首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the increasing use of conservation tillage, many questions about the long-term effects of tillage system on soil physical properties have been raised. Studies were conducted to evaluate saturated hydraulic conductivity (KSAT), macropore characteristics and air permeability of two silty soils as affected by long-term conservation tillage systems in the state of Indiana. Measurements were taken during the tenth year of a tillage study on a Chalmers silty clay loam (Typic Haplaquoll) and the fifth year of a study on a Clermont silt loam (Typic Ochraqualf). Tillage systems were moldboard plow, chisel, ridge till-plant, and no-till in a rotation of corn (Zea mays L.) and soya beans (Glycine max L.). Saturated hydraulic conductivity was measured on large soil columns (25 × 25 × 40 cm) before spring tillage, and macropore size and continuity were assessed with staining techniques. Intact soil cores (8 cm diam × 10 cm) were collected in early July in the row and non-trafficked interrow at three depths (10–20, 20–30, and 30–40 cm) and were analyzed for air permeability (Kair), air-filled porosity and bulk density. Saturated hydraulic conductivity values were in the order plow > chisel > ridge till > no-till for the Chalmers soil and were significantly greater in the plow treatment than in the other 3 tillage systems on the Clermont soil. Differences in KSAT between the 2 soils were generally greater than differences among tillage systems, and coefficients of variation were lower for treatments that did not include may fall tillage operations. At the 10-cm depth on the Chalmers soil, the chisel treatment had the greatest number of stained cylindrical channels, whereas for the Clermont soil the ridge till had the greatest number at this depth. Although the no-till treatment had similar or fewer total channels, it had the most continuous channels from the 10-cm depth to the 20- and 30-cm depths on both soils. Tillage system, row position and depth all affected Kair. On the Chalmers soil, plow, chisel and ridge systems had lower Kair between rows than in the row at the 10–20-cm depth, whereas no-till had constant Kair in the row and between the row. On the Clermont soil, ridge till had the highest Kair of all treatments at the 10–20-cm depth, and no-till had the highest Kair of all treatments at the 20–30-cm depth.  相似文献   

2.
The saturated hydraulic conductivities (Ksat) of 22 spodic horizons with and without a thin iron pan, were measured in situ with a new technique, using large, carved-out columns, encased in gypsum. Measured infiltration rates and pressure heads above and below the spodic horizons allowed calculation of Ksat, which averaged 8 cm d?1. Flow rates averaged 32 cm d?1, however, due to a hydraulic head gradient across the spodic horizon of 4 cm cm?1. Occurrence of a thin iron pan in the spodic horizon did not affect its Ksat-value. The measured high flow rates exclude the occurrence of perched watertables. Lateral flow of water, forming surface ponds in local depressions, was due to surface runoff, rather than to lateral movement of perched water: surface ponding of water occurred also in soils in which the spodic horizon had been mixed by tillage.  相似文献   

3.
Physical properties of field soil vary both spatially and temporally. Because so little information is available concerning the changes in magnitude of soil physical properties as functions of soil depth, distance normal to a crop row, and time, they have largely been ignored in model development. The purpose of this study was to evaluate quantitatively the spatial and temporal variability imposed by several tillage operations on several soil physical properties. Three tillage treatments, replicated 4 times in a randomized complete block design, were (1) conventionally-disked 3 times before planting, (2) full width strip chisel plowed to a 27-cm depth, and (3) in-row-subsoiled plus bedding. Soil physical properties measured were cone index (CI), weight percentage water (Pw), bulk density (Db), soil water characteristic curve, saturated hydraulic conductivity (Ksat) and soil settling. These properties were measured 3 times: immediately after planting soybeans (Glycine max (L.) Merr.) on 16 May; on 3 June; on 8 July 1977. Soil properties were measured at the 0–14, 14–28, and 28–41-cm soil depths at 3 positions relative to the row i.e., in the row, in the trafficked interrow, and in the non-trafficked interrow. Significant differences due to tillage treatment were found for Db, CI, and the soil water characteristic. The greatest spatial variation occurred in the 0–14-cm depth and decreased with depth. Significant differences for most variables were also found for the tillage by depth and tillage by position interactions. All properties exhibited significant temporal variation.  相似文献   

4.
Knowledge of the saturated hydraulic conductivity (K sat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the chemical properties of the filter media, affects the treatment performance of the filter system. However, measuring K sat is time consuming and expensive. This study developed a novel transfer function to predict K sat of coarse porous media from easily measured parameters. The hydro-physical parameters determined were K sat, grain size distribution, bulk density, uniformity coefficient, particle density, and porosity of 46 porous media fractions. The fractions ranged in grain size from 0.5 to 20 mm and were obtained from seven commercial available coarse filter materials. A backward stepwise regression analysis was performed between K sat and 10 variables obtained from the grain size distribution and bulk density. The optimal model for predicting K sat contained two parameters, D20 and D50, which describe respectively the particle diameters, where 20 and 50 % of all particles are finer by weight. The predicted K sat values were in good agreement with the measured values (R 2?=?0.91). The transfer function can find potential usage in relation to dimensioning of permeable agricultural drainage filters or subsurface-flow constructed wetlands. The predicted values of K sat can also be used as input to numerical models that simulate filter treatment performance.  相似文献   

5.
Abstract

Kamouraska Ap horizon samples were incubated in the presence of organic amendments, peat moss, straw, compost and green manure, applied at a rate equivalent to 7.5 t of carbon/ha. Water was added to reach 80% of field capacity. The soil‐amendement mixtures were incubated at 37°C for periods of 4, 8, 16, 32 or 64 weeks. Settling tests were performed using a jolting volumeter. Minimum dry bulk density (mDBD), saturated hydraulic conductivity (Ksat) and water content at field capacity were determined. For the unamended soil, mDBD corresponded to 1.1 g.cm‐3 and Ksat max to 265 cm/h. After incubation, mDBD varied from 1.02 to 1.12 g.cm‐3 and Ksat max values were generally below 150 cm/h. The results were discussed in relation to the decomposition of the organic amendments and the formation of stable aggregates.  相似文献   

6.
Mechanical tillage is gaining prominence as a food production technique in the savanna region of Nigeria. A mechanical cultivation method was compared with a zero cultivation practice and the traditional cultivation method involving a hoe.Soil moisture content was significantly higher (P = 0.05) under zero tillage than under mechanical tillage or traditional hoe tillage systems. The stability of aggregates less than 2-mm diameter and the mean equilibrium infiltration rates were significantly lower under mechanical tillage. No significant differences were found between zero tillage and manual tillage. Soil bulk densities in the 0–5-cm depth under zero tillage were significantly higher than under the other tillage systems due to the greater disturbance of soil in the latter. Below the 0–5-cm depth, differences in bulk densities between tillage treatments were not significant.Nutrient ion distribution in the soil varied with the tillage system. Total P and K levels were higher in the surface than in the sub-surface soils under zero tillage, but not under the other tillage systems. Mean maize grain yields (kg ha−1) and cotton lint yields (kg ha−1) under the 3 tillage systems were not significantly different (P = 0.05). However, significant yield differences were observed in some years. Weed population was significantly greater (P = 0.01) under zero tillage than under mechanical tillage.  相似文献   

7.
8.
The aim of this study was to investigate the burrowing activity of two earthworm species: the endogeic Drawida sinica and one undescribed Amynthas species incubated in Vertisol and Ultisol presenting different soil organic C content. Because of their contrasting feeding behaviours, we hypothesised that soil type would have a bigger influence on the burrowing activity of the endogeic than the anecic species. Repacked soil columns inoculated with earthworms for 30 days were scanned using X-ray tomography and the compiled images used to characterise the burrow systems. After scanning, the saturated hydraulic conductivity (K sat) was also measured. The Amynthas species burrows were less numerous (30 vs. 180), more vertically oriented (57 vs. 37°), more connected from the surface to the bottom of the columns (73 vs. 5 cm3) and had a higher global connectivity index (83 vs. 28%) than those of D. sinica. The K sat was threefold faster in columns incubated with Amynthas and was linked to the volume of percolating burrows (R 2 = 0.81). The soil type did not influence Amynthas burrow characteristics. In contrast, there were 30% more D. sinica burrows in the Vertisol than in the Ultisol while other burrow characteristics were not affected. This result suggests that these burrows were more refilled with casts leading to shorter and discontinuous burrows. The K sat was negatively related to the number of burrows (R 2 = 0.44) but was not statistically different between the Vertisol and the Ultisol, suggesting a constant impact of this species on the K sat. We found that a decrease in the amount of soil organic C by 50% had only a small influence on earthworm burrowing activity and no effect on the K sat.  相似文献   

9.
The precompression stress value defines the transition from the reloading curve to the virgin compression line in the stress–strain curve, which can be used to quantify the highest load or the most intense predrying previously applied to the soil. Thus, in soils with well-defined structured soil horizons, each layer can be characterized by such mechanical strength. Penetration resistance measurements, on the other hand, can be used to determine total soil strength profiles in the field. The effect of long-term tillage systems on physical and mechanical properties was determined in undisturbed and remolded samples collected at 5 and 15 cm depth, 6 months after applying no-till (NT), chisel plow (CP), and conventional tillage (CT) treatments, along with the application of mineral fertilizer and poultry litter. The compressibility tests were performed under confined conditions, with normal loads varying from 10 to 400 kPa after a defined predrying to −6 or −30 kPa. Penetration resistance was determined in the field, after seeding, in three positions: seeding row (SR), untrafficked interrow (UI), and recently trafficked interrow (TI). No-till system showed greater soil resistance to deformation than tilled treatments, as determined by the higher precompression stress and lower coefficient of compressibility. When original soil structure was destroyed (remolded samples), smaller differences were found. The application of extra organic matter (poultry litter) resulted in a reduction of precompression stress in undisturbed samples. Penetration resistance profiles showed greater differences among tillage treatments in the upper layer of the untrafficked interrow, where NT system showed the higher values. Smaller differences were found in the seeding row (with lower values) and in recently trafficked interrow (with higher values), showing that even traffic with a light tractor after soil tillage reduced drastically the effect of previous tillage by loosening up the soil. On the other hand, the tool used to cut the soil and to open the furrow for seeding, incorporated in the direct seeding machine, was sufficient to realleviate surface soil compaction.  相似文献   

10.
A study was conducted during 1982 and 1983 to determine the effect of tillage and mulching on soil environment and cowpea (Vigna unguiculata cv. FS-68) seedling growth under arid conditions. One disking and three diskings with a disc harrow up to 15-cm depth improved the soil environment and increased the final seedling emergence count, but did not affect the population of Macrophomina phaseolina in soil. Disking also increased plant growth and markedly reduced seedling mortality. Placement of weed mulch in-between the crop rows at the rate of 6 t ha−1 along with disking treatments significantly increased the mean moisture status of the 15-cm soil depth by 1.4% on a dry weight basis (Pw), significantly decreased the mean maximum temperature of the 10-cm depth (measured at 2 p.m.) by 3.9°C and thus increased plant growth and dry matter production. Mulching also markedly reduced the population of M. phaseolina and the mortality of the cowpea seedlings.  相似文献   

11.
The temporal variability of soil porosity, especially macropores (> 50 μm), and associated porosity factors such as pore continuity, percent water-filled pore space (%WFPS), and earthworm numbers and biomass were determined over 3 years under direct-drilling and mouldboard ploughing. The study was conducted on a Charlottetown fine sandy loam, an Orthic Podzol with a humid to perhumid soil-moisture regime.Differences in soil porosity between tillage systems were mainly confined to the surface 0–8-cm soil depth. Fissures (> 300 μm), or large pores, were reduced under direct drilling compared with mouldboard ploughing, but subject to regeneration over the winter period. The absence of soil loosening caused the volume of macropores to fall below 10% during the growing season. Tillage had a residual effect on soil porosity, maintaining the volume of macropores between 11 and 18%. Differences between tillage and ice-induced porosity influenced the degree of macropore regeneration. In general, water-storage pores were similar between tillage systems. A close relationship (r2 = 0.832) was observed between dry bulk density and macroporosity under both tillage systems. The relationship between macroporosity and pore continuity (Ksat), which differed between tillage systems, indicated that a macroporosity of between 8 to 10% (v/v) would maintain adequate soil permeability. In contrast, the %WFPS, which was closely related (R2 = 0.952) to macroporosity and soil water content, indicated that the volume of macropores should exceed 14% to provide an optimum level of air-filled pore space.Under humid soil-moisture regimes, the use of macroporosity as an index of critical soil structure or limiting density needs to be based both on adequate soil permeability and on water-filled pore space. Although direct drilling maintained adequate functional porosity, the need for an optimum aerobic environment may necessitate loosening of the surface soil on an annual basis.  相似文献   

12.
《Soil & Tillage Research》2007,92(1-2):157-163
A loamy sand Acrisol (Aquic Hapludult) that had been microirrigated for 6 years became so severely compacted that it had root limiting values of soil cone index in the Ap horizon and a genetic hardpan below it. Deep and surface tillage systems were evaluated for their ability to alleviate compaction. Deep tillage included subsoiling or none. Both deep tillage treatments were also surface tilled by disking, chiseling, or not tilling. Subsoiling was located in row or between rows to avoid microirrigation tubes (laterals) that were buried under every other mid row or every row. Cotton (Gossypium hirsutum) was planted in 0.96-m wide rows. Cotton yield was improved by irrigation from 485 to 1022 kg ha−1 because both 2001 and 2002 were dry years. Tillage loosened the soil by an average of 0.5–1.3 MPa; but compacted zones remained outside tilled areas. Subsoiling improved yield by 131 kg ha−1 when performed in row where laterals were placed in the mid rows; but subsoiling did not improve yield when it was performed in mid rows. For subsurface irrigation management in these soils, the treatment with laterals buried under every other mid row was able to accommodate in-row subsoiling which improved yield; and this treatment was just as productive as and had been shown to be less expensive to install than burying laterals under every row.  相似文献   

13.
Integrated evaluation of soil physical properties using the least limiting water range (LLWR) approach may allow a better knowledge of soil water availability. We determined the LLWR for four tillage practices consisted of conventional tillage (CT), reduced tillage (RT), no-tillage (NT) and fallow no-tillage (NTf). In addition, LLWR was determined for abandoned soils (i.e. control), compacted soils, ploughed compacted soils and abandoned soils with super absorbent polymers (SAPs) application. Soil water retention, penetration resistance (PR), air-filled porosity and bulk density were determined for the 0–5 and 0–25-cm depths. Mean LLWR (0.07–0.08 cm3 cm?3) was lower in compacted soils than the soils under CT, NT, NTf, RT, tilled, abandoned and SAP practices but it was not different among tillage practices. The values of LLWR were 0.12 cm3 cm?3 for NT and CT. LLWR for tilled plots (0.12 cm3 cm?3) became greater than compacted soils by 1.3 times. Analysis of the lower and upper limits of the LLWR further indicated that PR was the only limiting factor for soil water content, but aeration was not a limiting factor. The LLWR was more dependent on soil water content at permanent wilting point and at PR.  相似文献   

14.
Abstract

Conventional (CT) and no‐tillage (NT) effects on soil physical properties and bromide (Br) movement were studied at two locations in North Carolina. The soils were a Norfolk sandy loam (fine‐loamy, siliceous, thermic Typic Paleudult) at a North American eastern Coastal Plain location and a Pacolet sandy clay loam (clayey, kaolinitic, thermic Typic Kanhapludult) at a Piedmont location. Bulk density (Db), macroporosity (Mp), and saturated hydraulic conductivity (Ks) were measured in the plant row (R) and trafficked (T) or untrafficked (N) interrow positions. Simulated rain was applied at two intensities to 1?m2 plots after KBr was surface applied. The first simulated rain (30 min) consisted of a low (1.27 cm h?1) or a high (5.08 cm h?1) intensity applied 24 h after Br application. One week later, the high rainfall rate was repeated on all plots. Soil samples for Br determinations were taken 2 days after each rain simulation event to a depth of 40 cm and at the end of the growing season to 120 cm. Soil physical properties were affected by both tillage and position. Bulk density was greater for NT than for CT and in the T compared with R and N row positions. Mp was significantly greater in NT than CT at Coastal Plain location, but the results were opposite at the Piedmont location. Saturated hydraulic conductivity was highly variable ranging from 0.36 cm h?1 to 14.4 cm h?1 at the Coastal Plain location and from 0.06 cm h?1 to 7.12 cm h?1 at the Piedmont location. Saturated hydraulic conductivity at T position was about 100% lower than Ks at N and R positions, but the effect of tillage system was not significant on Ks. The surface 10 cm of soil contained the greatest Br concentration for both tillage systems. For the first and second sampling dates, greater Br movement occurred under NT vs. CT. However, no significant differences were observed in Br movement in the end of season sampling. Because of the coarser soil texture, greater Ks and Mp at the Coastal Plain location, Br moved, to a greater depth at this site than at the Piedmont site.  相似文献   

15.
Knowledge on anisotropy of saturated hydraulic conductivity can improve the understanding of transport phenomena in soil. We hypothesized that saturated hydraulic conductivity (Ks) in the upper part of the root zone of an agricultural sandy loam soil was anisotropic at different soil depths and times after tillage. Ks was measured on undisturbed 100 cm3 core samples taken in the horizontal and vertical directions in up to four soil layers (Surf: surface layer (0–5 cm); Top: topsoil (10–15 cm); Trans: transition layer between topsoil and subsoil; Sub: subsoil (40–60 cm)) 1, 8 and 32 months, respectively, after mouldboard ploughing and drilling. The ratio between estimated geometric mean values for Ks in the vertical and the horizontal directions (Kms,v/Kms,h) was used to test the hypotheses. A total of 669 soil samples were analysed.Kms,v/Kms,h varied with time after tillage and between soil layers. One month after ploughing, Kms,v/Kms,h was <0.23 (P = 0.975) in the Trans layer with an average value of 0.084, i.e. Kms,h was 12 times larger than Kms,v. Anisotropy could not be documented in this layer 8 or 32 months after ploughing, i.e. Kms,v/Kms,h was not significantly different from 1.0. For the Surf and Top layers 32 months after ploughing, Kms,v/Kms,h was in the intervals 1.4–50 and 3.1–77, respectively, (P = 0.95) with average values of 8.4 and 15, respectively. Thus, Kms,v was 8.4 respectively 15 times larger than Kms,h in the two layers. Anisotropy was not found in these layers 1 or 8 months after tillage. Strong anisotropy was found in the Sub layer with Kms,v/Kms,h averaging to 14 and 32, respectively, 8 and 32 months after tillage. Kms,v and Kms,h generally decreased with time in the Surf, Top and Trans layers, except in the vertical direction in the Top layer between 8 and 32 months after ploughing, and in the Trans layer between 1 and 8 months after ploughing. Overall, the geometric means of Ks varied between 10−4.0 and 10−7.1 m s−1.The results may reflect systematic effects of soil settlement and drying/wetting phenomena coupled with biological activity and the existence of stable, vertically oriented biopores in the subsoil. It appears to be necessary to consider anisotropy of Ks and its variation in the analysis and modelling of water flow and chemical transport in agricultural soils, particularly to explain heterogeneous flow phenomena at the plot and field scales.  相似文献   

16.
The effect of sodium dodecylbenzenesulfonate (SDBS), an anionic surfactant used widely in household products and industrial processes, on saturated hydraulic conductivities (Ksat) of an Anthrosol saturated with sodium (Na-soil) or calcium (Ca-soil) was analyzed in a laboratory experiment using the constant head method, and adsorption and dispersion experiments were also conducted to infer the possible mechanisms of Ksat fluctuations. The results showed that SDBS was more intensely adsorbed in the Ca-soil than in the Na-soil. With an increase in the SDBS concentration, the stability of the Na-soil suspensions decreased when the SDBS concentration was less than 1.2 mmol L^-1 and then above this concentration, increased markedly, while the stability of the Ca-soil suspensions increased gradually at all SDBS concentrations studied. With an increase in the SDBS concentration, the Ksat of the Na-soil increased, which resulted mainly from the increase of water channels in the soil because of the coagulation of the soil particles, while the Ksat of Ca-soil decreased mainly on account of the clogging of partial water channels by precipitated Ca(DBS)2 and the fine soil particles generated.  相似文献   

17.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

18.
Excessive percolation loss and low water retention adversely affect the production of rice in coarse-textured lateritic soils. A tillage scheme has been developed from long-term field experimentation during 1973–1978 to measurably reduce the percolation losses and enhance the productivity of rice in this soil under both lowland and upland conditions. Artificially compacted surface and subsurface layers were induced in soil by suitably combining level of compaction as obtained by one (D1), two (D2), four (D3) or six (D4) passes of a 800 kg iron roller at a load intensity of 0.21 kg cm−2 and post-compaction tillage or puddling depth of o cm (T0), 5 cm (T1), 10 cm (T2) or 15 cm (T3). An additional no-compaction treatment (D0) was included in lowland experiments. where the effect of either the depht or intensity of puddling was also studied. The utility of this tillage scheme in increasing the efficiency of nitrogen fertilizer use was characterized by a separate upland experiment in 1976 with a lower rate (60 kg N ha−1) of N application than that (100 kg N ha−1) applied in all other experiments.Rice yield was significantly increased on upland by artificially compacting the soil to D2. However, with further compaction to D3 and D4, the yield decreased. When postcompaction tillage was adopted, the grain yield decreased at low compaction level (D1, D2) but increased at high compaction level (D3, D4) with increase in tillage depth from 0 to 15 cm. The maximum grain yield occurred at D3T1.Higher grain yield at D3T1, D2T0 and D4T2 is attributable to a more favourable soil bulk density profile, a lower infiltration rate and higher surface retention of water. The efficiency of applied nitrogen fertilizer was apparently increased at these compaction—tillage depth combinations, where the upland rice yield experienced insignificant reduction with decrease in nitrogen application rate from 100 to 60 kg ha−1.Similar trends of yield response to compaction—tillage combinations were also observed under lowland conditions. When the soil was puddled (following high compaction) with a wedge plough or a power tiller, rice yields were increased by 48 and 56%, respectively, over yields using conventional puddling (without compaction). The yield increased further with the increase in intensity of puddling using a power tiller.  相似文献   

19.
Soil degradation is accelerated when perennial crops are converted to annual row crops, primarily due to increased soil disturbance from tillage. Subsequent heavy rainfall may induce soil settling, reduce macroporosity and increase hardsetting upon drying. An experiment involving plow and no-tillage and two simulated rainfall treatments (‘wet’ and ‘dry’) was conducted on Kingsbury clay loam soil in northern New York in 1992 and 1993 to study their effects on soil structure under maize (Zea mays L.) after conversion from alfalfa (Medicago sativa L.), and to evaluate the use of spectral analysis of micropenetrometer observations for studying soil aggregation. Undisturbed soil cores were collected from the row and trafficked and non-trafficked interrow positions at the 0.05 and 0.15 m depths and used for laboratory measurement of soil strength and pore system properties. These well-structured soils show a high contribution (up to 0.15 m3 m−3) of macropores to the total porosity of the soil. Soil strength was generally slightly higher for no-till (NT) than plow till (PT), although only significant in 1992. Soil strength in the surface layer did not change significantly with drying. Spectral density patterns did not show strong treatment effects, although distinct peaks reflect 3.0–3.5 mm stable structural units within macroaggregates. Simulated rainfall treatments and tillage treatments generally did not strongly affect measured soil properties, presumably due to stable soil structure. Structurally stable clay loam soils show little effect of tillage or settling on soil physical properties in the first years after alfalfa to maize conversion, and have good potential for long-term annual crop production if properly managed.  相似文献   

20.
Anionic polyacrylamide (PAM) can prevent soil erosion, but its effect on fine particulate phosphorus (P), such as colloidal P, has not been thoroughly examined. The effects of PAM on the release potentials of water‐dispersible colloids (WDC) and total P, molybdenum‐reactive P (MRP), and molybdenum‐unreactive P (MUP) in the colloidal and truly dissolved phases (i.e., TPcoll, MRPcoll, MUPcoll, TPtruly, MRPtruly, and MUPtruly) from six soils across South China were tested in this study. The results showed that the release potentials of TPcoll in the control treatments were 6·9–46·1 mg kg−1 and generally highest in sandy loam soil. Following low (12·5 kg ha−1), middle (25 kg ha−1), and high (50 kg ha−1) levels of PAM application, the release potential of TPcoll decreased by 41·7, 63·2, and 77·4% compared to the control group, respectively. Additionally, PAM may trigger MRPcoll and TPtruly releases in sandy loam and/or silt soils, and for most soils, MRPtruly and MUPtruly showed the highest release potentials at middle or high PAM levels. A significant PAM application level by soil site interaction for the release potentials of WDC and colloidal P was observed. Multiple linear regression showed that the PAM rate combined with soil sand content can successfully predict the release potentials of WDC (R2 = 0·552, p  < 0·001) and TPcoll (R2 = 0·738, p  < 0·001). Our results suggest that PAM can effectively reduce the loss of soil colloids and colloidal P, while its effects are related to both application level and soil texture. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号