首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naupliar copepods were distributed at similar concentrations over the waters inshore and offshore of the Kuroshio Current off central Japan in early spring 1993 and 1994, overlapping with the distribution of early feeding larvae of Sardinops melanostictus . Although N, P, Si and chlorophyll a concentrations were higher in the waters inshore of the Kuroshio axis than in the offshore waters, the mean concentrations of nauplii were not statistically different between the two waters. Food availability for larval S. melanostictus did not seem to be different between the two waters in terms of the mean food concentrations. Using the critical food concentration (>9 nauplii L–1) for 25% survival during 3 days after first feeding derived from a rearing experiment, percentages in number of stations or water samples with nauplii concentrations >9 nauplii L–1 were higher in the inshore waters than in the offshore waters in both years examined. Considering that fish larvae may depend on small-scale patchiness of food for their survival, the inshore waters seemed to be more favourable for first-feeding larvae than the offshore waters.  相似文献   

2.
A drastic population change in Japanese sardine (Sardinops melanostictus) has been noted as being related to winter sea surface temperature (SST) in the Kuroshio Extension region. The former studies suggest two possible explanations. One is that temperature itself affects sardine. The other is that SST represents the environmental change of the Kuroshio Extension region and other causes directly affecting sardine. In this study, we found that sardine mortality from post‐larva to age 1 negatively correlated with the winter mixed layer depth (MLD) in the Kuroshio Extension region from 1979 to 1993. During the period of a deep winter mixed layer (during the early 1980s), sardine mortality was low, whereas mortality was high when the winter mixed layer was shallow (during the late 1980s to early 1990s). By using a lower trophic‐level ecosystem model forced by the observed time series of MLD, SST, light intensity and nutrient data, we found that the estimated spring zooplankton density drastically varies from year to year and has a significant negative correlation with sardine mortality. The inter‐annual variation of spring zooplankton density is caused by the winter MLD variation. During the deep winter mixed layer years, a phytoplankton bloom occurs in spring, whereas during the shallow winter mixed layer years, the bloom occurs in winter. The results of our study suggest that the decline in the Japanese sardine population during the late 1980s to early 1990s was due to an insufficient spring food supply in the Kuroshio Extension region where sardine larvae and juvenile are transported.  相似文献   

3.
4.
The availability of food for larvae of the Japanese sardine, Sardinops melanostictus , was investigated in the Kuroshio frontal region and the waters on the offshore side of the Kuroshio, the Pacific coast of central Japan, in March 1990 and 1991, respectively. Food availability was assessed by changes in biomass and production of nauplii and small copepods, and RNA/DNA ratios of the larvae during about 2.5 days (the frontal region) or 3 days (the offshore waters) of tracking a drifter released in a pitch of the larvae. The biomas of the nauplii tended to increase with time in the frontal region and to decrease in the waters on the offshore side of the Kuroshio during the drifter tracking periods. The production of small copepods including nauplii in the waters on the offshore de of the kuroshio was 14% of that in the frontal region. The sum of the mean food requirements of the carnivorous macrozooplankters and sardine larvae was 11% of the production of small copepods including nauplii in the frontal region, compared with 136% in the waters offshore of the Kuroshio. The RNA/DNA ratios of postlarvae smaller than 8 mm in the frontal reqion were significantly higher than those in the waters on the offshore side of the Kuroshio ( P < 0.001) It is considered that the food availability for sardine larvae was relatively high in the frontal region and low in the waters on the offshore side of the Kuroshio. The food availability for the larvae probably deteriorated with the offshore shift of the main spawning ground from the frontal region to the waters on the offshore side of the Kuroshio in the latter half of the 1980s.  相似文献   

5.
Recent findings suggest that recruitment of Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus) depends on survival during not only the first feeding larval stage in the Japanese coastal waters and the Kuroshio front but also during the post‐larval and juvenile stages in the Kuroshio Extension. Spatial distributions of juvenile anchovy and sardine around the Shatsky Rise area in the Kuroshio Extension region and the Kuroshio–Oyashio transition region are described, based on a field survey in the late spring using a newly developed mid‐water trawl for sampling juveniles. All stages of anchovy from post‐larvae to juveniles were obtained in the northern Shatsky Rise area. The Kuroshio Extension bifurcates west of the Shatsky Rise area and eddies are generated, leading to higher chlorophyll concentrations than in the surrounding regions in April and May. When Japanese anchovy and sardine spawn near the Kuroshio front or the coastal waters south‐east of Japan, their larvae are transported by the Kuroshio Extension and are retained in the Shatsky Rise area, which forms an important offshore nursery ground, especially during periods of high stock abundance.  相似文献   

6.
Acoustic Doppler current profiler (ADCP) data collected during routine monitoring surveys of the distribution and abundance of Japanese sardine larvae ( Sardinops melanostictus ) off the Pacific coast of Japan in February 1993 and 1994 were used to construct stationary average flowfields for three levels in the upper 100 m in each year. No large-scale meanders in the path of the Kuroshio Current were present in either year, but the axis of the current was closer to the coast in 1993 than in 1994. The flowfields were used to drive a particle-tracking model representing the dispersal of sardine eggs and larvae. Particles were released in accordance with the observed distribution of eggs, and their positions tracked for up to 40 days. In 1993, the model indicated that ≈ 50% of the egg production was carried north-eastwards out of the survey area into the area of the NW Pacific referred to as the Kuroshio Extension Zone. In contrast, only 5% of the egg production was exported to the Extension Zone in 1994, the remainder being retained in Japanese coastal waters. The consequences of the different dispersal patterns are discussed in relation to subsequent recruitment to the sardine stock. Based on commercial catch data, survival of the 1993 year class was 15% of that for the 1994 class. Hence, the results indicate that export of larvae to the Kuroshio Extension cannot in itself lead to successful recruitment.  相似文献   

7.
Environmental variability and growth‐rate histories from hatching to capture were investigated for larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus). Larvae collected around the front of the Kuroshio Current were examined using otolith microstructure analysis, and their movement was estimated from numerical particle‐tracking experiments. Sardine larvae collected inshore of the Kuroshio front originated from a coastal area near the sampling site, while those collected in the offshore area originated from an area 500–800 km west‐southwest of the sampling site. Anchovy larvae collected both inshore and offshore had been transported from widely distributed spawning areas located west of the sampling area. At the age of 13–14 days for sardine and 19–20 days for anchovy, the offshore group exhibited significantly higher mean growth rates than did the inshore group. Although the offshore area was generally warmer than the inshore area, temporal variations in growth rate are not attributable solely to fluctuations in environmental temperature. While previous studies have examined the relationship between larval growth rates and environment based solely on data at capture, the methods used in the present study, combining otolith analysis and numerical particle‐tracking experiments, utilize data up until hatching. Although the relationship between growth rate and environment was not fully confirmed, this approach will greatly advance our understanding of fish population dynamics.  相似文献   

8.
9.
In the mid 1970s, the fishery catch of postlarval Japanese anchovy (Engraulis japonica) in a shelf region of the Enshu‐nada Sea, off the central Pacific coast of Japan, started to decline corresponding to a rapid increase of postlarval sardine (Sardinops melanostictus). In late 1980s, sardine started to decline, and it was replaced by anchovy in the 1990s. This alternating dominance of postlarval sardine and anchovy corresponded to the alternation in egg abundance of these two species in the spawning habitat of this sea. It was also noteworthy that during the period of sardine decline, sardine spawning occurred in April–May, a delay of two months compared with spawning in the late 1970s. The implication of oceanographic changes in the spawning habitat for the alternating dominance of sardine and anchovy eggs was explored using time‐series data obtained in 1975–1998, focusing on the effect of the Kuroshio meander. Large meanders of the Kuroshio may have enhanced the onshore intrusion of the warm water into the shelf region and contributed to an increase in temperature in the spawning habitat. This might favour sardine, because its egg abundance in the shelf region was more dependent on the temperature in early spring than was that of anchovy. In addition, enhanced onshore intrusion could contribute to transport of sardine larvae from upstream spawning grounds of the Kuroshio region. On the other hand, anchovy egg abundance was more closely related to lower transparency at the shelf edge, which may indicate the prevalence and prolonged residence of the coastal water, and therefore higher food availability, frequently accompanying non‐meandering Kuroshio. The expansion/shrinkage of the spawning habitat of sardine and anchovy in the shelf region, apparently responding to the change in the Kuroshio, possibly makes the alternation in dominance of postlarval sardine and anchovy most prominent in the Enshu‐nada Sea, in combination with changes in the abundance of spawning adults, which occurred almost simultaneously in the overall Kuroshio region. The implication of this rather regional feature for the alternating dominance of sardine and anchovy populations on a larger spatial scale is also discussed.  相似文献   

10.
ABSTRACT:   This study assessed the stock-recruitment relationship (SRR) for the Japanese sardine Sardinops melanostictus in the North-western Pacific. Of the 20 SRR models investigated, the Akaike information criterion (AIC) was the minimum (AIC = 551.2) when the data were separated into two groups (A and B) and the log-normal distribution was applied as the error term. Group A was constructed with SRR data from 1976–1987 and 1992–2004. Group B consisted of data from 1988–1991. The AIC minimum model was R  = 22.8 S  ×  e ε for Group A, where R , S , and ε denote the recruitment of sardine (individual number of 0-year old fish), spawning stock biomass (SSB), and error term, respectively. This model indicated that recruitment was proportional to the SSB and that no density-dependent effect operated over the range of SSB investigated (51 000–11.3 million t). Recruitment was markedly higher (lower) when the sea surface temperature (SST) of the Kuroshio Extension area in February was low (high). The essential SRR can simply be expressed as R  = 22.8 S  ×  e ε with the level of recruitment deviating from the model to a greater or lesser degree depending on the environmental conditions.  相似文献   

11.
Winter‐to‐spring variability in sea surface temperature (SST) and mixed layer depth (MLD) around the Kuroshio current system and its relationship to the survival rate (ln [recruit per spawning stock biomass], LNRPS) of Japanese sardine (Sardinops melanostictus) were investigated based on a correlation analysis of data from 1980 to 1995. The data were from a high‐resolution ocean general circulation model using the ‘Kuroshio axis coordinates’, in which the meridional positions are relocated to a latitude relative to the Kuroshio axis at each longitude, rather than the geographically fixed coordinates. A significant positive (negative) correlation between LNRPS and winter MLD (winter–spring SST) was detected near the Kuroshio axis from areas south of Japan (where eggs are spawned) to the Kuroshio Extension (where larvae are transported). This result is in contrast to previous studies using geographically fixed coordinates, which showed a significant correlation predominantly in the area south of the Kuroshio Extension in winter, where at this time few larvae have been found. From the late 1980s to early 1990s, when the survival rate was remarkably low, MLD around the axis was shallow and SST was high. Although MLD and SST show a significant correlation, significant partial correlations were also observed between February MLD and LNRPS when the contribution of SST was excluded, and between March SST and LNRPS when the contribution of MLD was excluded. We presume that MLD shoaling reduced the nutrient supply from deep layers, resulting in less productivity in the spring, and SST warming could have a negative influence on larval growth.  相似文献   

12.
The sustainable use of marine resources requires understanding the surrounding ecosystem and elucidating mechanisms of variation. However, we still lack a comprehensive understanding of environmental variation in the spawning and nursery grounds of important fisheries species Japanese sardine (Sardinops melanostictus) and mackerels (Scomber japonicus and Scomber australasicus) in the northwest Pacific. Here, we investigate detailed physical, chemical, and biological environment variations in the spawning and nursery grounds along the Kuroshio and Kuroshio Extension area from intensive investigation in spawning season (April) of 2013. We found similar water mass property and copepod community in the egg‐rich Kuroshio area and the larvae‐rich downstream Kuroshio Extension area, indicating environmental variability is small during transportation and development processes. The egg‐rich northern Izu Islands region showed high copepod abundance, although low nutrient and chlorophyll concentrations were observed. Eggs were scarce or absent in the second survey 10 days after abundant eggs were observed in the region, along with differences in water property and copepod community. This indicates that not only the location but also the specific water characteristic and copepod community are a determining factor for spawning. Indicator communities of copepod found in our study (indicator community of transportation process from spawning ground, of non‐spawning ground, and of reproductive area in the Kuroshio Extension area) would be a key factor for recruitment prediction.  相似文献   

13.
Non-stationary driver-response relationships are increasingly being recognized by scientists, underlining that a paradigm shift out of conventional stationary relationships is crucial. Japanese sardine (Sardinops melanostictus, Clupeidae) is a typical small pelagic fish in the northwestern Pacific with considerable fluctuations in productivity, bringing about great economic and ecological concerns. Numerous studies suggest that the population dynamics of Japanese sardine is an integrated process affected by multiple density-dependent, fishing and climatic drivers. However, little has hitherto been done to incorporate the non-stationary effects of multiple drivers, impeding progresses in understanding the population dynamics and in developing management strategies. In this study, we adopted variable coefficients generalized additive models to reveal the non-stationary effects of density dependence, fishing pressure and climatic conditions on the population dynamics of Japanese sardine. Results suggest that the dynamics of Japanese sardine from 1976 to 2018 could be divided into four periods: the 1980s when suitable climatic conditions from strong Siberian High pressure system sustained high abundance; the 1990s when negative density-dependent effects and degrading climatic conditions due to temperature increase led to population collapse; the 2000s when negative triple effects, particularly high fishing pressure, restricted the population increase; and the 2010s when favourable climatic conditions with re-strengthening Siberian High pressure system accompanied by low fishing pressure contributed to the population recovery. The study highlights that precise identifications of population status and climatic conditions are helpful to achieve good trade-offs between resource exploitation and protection and to facilitate ecosystem-based management for Japanese sardine fisheries.  相似文献   

14.
We constructed a numerical model reproducing the transport, survival and individual growth of the early life stages of Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan during 1978–93. The causes of early life stage mortality, including the influence of the effects of the spatial relationship between the spawning grounds and the Kuroshio on the mortality rate, were investigated. Survival and transport from egg stage to 60 days after spawning were modelled daily in a 1 × 1 degree mesh cell and individual growth in the period was modelled in each region (Kuroshio, Inshore, Offshore and Transition regions). Individual growth and survival from 60 to 180 days after spawning were modelled daily in the Transition region. Environmental data were taken from outside the model system. Our simulation indicates that survival variability in the larval stage (5–25 mm in standard length) is the key factor in determining the year‐class strength. The simulation revealed that strong year classes occurred with good survival in the spawning ground and whilst entrained in the Kuroshio current being transported to the main feeding grounds in the Transition region. The simulation also indicated that survival rates in 1988–93 were low in the Inshore, Kuroshio and Offshore regions, which depressed the year‐class strength during that period.  相似文献   

15.
Long-term fluctuations of chlorophyll a concentration, and abundance of herbivorous or omnivorous small copepods during the spawning season of the Japanese sardine, Sardinops melanosticta , were examined in relation to the types of Kuroshio meander. The purpose was to clarify the influence of the meander on the production of food organisms for the sardine larvae and their survival in the Pacific coastal region of central Japan. During an A-type meander of the Kuroshio, when the offshore and inshore movements of the Kuroshio path were small except at the beginning of the meander, the surface chlorophyll a concentration in the coastal region was lower than that during a non-A-type meander with frequent and prompt fluctuations of the Kuroshio path. The abundance of small copepods was also low during the A-type meander except in the subsequent spring just after the beginning of an A-type meander, but often high during the non-A-type meander. Prompt fluctuations of the Kuroshio path during the non-A-type meander probably cause local upwellings which stimulate primary and secondary production near the Kuroshio, and may enhance the survival of the sardine larvae. On the contrary, the quasi-stationary state of an A-type meander may be unfavourable for the production of phytoplankton and nauplii of herbivorous or omnivorous small copepods, and therefore the survival of the sardine larvae becomes poor.  相似文献   

16.
A two‐dimensional individual‐based fish movement model coupled with fish bioenergetics was developed to simulate the observed migration and growth of Japanese sardine (Sardinops melanostictus) in the western North Pacific. In the model, derived from the observed ocean–environmental data as the driving force, fish movement was adapted as a kinesis behavior. The model successfully simulated the observed transport patterns during the egg and larval stages and the northward migrations during the juvenile stage in 2005, 2006 and 2007. The model results showed that both temperature during the larval stage in the Kuroshio Extension and the prey availability during the early juvenile stage in the Kuroshio–Oyashio transitional area are important factors for growth of Japanese sardine. In autumn, the observed juvenile sardine were mainly distributed in the subarctic water region off the Kuril Islands, which is an area (158–165°E, 43–47°N) with a high chlorophyll‐a (Chl‐a) concentration. The model reproduced the fish distribution, which has a high density in this region. The high Chl‐a concentration area in autumn may contribute to increasing the survival rate of Japanese sardine by cascading up the food chain, from the high primary production, and is an important habitat for recruitment success of Japanese sardine.  相似文献   

17.
We estimated the stock size of Japanese sardine ( Sardinops melanostictus ) in the Sea of Japan and East China Sea since 1953 using cohort analysis based on the changes of growth patterns. Growth of Japanese sardine, estimated by using annual rings on archived scales since 1961, showed that body lengths were extremely stunted in the 1980–1987 year-classes. The body length at age 3 from February to April in the 1980–1987 year-classes, a period when the stock size exceeded 4 million tons, was 180.0 ± 2.6 mm (mean ± SD), and in the other year-classes was 195.1 ± 7.6 mm. The body length at age 3 and wet weight of zooplankton in August in the offshore area of the Sea of Japan had a significantly positive correlation. We assumed three scenarios for maturation ratios, and estimated Ricker's spawner–recruitment relationships. We analyzed the correlations between logarithmic recruitment residuals (LNRR) and environmental factors in winter, represented by the North Pacific index (NPI), Aleutian low pressure index (ALPI), Pacific decadal oscillation (PDO), monsoon index (MOI), Arctic oscillation (AO) and Southern oscillation index (SOI). Significant correlations were observed between MOI and LNRR and between AO and LNRR. A combination of strong MOI and weak AO would increase the biomass of phytoplankton and zooplankton and subsequently increase the recruitment of Japanese sardine.  相似文献   

18.
ABSTRACT:   This study explored the fundamental process that controls interannual change in plankton biomass on the Pacific coast of Japan, focusing on the spring period of shirasu fishery. A 1-D model of primary production revealed that the strength of horizontal advection induced by warm water intrusion from the Kuroshio into the Pacific coast is the most critical for plankton biomass compared with other factors such as diffusion and production. This conclusion was also confirmed by a sensitivity analysis of the model.  相似文献   

19.
We examined the effects of climate factors on interannual variations of copepod biomass and gut content composition in early spring in the Kuroshio and the slope water off the Pacific coast of central Japan from 1971 to 1989. The biomass trends were different for large (prosomal length ≥ 1 mm) and small (prosomal length < 1 mm) copepods in both waters. Peaks in biomass of large copepods decreased in magnitude, and the biomass of small copepods was low around 1980. For the large copepods in the Kuroshio, 3-year running mean biomass was related to the Kuroshio meander index. The yearly mean biomass was related to diatom abundance in the gut which, in turn, was related to wind speed and temperature. The 3-year running mean biomass of large copepods in the slope water was positively related to solar radiation in March. The biomass of small copepods in both waters was negatively related to solar radiation in February, and years with high biomass of small copepods corresponded with not only the years with high abundance of larger foods (diatoms and micro-sized foods) in copepod guts, but also with the years with high abundance of the nano-sized foods. We hypothesize that nutrient supply to upper layers regulates interannual variation of biomass of large copepods in the Kuroshio. Thus, climate influences both size composition and biomass of copepods in and near the Kuroshio in early spring.  相似文献   

20.
A paradigm of proportionality between spawning stock biomass (SSB) and total egg production (TEP) has been largely untested at multidecadal scales mainly because of difficulty in estimating annual TEP. Recently, this paradigm was directly tested for sardine (Sardinops melanostictus) and anchovy (Engraulis japonicus) at a multidecadal scale to reveal that SSB–TEP proportionality was partially distorted by intraspecific (sardine) and interspecific (anchovy) density dependence in total egg production per spawner individual (TEPPS) or unit weight (TEPPSW). In the present study, we demonstrate intraspecific density dependence in TEPPS/TEPPSW for chub mackerel (Scomber japonicus) in the Kuroshio Current system, using a proxy for TEPPS/TEPPSW, calculated from snapshot abundance data based on fishery‐independent egg surveys in combination with fishery‐dependent stock assessment data, at a multidecadal scale (38 years). TEPPS/TEPPSW exponentially declined with SSB, indicating a strong intraspecific density dependence in TEPPS/TEPPSW in chub mackerel. The observed phenomenon for chub mackerel was similar to that for sardine. Hence, intraspecific density dependence in TEPPS/TEPPSW may be a phenomenon that is generally applicable for species with a high maximum biomass and large population fluctuations. Lastly, we recommend the application of a TEP‐based framework to studies on recruitment mechanisms of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号