~20.94%,根占12.83%~14.83%,叶占6.70%~10.77%,皮占7.69%~8.22%.造林密度由稀到密,生物量所占百分比,大径级木分别为42.4%、47.7%、15.3%、6.9%,小径级木分别为6.1%、5.6%、14.2%、32.7%.培育纸浆材林的造林密度可定为3600~4500株/hm2,12年时3000~4050株/hm2.  相似文献   

6.
以华北落叶松为研究对象,通过样地调查,测定林分乔木层、灌木草本层、凋落物层的生物量,并运用重铬酸钾氧化法测定各组分的含碳率,对华北落叶松幼中龄林的生物量生产力、生物量转换因子、碳密度等进行了研究.结果表明:华北落叶松幼中龄林的生物量转换因子值在0.541 4~0.807 5之间变动,平均值为0.6569.18、22、38年生华北落叶松林乔木层地上总生物量分别为70.16、83.79、173.3 t/hm2,其中干材所占比例最大,灌木草本层的生物量为5.15、4.57、46.44 t/hm2,凋落物层的生物量为33.70、28.76、28.57 t/hm2.华北落叶松林乔木层、灌木草本层、凋落物层的平均碳密度分别为71.2200、9.5295、15.433 6t/hm2.  相似文献   

7.
研究了马尾松(Pinus massoniana)人工纯林、针阔混交次生林和针阔混交人工林3种森林群落的生物量及碳密度特征。结果表明,(1)3种森林群落中,群落生物量、乔木层生物量、草本层生物量和枯落物层干重均是马尾松林最大,灌木层生物量则是针阔混交次生林最大,各层生物量均是针阔混交人工林最小曰(2)地上生物量大小顺序是马尾松林>针阔混交次生林>针阔混交人工林曰地下生物量大小顺序则是针阔混交次生林>马尾松林>针阔混交人工林。针阔混交次生林根茎比(R/S)最大,为0.27×0.01);(3)马尾松林的碳密度最高,为79.71(×16.92)t/hm2,其次是针阔混交次生林,为64.46(×12.61)t/hm2,针阔混交人工林最小,仅为59.62(×15.22) t/hm2;(4)乔木层碳占群落碳的比例大小顺序为马尾松林>针阔混交人工林>针阔混交次生林。  相似文献   

8.
尾叶桉与马占相思人工复层林生物量及生产力研究   总被引:1,自引:1,他引:1  
应用相对生长法和样方收获法,于2006年对广西国营高峰林场3年生尾叶桉与马占相思不同混交模式人工林群落生物量及生产力进行研究,结果表明:尾叶桉与马占相思不同混交模式各器官生物量与测树因子(D2H)存在紧密相关关系。在相同混交比例下,群落生物量、乔木层生物量及净生产力水平随林分密度的增加而上升。当尾叶桉与马占相思混交比例为1∶1时,林分密度为1 050和1 320株/hm2的群落生物量分别为28.556和47.853 t/hm2,平均净生产力分别为9.51和15.95 t/(hm2·a),其中乔木层生物量分别为22.100和42.182 t/hm2,占总生物量的77.39%和88.15%;当尾叶桉与马占相思混交比例为2∶1时,林分密度810和1 170株/hm2的群落生物量分别为49.482和76.556 t/hm2,平均净生产力分别为16.49和25.51 t/(hm2·a),乔木层生物量分别为44.340和72.733 t/hm2,占总生物量的89.60%和95.01%;当林分密度同为1 727株/hm2时,尾叶桉纯林、尾叶桉与马占相思以1∶1.6比例混交林的群落生物量分别为84.586和106.904 t/hm2,平均净生产力为28.20和35.63 t/(hm2·a),其中乔木层生物量分别为73.942和101.480 t/hm2,占总生物量的87.42%和94.93%,混交林群落生物量比纯林群落生物量高出26.38%。在相同混交比例下,灌木层、草本层、枯枝落叶层生物量随林分密度的增加而下降;在相同密度下,尾叶桉纯林灌木层、草本层、枯枝落叶层生物量均比混交林高。在6个林分更新处理中,当尾叶桉与马占相思的混交比例为1∶1.6时,混交林的成层性最明显,林分总生物量、净生产力水平也最高,且与其他各处理间的差异达到极显著水平,是较佳的一种混交模式。   相似文献   

9.
祁连山青海云杉林碳平衡研究   总被引:17,自引:0,他引:17  
通过林分样地调查,采用收割法测定标准木各器官生物量,并建立生物量相对模型,利用模型和样地及树干解析资料,推算出青海云杉林生物量为203.08 t/hm2,其中乔木层占87.41,下木层占0.61,活地被物层为0.32 t/hm2;并通过生物量各组分碳含量测定推算出青海云杉林贮存CO2 1 219.23 t/hm2,其中土壤贮存占69.61,林分贮存占30.39;年净固定大气CO2 9.85 t/hm2,其中有60.61贮存在林分内,有39.39通过有机体凋落以枯落物及分解残留物等形式贮存在土壤内;森林土壤  相似文献   

10.
土贡优良种源马尾松生物量及生产力研究   总被引:1,自引:1,他引:0  
《山西农业科学》2015,(10):1247-1251
对55年生广西苍梧县天洪岭林场土贡站土贡种源马尾松人工林的生物量及生产力进行研究。结果表明,土贡种源马尾松不同径阶间单株各器官生物量的分配规律均为地上部分:树干大枝小枝叶;地下部分:根蔸粗根中根细根;生物量在树干上的累积增加量最明显;土贡种源马尾松人工林乔木层的总生物量为468.64 kg/株,其中,树干生物量最大,为343.14 kg/株,其次是根87.08 kg/株,叶的生物量最小,为6.10 kg/株。乔木层年净生产力为8.52 t/(hm2·a),其中,树干净生产力为6.24 t/(hm2·a),占比为73.22%;根系净生产力为1.58 t/(hm2·a),占比为18.58%;各器官净生产力从大到小排序为树干根系大枝小枝叶。  相似文献   

11.
南亚热带丘陵3种人工林群落的生物量及净初级生产力   总被引:4,自引:0,他引:4  
该文采用收获法和标准木法研究了南亚热带3种人工林群落:马占相思林、针叶林(马尾松+杉木)、木荷林(木荷+红荷)的生物量及净初级生产力,为揭示鹤山丘陵人工林的结构功能规律及全球变化生态学的研究提供基础资料。结果表明,林分现存生物量由大到小依次为:马占相思林(176.03 t/hm2)、木荷林(122.91 t/hm2)、针叶林(104.93 t/hm2)。在林分各层次的分配比例中,乔木层所占比例最大,为95.1%~98.7%;灌木层和草本层所占比例较小,尤其是草本层,灌木层为0.9%~4.5%,草本层为0.4%。净初级生产力(NPP)由大到小依次为:马占相思林(25.32 t/(hm2·a))、木荷林(17.93 t/(hm2·a))、针叶林(15.8 t/(hm2·a)),与林分生物量大小呈同样的规律。木荷林乔木层和灌木层的生物量增量所占比例高于另外两种林分,群落结构较复杂,生物量积累呈明显的增长趋势。   相似文献   

12.
采用样方收获和分级取样测定法,对16a生马尾松人工林生物量的积累及分配进行了研究.结果表明:马尾松人工林各器官生物量模型与测树因子(D^2H)存在极显著相关关系.16a生马尾松人工林分总生物量为110.449t·hm^-2群落生物量分布格局为乔木层〉死地被物〉草本〉灌木;马尾松人工林乔木层生物量主要集中在10—20cm径阶范围,占整个乔木层生物量的83.01%,优势木和被压木对林分生物量的贡献不大,平均木构成了乔木层的主林层.乔木层各器官生物量的分布顺序为干材〉枝条〉根〉干皮〉叶;各器官生物量所占比例随着胸径的增大呈现不同趋势:干材与干皮积累的生物量所占比例逐步减小,而树枝、树叶、树根的相对比例在增加,马尾松的干、枝生物量差别逐渐缩小,生物量结构随着胸径的增大趋于稳定.  相似文献   

13.
利用标准样方法对19a生湿地松人工林生物量、碳素含量、贮量及其空间分布进行测定。结果表明,湿地松各器官的碳素含量在50.92%~54.38%波动,排列顺序为树叶>树枝>树根>树干>树皮,且各器官的碳素含量随树龄增长而提高。林冠上层与下层叶的碳素含量比中层叶的碳素含量低,但差别不大;下层枝条碳素含量明显比上、中层枝条高。灌木层、草本层、凋落物层的碳素含量依次为45.16%、42.28%、40.88%;土壤层碳素含量平均为0.43%,且随土壤深度的增加而明显递减。湿地松各器官碳贮量与其生物量成正比例关系,排列顺序为树干>树根>树皮>树枝>树叶。随着树高的增大,树干碳贮量在乔木层中所占比例逐渐下降,树皮碳贮量所占比例处于一个缓慢上升的状态,枝叶碳贮量所占比例在10~12m段出现最大值。湿地松林生态系统碳贮量(C)为121.94×103kg/hm2,其中乔木层为86.78×103kg/hm2,占整个生态系统总贮量的70.67%,下木层为0.6×103kg/hm2,占0.49%,凋落物层为8.86×103kg/hm2,占7.27%,林地土壤(0~60 cm)为26.3×103kg/hm2,占21.57%。根据以上数据,得出湿地松林年净生产力约为7.61×103kg/hm2.a,有机碳年净固定量(C)为4.54×103kg/hm2.a。  相似文献   

14.
思茅松中幼龄人工林生物量及生产力动态   总被引:2,自引:0,他引:2  
在云南省思茅松集中分布的4个县市,通过调查30块3~26年生思茅松人工林样地及测定36株标准木,对思茅松人工林的生物量和生产力进行了研究。结果表明:3~26年生林分的生物量为22.39~308.96t.hm-2,其中乔木层、灌木层及草本层生物量分别为7.07~295.74,1.73~52.46和0.78~16.40t.hm-2,枯落物层现存量为0.90~11.00t.hm-2,分别占林分生物量的21.44%~95.72%、2.62%~60.86%、0.39%~31.62%和0.90%~11.00%。随林木的生长,乔木层生物量比例明显增加,灌木层、草本层与枯落物层比例明显降低。乔木层、枯落物层和林分生物量与林龄存在显著的线性正相关,灌木层和草本层生物量与林龄呈不显著负相关。随林龄增加,林分生物量、乔木层生物量和枯落物层现存量的变化规律满足逻辑斯蒂方程。3~26年生思茅松人工林林分的生产力为(9.52±1.31)t.hm-2.a-1,乔木层、灌木层和草本层的生产力分别为(6.29±1.19)、(2.52±0.83)和(0.71±0.31)t.hm-2.a-1。随林龄增长,乔木层生产力呈逻辑斯蒂增长,灌木层和草本层的生产力呈指数函数减小。  相似文献   

15.
利用标准样方法对19 a生湿地松人工林生物量、碳素含量、贮量及其空间分布进行测定.结果表明,湿地松各器官的碳素含量在50.92%~54.38%波动,排列顺序为树叶>树枝>树根>树干>树皮,且各器官的碳素含量随树龄增长而提高.林冠上层与下层叶的碳素含量比中层叶的碳素含量低,但差别不大;下层枝条碳素含量明显比上、中层枝条高.灌木层、草本层、凋落物层的碳素含量依次为45.16%、42.28%、40.88%;土壤层碳素含量平均为0.43%,且随土壤深度的增加而明显递减.湿地松各器官碳贮量与其生物量成正比例关系,排列顺序为树干>树根>树皮>树枝>树叶.随着树高的增大,树干碳贮量在乔木层中所占比例逐渐下降,树皮碳贮量所占比例处于一个缓慢上升的状态,枝叶碳贮量所占比例在10~12 m段出现最大值.湿地松林生态系统碳贮量(C)为121.94×103 kg/hm2,其中乔木层为86.78×103 kg/hm2,占整个生态系统总贮量的70.67%,下木层为0.6×103 kg/hm2,占0.49%,凋落物层为8.86×103 kg/hm2,占7.27%,林地土壤(0~60 cm)为26.3×103 kg/hm2,占21.57%.根据以上数据,得出湿地松林年净生产力约为7.61×103 kg/hm2·a,有机碳年净固定量(C)为4.54×103 kg/hm2·a.  相似文献   

16.
代海燕  张秋良  魏强  郭鑫 《安徽农业科学》2008,36(11):4514-4516
[目的]了解大青山林分的结构和密度对不同林分生物量的响应情况。[方法]采用伐倒样树法和直接收获法,对大青山油松、落叶松人工林和白桦天然次生林的生物量进行测定。[结果]大青山林地总生物量以落叶松林最高,为52 225.4 kg/hm2,其次是油松人工林(34 869.0 kg/hm2)和白桦林(26 378.9 kg/hm2);灌木层以白桦林生物量最大,达到3 251~4 160 kg/hm2;草本层油松林中生物量相对较大,达369.3~1 146.9 kg/hm2,其次为白桦林和落叶松林。25年生落叶松在1050.6~1 700.8株/hm2密度范围内随密度增加其干材生物量所占比例明显增加,30年生油松在密度1 525~3 875株/hm2范围内随密度增加各器官生物量都有增加的趋势。[结论]不同密度对落叶松人工林树枝生物量和草本生物量在0.05水平上有显著影响。  相似文献   

17.
山白兰人工林生态系统碳储量及空间分布特征   总被引:1,自引:0,他引:1  
莫德祥  廖克波  吴庆标  覃静 《安徽农业科学》2011,39(23):14072-14075
[目的]揭示山白兰人工林碳储量的空间分布特征及规律,为森林生态系统碳储量估算提供基础数据,也为进行人工林碳汇造林项目提供科学参考。[方法]以南亚热带地区27年生山白兰人工林为研究对象,采用标准木法、样方收获等方法对其生物量、碳含量分配进行研究。[结果]山白兰人工林生态系统碳储量为158.21 t/hm2,其中乔木层占植被层碳储量的87.24%,灌木层占10.77%,草本层占0.18%,凋落物层占1.81%;土壤层中0~80 cm的碳储量为102.01 t/hm2,为植被层的1.82倍。山白兰人工林乔木层年净固碳量为3.50 t/(hm2.年)。[结论]山白兰人工林生态系统碳储量比较可观,具有较好的发展前景。  相似文献   

18.
研究了十年生杉木与檫树8∶1星状插花混交林的林分结构,结果表明:十年生杉木与檫树星状混交(8∶1)林分生长速生期的差异,形成了层次分明的林分。檫树造林后第2年就进入速生期,无论是胸径、树高在10年内一直保留较高的生长量;杉木35年才进入速生期,冠层呈明显的层次,檫树比杉木高35年才进入速生期,冠层呈明显的层次,檫树比杉木高35 m。混交林中檫树枝叶主要分布在55 m。混交林中檫树枝叶主要分布在57层,此3层枝叶量在总枝叶中所占的比例为80.7%,叶量在总叶量中所占的比例为72.2%,而混交林中杉木枝叶主要分布在37层,此3层枝叶量在总枝叶中所占的比例为80.7%,叶量在总叶量中所占的比例为72.2%,而混交林中杉木枝叶主要分布在34层,此层枝叶量占了总枝叶量的87.6%,叶量占了总叶量的87.1%。地下根系分布上也呈明显的层次,混交林中檫树404层,此层枝叶量占了总枝叶量的87.6%,叶量占了总叶量的87.1%。地下根系分布上也呈明显的层次,混交林中檫树4080 cm细须根占细须根总量的75%,而杉木细须根主要分布在40 cm以上,合理地利用了地下空间。杉檫混交林乔木层生物量分配和空间分布合理,不仅能够提高经济价值,而且充分利用了空间。十年生杉木与檫树星状混交(8∶1)具有良好的林分结构,合理地利用了地上、地下的空间,提高了林地生产力,是一种较好的混交组合,建议在南方林区大力推广。  相似文献   

19.
对5种不同比例马尾松混交林水平及垂直空间结构及林分生物量进行对比分析,研究结果表明:马尾松混交比例为>80%、61%~80%、41%~60%、21%~40%、<21%的5个混交群落的地上地下部分总生物量分别为232.657t/hm2、246.485t/hm2、281.583t/hm2、273.946t/hm2和216.663t/hm2。乔木层生物量中干材比例最大,其后依次为根系、树枝和树叶。5种混交比例的马尾松混交林林下草灌层植被的生物量总量分别为2.978t/hm2、1.365t/hm2、0.972t/hm2、1.142t/hm2和0.968t/hm2。其中,马尾松纯林的林下植被生物量最大。  相似文献   

20.
杉木-厚朴人工混交林与杉木纯林生物量对比   总被引:1,自引:0,他引:1  
通过对19年生的杉木-厚朴单行混交林和杉木纯林的生物量进行测定研究,结果表明:与杉木纯林相比,杉木-厚朴混交林乔木层生物量增加16.97t/hm~2,灌木层生物量增加1.3448t/hm~2,草本层生物量增加0.1132t/hm~2,凋落物层生物量增加0.9182t/hm~2,下层总生物量增加了2.3762t/hm~2;总生物量增加了7.7%。杉木与厚朴混交,不仅有利于杉木形成良好干材,而且改善了林分生态环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号