首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to develop a stochastic model for predicting the bending strength distribution of glued-laminated timber (GLT). The developed model required the localized modulus of elasticity (MOE) and tensile strengths of laminae as input properties. The tensile strength was estimated using a regression model based on the localized MOEs and knot area ratios (KAR) which were experimentally measured for lamina grades samples. The localized MOE was obtained using a machine stress-rated grader, and the localized KAR was determined using an image-processing system. The bending strength distributions in four types of GLTs were simulated using the developed GLT beam model; these four types included: (1) GLT beams without finger joints; (2) GLT beams with finger joints; (3) GLT beams with different lamina sizes; and (4) GLT beams with different combinations of lamina grades. The simulated bending strength distributions were compared with actual test data of 2.4 and 4.8 m-long GLTs. The Kolmogorov–Smirnov goodness-of-fit tests showed that all of the simulated bending strength distributions agreed well with the test data. Especially, good agreement was shown in the fifth percentile point estimate of bending strength with the difference of approximately 1%.  相似文献   

2.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

3.
This study investigates the dimensional stability and mechanical properties of plywood boards made of thermally modified and unmodified beech veneers that have undergone plasma pre-treatment before melamine resin impregnation. The water and melamine resin uptake and resulting weight percent gain of the veneers were investigated, whereby the air plasma pre-treated veneers showed improved liquid uptake. Five-layer plywood boards were then manufactured and tested for their dimensional stability, compressive strength, bending strength, and tensile strength. Plywood boards made of thermally modified and plasma pre-treated veneers showed a significantly improved dimensional stability, along with small influences on their mechanical properties.  相似文献   

4.
Abstract

Five-ply self-bonded boards were obtained by pressing beech veneers parallel to the grain without additional adhesives, steam or pre-treatment. Fifteen different combinations of pressing parameters were tested, including temperature (200°C, 225°C and 250°C), pressure (4, 5 and 6 MPa) and pressing time (240, 300 and 360 seconds). Due to severe pressing conditions, the new product showed a higher density and different properties compared to a conventionally glued laminated wooden board. The self-bonding quality was assessed through dry shear strength tests, through a three-point bending test and a water-soaking test at 20°C. The dimensions in the cross section of the boards were measured after soaking in water. Results show that the choice of pressing parameters affects all the mechanical and physical properties tested. A statistical analysis revealed that the pressing temperature is the most influential parameter. Boards pressed at 200°C delaminated rapidly in water, whereas boards pressed at 225°C delaminated only at core-positioned layers after 48 hours and boards pressed at 250°C did not delaminate at all in water. Compared to panels pressed at lower temperatures, boards pressed at 250°C had the highest density, a higher shear and bending strength and a lower water absorption.  相似文献   

5.
Strand-based engineered wood products such as oriented strand boards enjoy great popularity in structural engineering and are widely used for a variety of applications. To strengthen their competitiveness and to enlarge their range of utilization particularly in the load-bearing sector, the mechanical properties of these products need to be improved. This motivated the research efforts to use large-area, slender veneer strands for the production of strand boards with increased stiffness and strength. Target-oriented development of these products requires comprehending the effects of the relevant (micro-)characteristics, such as wood quality, strand geometry, and strand orientation and compaction during the production process, as well as layer assembly and density profile, on the mechanical properties of the finished strand boards. Comprehensive test series, in which these effects on tension, bending and shear properties of the boards have been studied individually, are presented in this paper. The obtained results provided insight into the microstructural load-carrying mechanisms and, thus, yielded valuable knowledge for product optimization and further improvement of custom-designed strand-based engineered wood products.  相似文献   

6.

This study establishes the basis for the assignment of Danish - grown Sitka spruce (Picea sitchensis) to the European strength class system (EN 338). In total, 712 boards were chosen to be representative of the normal Danish commodity. These were visually graded for strength according to Nordic rules (INSTA 142), and subsequently tested to failure in either bending or tension. The results show that Danish - grown Sitka spruce graded to levels T1 and T2 satisfy the requirements of EN 338 at the C18 and C24 levels, respectively. Results for Danish - grown Sitka spruce concur with those for Danish - grown Norway spruce (Picea abies). This study shows that Sitka spruce and Norway spruce of similar origins exhibit highly comparable mechanical properties.  相似文献   

7.
Testing of the critical section between the load points in four-point bending testing is required according to [DIN EN 384:2010–08, Structural Timber – Determination of Characteristic Values of Mechanical Properties and Density (Brussels European Committee for Standardization)]. However, strength grading machines based on measurements of the dynamic modulus of elasticity (MOEdyn) benefit as the strength of the weakest section is not always measured when deriving settings. According to the current procedure for derivation of settings, violation of the critical section requirement is accepted. The extent of such violation and its impact on grading settings of strength classes are quantified in two ways using about 3500 recently tested specimens of Norway spruce: empirically and modelled. The results show that for strength grading machines based on MOEdyn, the settings would be higher if the weakest section was always placed between the inner load points. The current procedure, however, leads to lower settings and hence better yields in practice. The settings for machines based on MOEdyn are up to more than 20% higher if the lowest bending strength of the entire board is applied. To treat different grading principles equally, a correction factor for settings of MOEdyn-based grading machines should be introduced – especially for lower strength classes. A simplified factor between 1.00 and 1.20 for standardization is recommended.  相似文献   

8.
《Southern Forests》2013,75(3-4):137-147
The objectives of this study were to determine the bending strength and stiffness properties of young Pinus elliottii x P. caribaea var. hondurensis timber from the Southern Cape, South Africa, and to evaluate the predictability of these properties from acoustic measurements on standing trees, logs and their sawn boards. The timber has good bending strength (MOR) properties but the mean stiffness (MOEstat) was significantly lower than that required for structural-grade timber. The mean MOEstat was also about 30% lower than a P. radiata control sample. The MOEstat of sawn boards could be predicted from acoustic stress wave measurements on standing trees with a correlation (r) of 0.48 and from acoustic resonance frequency measurements on sawn boards with a correlation of 0.85. The MOR of sawn boards was not significantly correlated with acoustic stress wave measurements on standing trees and only moderately correlated with acoustic resonance frequency measurements on sawn boards (r = 0.45).  相似文献   

9.
10.
Strength graded boards of Norway spruce (Picea abies (L.) Karst.) are important products for many Scandinavian sawmills. If the bending strength of the produced boards can be predicted before sawing the logs, the raw material can be used more efficiently. In previous studies it is shown that the bending strength can be predicted to some extent using discrete X-ray scanning of logs. In this study, we have evaluated if it is possible to predict bending strength of Norway spruce boards with higher accuracy using computed tomography (CT) scanning of logs compared to a combination of discrete X-ray and 3D scanning. The method was to construct multivariate models of bending strength for three different board dimensions. Our results showed that CT scanning of logs produces better models of bending strength compared to a combination of discrete X-ray and 3D scanning. The main reason for this difference was the benefit of knowing the position of where the boards were cut from the logs and therefore detailed knot information could be used in the prediction models. Due to the small number of observations in this study, care should be taken when comparing the resulting prediction models to results from other studies.  相似文献   

11.
探讨了以竹材为主要原料的竹重组板材热压工艺的优化,研究了热压工艺对竹重组板材力学性能的影响,讨论分析了热压压力、热压时间、热压温度对竹重组板材吸水厚度膨胀率、耐沸水性、静曲强度、弹性模量、耐磨性、耐化学腐蚀性、浸渍剥离率和甲醛释放量等性能的影响。通过正交试验,得出的优化热压工艺为:①热压压力2.0MPa、热压温度145℃、热压时间1.7min/mm,热压压力对竹重组板材耐酸性、静曲强度和弹性模量等影响显著,对耐沸水性、耐碱性、耐盐性、耐磨性和浸渍剥离率等影响不显著。②热压时间对竹重组板材静曲强度有显著影响,对其他试验指标影响不显著。③热压温度对竹重组板材各试验检测指标均有一定的影响,但不显著。  相似文献   

12.
Solid timber for structural applications has to be strength graded prior to its use. In order to remain economic the grading process usually focuses on the most important physical and mechanical properties: density, modulus of elasticity (MOE) and bending strength. Based on respective limits given in standards, the timber is assigned to strength classes. Additional mechanical properties such as tensile and compression strength parallel to the grain are derived from the basic property values by empirical relationships. The objective of this study was to review some of these property relationships based on recently compiled large data sets as a contribution for a future revision of the grading standards. Based on mechanical tests of Norway spruce structural timber with different cross-sections, the following characteristic values and property relationships were evaluated: (a) strength and MOE in bending, (b) in-grade characteristic values of bending strength, bending MOE and density, (c) relationship of characteristic values of tension and compression strength parallel to the grain with respect to the corresponding characteristic value of bending strength, (d) ratio of fifth percentiles and mean values of density and MOE, as well as (e) the ratio of MOE in bending, tension and compression. Mechanical tests were accompanied by measurements of density and ultrasonic wave speed. Resulting dynamic MOE was partly used as an indicator of timber quality.  相似文献   

13.
The purpose of this study was to determine whether the strength properties of a composite board containing waste paper as a core material, could be improved by the prior prepressing of the core material before pressing the product to final thickness. Results indicated that intermediate cold prepressing of the core layer had no effect on the bending strength and MOE and can thus be eliminated. Flakeboard containing Kraft waste paper appears to be superior to commercial particle boards, with regard to thickness swelling in water. Results so far obtained indicate that waste paper can be utilized for flakeboard manufacture.  相似文献   

14.
通过测试PVC基木塑装饰板的物理力学性能,研究3种偶联剂及偶联剂添加量对PVC木塑装饰板的抗弯强度、表面结合强度、板面握螺钉力和吸水厚度膨胀率的影响。结果表明:采用铝酸酯偶联剂PVC木塑装饰板的抗弯强度、表面结合强度、板面握螺钉力最大,72h吸水厚度膨胀率最小为0.47%;同时当铝酸酯添加量2%增加至6%时,PVC木塑装饰板的抗弯强度、表面结合强度、板面握螺钉力分别增加了7.9%、11.9%、10.8%72h吸水厚度膨胀率呈现先减后增趋势。  相似文献   

15.
Thermal modification at relatively high temperatures (ranging from 150 to 260 °C) is an effective method to improve the dimensional stability and resistance against fungal attack. This study was performed to investigate the impact of heat treatment on the mechanical properties of wood. An industrially-used two-stage heat treatment method under relative mild conditions (< 200 °C) was used to treat the boards. Heat treatment revealed a clear effect on the mechanical properties of softwood species. The tensile strength parallel to the grain showed a rather large decrease, whereas the compressive strength parallel to the fibre increased after heat treatment. The bending strength, which is a combination of the tensile stress, compressive stress and shear stress, was lower after heat treatment. This decrease was less than the decrease of only the tensile strength. The impact strength showed a rather large decrease after heat treatment. An increase of the modulus of elasticity during the bending test has been noticed after heat treatment. Changes and/or modifications of the main wood components appear to be involved in the effects of heat treatment on the mechanical properties. The possible effect of degradation and modification of hemicelluloses, degradation and/or crystallization of amorphous cellulose, and polycondensation reactions of lignin on the mechanical properties of heat treated wood have been discussed. The effect of natural defects, such as knots, resin pockets, abnormal slope of grain and reaction wood, on the strength properties of wood appeared to be affected by heat treatment. Nevertheless, heat treated timber shows potential for use in constructions, but it is important to carefully consider the stresses that occur in a construction and some practical consequences when heat treated timber is used.  相似文献   

16.
This study provides an analysis on the variability of structural timber of Norway spruce (Picea abies) grown in Norway. Density, modulus of elasticity (MOE) and bending strength were measured on 1188 boards from 205 trees, sampled from 14 sites throughout Southern Norway, Eastern Norway and Trøndelag. The area represents the procurement area for the majority of Norwegian sawmills. The variability of the timber properties was analysed in a linear mixed model where the random variance was divided into variance due to site, variance due to trees and within-tree variance. Models describing variance due to site based on site index, altitude and latitude were developed, and combined with data from the Norwegian National Forest Inventory to estimate mean values and variability of the timber properties. The results showed that major parts of the variance due to site are explained by altitude and site index, and for density also by latitude. Major parts of the variance due to site and the variance due to trees in bending strength and MOE were explained by density.  相似文献   

17.
The total hardwood timber stock of German forests is fast growing. The lack of knowledge concerning test standards, product standards and sorting criteria makes it difficult to expand the processing and marketing of hardwoods into the field of construction usage. Strength and stiffness data derived from small, defect-free specimens do mostly exist, but in order to be able to insert hardwoods into building applications, data derived from real size specimens is needed. Subsequently, the results of these two different specimen categories need to be correlated and the so-called size effect needs to be quantified and qualified. This paper aims to analyze the size effect of defect-free compression, bending and tensile specimens for the six European hardwood species maple (Acer spp.), birch (Betula pendula), beech (Fagus sylvatica), ash (Fraxinus excelsior), oak (Quercus spp.) and lime (Tilia spp.). They are tested exclusively parallel to grain. Regarding the compression strength for maple, birch and ash, the specimen dimensions did not influence the compression strength value. For beech, oak and lime, it was observed that compression strength increased as the specimen volume was increased. The bending strength of all species decreased as the specimen dimensions increased. Concerning the tensile strength, a clear statement on whether dimensions influence the tensile strength value is not possible. Further research with adjusted specimen sizes, specimen shapes and machine set-ups is needed. Regarding the compression and bending MOE, in most cases, the dimensions did not influence the MOE values. In tensile testing, MOE values differed significantly for the different specimen sizes. Whether these differences were due to slightly different test set-ups in the different sizes or a true size effect could not be answered conclusively.  相似文献   

18.
19.
ABSTRACT

In forestry, thinning operations result in the extraction of young trees with small dimensions. The evaluation of the potential end use of these small-diameter logs (currently mainly used as poles or fence posts) for added-value products such as structural timber is of considerable economic and industrial interests. In the present work, 216 pieces of small-diameter logs of chestnut timber obtained from thinning operations were evaluated in order to determine their mechanical properties and assess various visual or non-destructive grading systems. The two visual standards evaluated (EN 1927 and DIN 4074) were ineffective in grading according to mechanical properties. On the other hand, a grading system based on a non-destructive measurement (acoustic wave velocity) resulted in better classification by structural quality. The characteristic values of the small-diameter round chestnut timber, determined according to the standards EN 384 and EN 338, achieved similar values as standard rectangular sawn timber with respect to modulus of elasticity and density, and higher values for bending strength.  相似文献   

20.
The potential of utilizing resonance frequencies corresponding to edgewise bending modes for predicting the bending strength of timber is investigated. The research includes measurements of axial and transversal resonance frequencies, laboratory assessment of density, static bending stiffness and bending strength of 105 boards of Norway spruce of dimensions 45?×?145?×?3,600?mm3. It is shown that E b,1 , (MOE based on the resonance frequency of the first bending mode) gives a higher coefficient of determination to the bending strength than what E a,1 (MOE based on the first axial resonance frequency) does. It is also shown that resonance frequencies corresponding to higher bending modes can be used in the definition of a new indicating property, the measure of inhomogeneity (MOI). This is a scalar value representing the lack of fit between the true, measured resonance frequencies and the expected (assuming homogeneity) resonance frequencies of a board. The results show that using the MOI as a third indicating property, in addition to E b,1 and density, increases the coefficient of determination with respect to bending strength from R 2?=?0.69 to R 2?=?0.75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号