首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil properties were evaluated after 10 years of continuous non-tilled and conventionally tilled corn (Zea mays L.) production on a Maury silt loam (Typic Paleudalfs) soil, which had been in bluegrass (Poa pratensis L.) for 50 years. On limed and nonlimed plots soil samples from 0, 84, 168 and 336 kg/ha N treatments were taken in the 0–5, 5–15 and 15–30 cm layers for determination of organic C and N, soil pH, and exchangeable Al, Mn, Ca, Mg, K.Tillage treatments had no effect on soil bulk density in the 0–15 cm layer. In the 0–5 cm surface layer, organic C and N were approximately twice as high with no-tillage as with conventional tillage; N fertilizer induced a high level of both organic C and organic N. No-tillage decreased soil pH for unlimed plots as compared to conventional tillage, especially at high N-rates, which produced an increase in exchangeable Al and Mn and a decrease in exchangeable Ca down to the 30 cm depth. When lime was applied, the pH of the surface soil was slightly higher under no-tillage. On treatments receiving lime, exchangeable Al and Mn levels were very low with no significant difference in tillage systems. At low rates of N fertilization the 10-year average corn yield was higher for conventional tillage than for no-tillage, but at high rates of N fertilization it was equal or higher for no-tillage treatments receiving lime. Unlimed no-tillage treatments produced lower yields at all N levels during 1975–1979. Deterioration of soil physical properties was not observed.  相似文献   

2.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

3.
《Journal of plant nutrition》2013,36(9):1445-1455
The larval stage of the spotted cucumber beetle (Diabrotica vigifera zeae), the Mexican corn rootworm, is a highly devastating pest of cornfields in Texas and the Southwest. A systemic organophosphate insecticide, standard release terbufos (ST), applied in row with the corn seed at planting, has been termed effective in reducing crop damage from the Mexican corn rootworm. However, recent field observations have indicated possible association of micronutrient deficiency symptoms with use of terbufos and over-the-top sulfonyl urea herbicides (nicosulfuron, primisulfuron) on crops such as corn. This experiment was conducted to determine if this systemic soil insecticide would affect plant metabolic activities as measured by nutrient deficiency chlorosis and plant growth. The study also involved testing a controlled release terbufos (CR) version of the same insecticide. Each soil insecticide was compared with and without foliar treatments with one of the sulfonyl urea herbicides (nicosulfuron) used in controlling grass-type weeds in corn. The greenhouse study was conducted on a Monteola sandy clay loam (Typic Pellusterts), which is a typical soil used in corn production in southern Texas. Standard release (ST) and CR forms of terbufos were compared at the label recommended rate (1.1 kg a.i./ha) and also at 2 kg a.i./ha. All materials were banded in the seed row at planting. Treatments were arranged in a randomized block design with three replications. Early visual chlorosis ratings (7 days) and chlorophyll readings at 28 days indicated increased interveinal chlorosis with soil insecticide applications. Plants overcame these early effects with time and showed higher chlorophyll than untreated plants at 42 days. Depressed early plant growth and reduced tissue levels of certain micronutrients indicated these systemic insecticides both with and without over-the-top herbicide could be injurious during early stages of plant growth. However, the affected plants were able to overcome most of the effects later in the growing season. Tissue iron (Fe) concentrations were slightly reduced by terbufos alone and reduced further when nicosulfuron was applied. Zinc was reduced substantially by terbufos but appeared to not change when the over-the-top herbicide was included.  相似文献   

4.
A study on the diurnal changes of soil moisture content and on the isothermal and thermally induced moisture fluxes was conducted on an Alfisol at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, on no-tillage and conventional-tillage plots. These studies were conducted during the 1980 dry season, 9 years after initiating the tillage treatments in 1971. Three bare 5 × 5 m2 plots per treatment were used to study diurnal changes in moisture content as soil dried from the initial moisture status of field capacity. The latter was attained by excessive and deep irrigation. Moisture content, moisture potential, and soil temperature were monitored three times a day (08:00, 14:00 and 18:00 h) at the depths of 0–7, 7–14 and 14–21 cm for four 7 day periods at weekly intervals. These results, along with physical characterization of the soil profile and changes in air temperature, were used to calculate isothermal, thermally induced liquid and vapor fluxes.

Results showed that there was a general increase in soil moisture content with sampling depth during the night (18:00 to 08:00 h), and a general decrease with depth during the day (08:00 to 18:00 h). The amplitude of the diurnal cycle of water content changes decreased with depth, and was superimposed on a progressive depletion in water content in the layers studied. The first layer of the conventional-tillage treatment dried to a lower water content than that of the no-tillage treatment. Partition of moisture fluxes, induced by isothermal and thermal conditions, showed that isothermal liquid flux was dominant in no-tillage, and that thermal vapor flux was very important as soil dried in conventional-tillage.

The direction of the fluxes observed (i.e. isothermal liquid flux always being positive upwards and thermal vapor flux positive during the night and negative downwards during the day) was of critical importance as the soil dried. The liquid fluxes became less important and thermal vapor and probably isothermal vapor fluxes became more important with soil moisture depletion. Vapor movement under these circumstances may have played an important role in supplying water to roots both during the day (deep roots) and night (shallow roots) depending on the magnitude of the fluxes. Vapor fluxes were higher and started earlier in conventional-tillage than in no-tillage.  相似文献   


5.
A no-tillage system was imposed on a structurally degraded fine-textured soil (Humic Gleysol) that had been under continuous corn with moldboard tillage for more than 20 years. After 3 years of no-tillage, several soil structural properties were compared with the conventional tillage treatment to assess whether the soil structure had improved.

No significant difference (P<0.05) was found between tillage treatments for the saturated hydraulic conductivity, porosity and penetration resistance in the surface 5 cm. Measurements of soil penetration resistance and in situ saturated hydraulic conductivity (Kwp) using the well permeameter method were sensitive to structural changes that had occurred at 5–20 cm depth. The Kwp at this depth was significantly greater in the moldboard treatment than in the no-tillage treatment. Resistance measurements indicated significantly greater soil strengths at 10–20 cm under no-tillage. Aggregate stabilities were assessed by wet sieving twice during the growing season. No-tillage resulted in larger soil aggregates, especially at the surface, compared with the moldboard tillage.

These data suggest that degraded soils with low structural stability may initially suffer further deterioration with the elimination of tillage, owing to the loss or reduction of mechanically formed pores.  相似文献   


6.
Efforts to restore productivity of pastures often employ agricultural management regimes involving either tillage or no-tillage options combined with various combinations of fertilizer application, herbicide use and the planting of a cash crop prior to the planting of forage grasses. Here we report on the emissions of CO2, N2O and NO from the initial phases (first 6 months) of three treatments in central Rondônia. The treatments were (1) control; (2) conventional tillage followed by planting of forage grass (Brachiaria brizantha) and fertilizer additions; (3) no-tillage/herbicide treatment followed by two plantings, the first being a cash crop of rice followed by forage grass. In treatment 3, the rice was fertilized. Relative to the control, tillage increased CO2 emission by 37% over the first 2 months, while the no-tillage/herbicide regime decreased CO2 emissions by 7% over the same period. The cumulative N2O emissions over the first 2 months from the tillage regime (0.94 kg N ha–1) were much higher than the N2O releases from either the no-tillage/herbicide regime (0.64 kg N ha–1) or the control treatment (0.04 kg N ha–1). The highest levels of N2O fluxes from both management regimes were observed following N fertilizations. The cumulative NO releases over the first 2 months were largest in the tillage treatment (0.98 kg N ha–1), intermediate in the no-tillage treatment (0.72 kg N ha–1), and smallest in the control treatment (0.12 kg N ha–1). For the first week following fertilization the percentage of fertilizer N lost as N2O plus NO was 1.0% for the tillage treatment and 3.0% for the no-tillage treatment.  相似文献   

7.
Simulation models are increasingly used to analyze the impact of agricultural management at the watershed-scale. In this study, the Agricultural Policy/Environmental eXtender (APEX) model was tested using long-term (1976–1995) data from two watersheds (W2 and W3) at the USDA Deep Loess Research Station near Treynor, Iowa. The two watersheds were cropped with continuous corn (Zea mays L.) and managed with conventional-tillage at W2 (34.4 ha) and ridge-till at W3 (43.3 ha). The monthly runoff and sediment yield were calibrated for the two watersheds during 1976–1987 by adjusting the curve numbers, curve number index coefficient, RUSLE C factor exponential residue and height coefficients, and erosion control practice factor for grassed waterways. Soil organic carbon values in the top 0.15 m soil layer were calibrated for the two watersheds in 1984 by adjusting the microbial decay rate coefficient. Model validation was conducted from 1988 to 1995. The calibrated model was able to reasonably replicate the monthly and yearly surface runoff and sediment yield for both watersheds for the validation period, with Nash–Sutcliffe efficiencies (EF) larger than 0.62 except for the EF of 0.41 for monthly sediment yield comparison at W3. The errors between the predicted and observed means were all within ±6% for runoff and sediment yield; predicted soil organic carbon in the 0.15 m soils in 1994 were within 10% of the observed values for both watersheds. The percentage error between the predicted and observed average corn grain yields was −5.3% at W2 and −2.7% at W3 during the 20-year simulation period. Scenario analyses were also conducted to assess the benefits of ridge-till over conventional-tillage. Over the 20 years, the predicted benefit of ridge-till versus conventional-tillage on surface runoff reduction was 36% in W2 and 39% in W3, and about 82–86% sediment yield reduction in both watersheds. The cumulative soil organic carbon losses from sediment were reduced about 63–67%. The long-term benefit of ridge-till over conventional-tillage was also quantified as a minimum corn grain yield increase of 3.8%. The results of this study indicate that APEX has the ability to predict differences between the two tillage systems. The modeling approach can be extended to other watersheds to examine the impacts of different tillage systems.  相似文献   

8.
Reduced tillage systems may be an option to allow rapid crop establishment in areas constrained by a short growing season, but such methods need to be adapted to soil tillage requirement and crop establishment needs. Rotation and tillage studies were conducted during a 6-year period on a fine sandy loam (Podzol) with silage maize (Zea mays L.) under the cool, humid climate, and relatively short growing season of Prince Edward Island, Atlantic Canada. The objective was to compare a continuous maize rotation with a maize–barley (Hordeum vulgare L.) rotation, using both no-tillage and conventional mouldboard ploughing for the maize, and to evaluate treatment effects on maize growth and productivity, weed populations, and soil quality. Plant population and maize yield were not consistently influenced by the tillage or rotation treatments. Mean maize yield ranged from 7.2 to 7.7 Mg ha−1. An increasing density of weeds over the 6-year period, especially perennial species, was evident under no-tillage, compared to mouldboard ploughing. Except for slight changes in soil pH, spatial variation in extractable soil P, and a higher level of organic C and labile forms of C (microbial biomass and mineralizable C), soil chemical quality was similar among treatments. An apparent decline in soil physical quality, as indicated by a reduction in macro-porosity volume and increase in soil penetration resistance below the 8 cm soil depth, was evident under the no-tillage at the end of the 6-year period. However, macro-pore continuity was less affected by a reduction in tillage, while field measurements of soil hydraulic conductivity increased under no-tillage compared to ploughing. The latter result may be related to the observed increase in earthworm population where tillage was reduced. Use of rotational tillage resulted in an intermediate soil physical condition between continuous no-tillage and ploughing. Overall, no-tillage appears a promising strategy to facilitate a fast and early establishment of maize on sandy loam soils in Atlantic Canada, but some ongoing monitoring of the soil physical condition would be required.  相似文献   

9.
渭北旱塬玉米田保护性轮耕土壤固碳效果与增产增收效应   总被引:5,自引:2,他引:3  
针对渭北旱塬降水少、季节性差异大及长期采用单一土壤耕作制度等制约作物增产增收的因素,该研究探索有利于提高旱作农田土壤质量及作物生产能力的轮耕模式。2007-2012年在陕西合阳实施了渭北旱塬春玉米连作田6种不同轮耕模式的长期定位试验,设置以免耕(NT,no-tillage)、深松(ST,sub-soiling)和翻耕(CT,continuous tillage)3种耕作处理组合集成的6种轮耕模式(NT?ST、ST?CT、CT?NT、NT?NT、ST?ST和CT?CT),测定各轮耕模式下春玉米田土壤容重和有机碳储量,分析各轮耕模式下春玉米籽粒产量、水分利用效率和经济效益的变化规律。结果表明:1)在疏松土壤、减少耕作机械碾压次数,改善土壤结构和降低容重等方面,6种轮耕模式以NT?ST表现最佳,ST?ST次之,差异显著(P0.05)。2)6种轮耕模式在0~60 cm土层土壤有机碳平均储量较试验前均增加幅度6.6%~17.4%。NT?NT轮耕模式对增加表层土壤有机碳储量具有优势,且与各处理间差异显著(P0.05)。NT?ST轮耕模式可改变耕层土壤有机碳储量分布特征,进而使土壤营养均匀分布。3)6种轮耕模式5年春玉米籽粒产量、水分利用效率和经济效益综合评价分析,NT?ST轮耕模式最高,分别为9 338.8 kg/hm2、22.6 kg/(hm2·mm)和7 600.5元/hm2;其次是ST?CT,其中NT?ST轮耕模式下春玉米籽粒产量、水分利用效率和经济效益较其他处理增加幅度分别为3.7%~15.7%、17.6%~45.8%和10.1%~40.4%,差异显著(P0.05);且5种轮耕模式下作物籽粒产量、水分利用利用效率和经济效益均高于传统CT?CT模式。综上所述,在6种轮耕模式下,以NT?ST(免耕与深松逐年轮换)轮耕模式下土壤容重和有机碳储量最佳,生产能力最强,水分利用率最高,是渭北旱塬地区春玉米连作田最佳适宜轮耕模式,其次是ST?CT(深松与翻耕逐年轮换)轮耕模式。  相似文献   

10.
Soil-arthropod and earthworm densities (number m−2) were higher (P < 0.05) under no-tillage than conventional tillage practices. Enchytraeid worms were higher in conventional tillage. Two predaceous groups, ground beetles (Carabidae: Coleoptera) and spiders (Araneae), comprised more than one-half of all soil macroarthropods collected. All major microarthropod suborders (Oribatids, Prostigmatids, Mesostigmatids, and the order Collembola) were higher (P < 0.01) under no-tillage than conventional tillage. High soil-arthropod and earthworm densities under no-tillage systems suggest an expanded and beneficial involvement for these soil fauna in crop-residue-decomposition processes.  相似文献   

11.
On the Canadian prairies there has been a steady increase in no-till seeding coupled with more frequent cropping, facilitated by the greater use of snow management to increase stored soil water. Although no-till seeding can gradually improve soil conservation and soil quality, it may also increase the incidence of grassy weed infestations and thus cause more frequent use of costly herbicides, such as glyphosate. Our objective was to determine if no-till producers experiencing grassy weed problems could introduce pre-seeding tillage for a few years to more economically control perennial weeds, without adversely affecting grain yield and quality, and soil quality. An experiment in which spring wheat (Triticum aestivum L.) was grown for 9 years with no-tillage management on an Orthic Brown Chernozem (Typic Haplobroll) with treatments involving snow management and N rate, placement and timing, was converted to a study of pre-seeding shallow (5–7.5 cm) tillage with a cultivator, versus no-tillage, by replacing the N timing treatment in the tenth year. The experiment was then continued for three more years, during which we assessed the effect of tillage on weed populations, grain yield and N content, and on soil quality. Soil quality was also assessed following one more year during which the entire study site was summerfallowed and subjected to four tillage operations. Weed populations generally were not affected by tillage or snow management treatments, but differed among N rate and placement treatments, though not in a way that could be easily interpreted. Tillage had no effect on yield or grain N content. It increased the erodible fraction of soil (dry sieving), but did not affect wet aggregate stability. Neither microbial biomass C, nor C and N mineralization were affected by the change in tillage method. We conclude that the judicious use of shallow pre-seeding tillage in an otherwise no-till cropping system can be tolerated to manage persistent grassy weed problems without deleteriously influencing soil quality, grain yield or protein.  相似文献   

12.
土壤耕作方式对双季稻产量构成与穗镉积累的影响   总被引:1,自引:0,他引:1  
为比较研究不同土壤耕作方式(翻耕、旋耕、免耕)对南方双季稻区水稻产量构成与稻穗镉积累分配特性的影响,探讨镉污染稻田双季稻最优土壤耕作方式,2015—2017年,以"陵两优211"与"威优46"为早、晚稻供试品种,在湖南省湘潭县易俗河镇中度镉污染稻田(全镉含量0.86 mg/kg)开展定位试验,比较研究了双季免耕、双季翻耕、双季旋耕、早旋晚免、早翻晚免5种土壤耕作方式下土壤有效镉含量、双季稻的产量构成与穗镉积累分配情况。结果表明:(1)双季稻产量以双季翻耕处理最高,早翻晚免处理次之,双季旋耕与早旋晚免处理再次之,双季免耕处理最低;翻耕处理产量最高的原因在于其有效穗数与每穗粒数较高。(2)齐穗期至成熟期,穗镉含量一般呈增长趋势;第1年早晚稻齐穗期穗镉含量以免耕处理最高,但免耕能明显降低水稻齐穗至成熟期穗镉含量的增长速率;早晚稻成熟期穗镉含量一般以翻耕处理较高,免耕与旋耕处理较低,免耕与旋耕处理有差异但在不同年份与季别间表现不尽相同。(3)成熟期稻穗各部位镉含量趋势表现为枝梗谷壳糙米;第1年糙米镉含量以免耕处理较高,但第2,3年呈现免耕处理低于翻耕与旋耕处理的趋势。(4)第1年早、晚稻穗镉累积量均以旋耕处理较低,但第2,3年均以免耕处理较低。(5)较其他处理而言,双季免耕明显提高了土壤有效镉含量,双季旋耕则降低了土壤有效镉含量。3年定位试验表明,土壤耕作方式对镉污染稻田土壤有效镉含量、双季稻产量构成与稻穗镉积累分配有明显影响,从保证双季稻产量、降低稻米镉含量与轻简省工的角度出发,早翻晚免是中度镉污染双季稻田的最优土壤耕作方式。  相似文献   

13.
Although tropical wetlands are rapidly being developed for the needed increase in rice (Oryza sativa L.) production, knowledge is still limited concerning the optimum soil and crop management practices. A study was thus carried out to evaluate the effects of different tillage systems on the growth and yield of paddy rice, grain yield response to N applications, and weed control. Five experiments were conducted for three consecutive seasons on hydromorphic soils (loamy and sandy loamy, mixed, isohyperthermic Aeric Tropaqualfs) at the International Institute of Tropical Agriculture, Ibadan, comparing the effects of zero tillage (without dry tillage and puddling) and conventional tillage (dry tillage and puddling) at two or more N levels. In two of the above experiments the effects of either two moisture regimens or chemical versus manual weed control were also evaluated.In four experiments there were no statistically significant differences in grain yield between zero-tillage plots sprayed with paraquat and conventional-tillage plots. Only in Experiment 2 did zero-tillage (with paraquat) plots give a significantly lower yield than conventional-tillage plots (5200 versus 5580 kg ha?1, respectively) but the difference could be explained by greater rat damage in the former. The highly significant response in grain yield to N applications in all five experiments was statistically similar under both tillage systems. The continuous flooding treatment (Experiment 1) gave better weed control and higher grain yield than the saturation moisture regime (6150 versus 5420 kg ha?1 grain yield). In zero-tillage plots where weeds were slashed before transplanting (Experiment 2), grain yield was lower and the weed growth greater than in zero-tillage and low N level. Satisfactory weed control was obtained with paraquat and continuous flooding.  相似文献   

14.
Reduced tillage and no-tillage systems provide shallow incorporation of surface applied materials at best. Due to concern of over-liming the surface of agricultural soils, producers either reduce lime rates (and apply more often) or perform some sort of soil inversion to mix the lime deeper into the soil profile. The objective of the authors in this field study was to evaluate the effects of tillage, lime rate, and time of limestone application on corn and soybean growth, and assess the changes in soil acidity to an already acidic soil. Treatments consisted of a no lime check, two no-tillage systems with either a 4.5 ton ha?1 lime application every two years or an annual application of 450 kg pelleted lime ha?1, a continuous annual chisel tillage system with a 9.0 ton ha?1 lime application every four years, and two inversion systems utilizing a rotary tiller (Howard Rotovator) where 9.0 ton lime ha?1 was mixed into the soil followed by either continuous chisel tillage or continuous no-tillage. Inversions occurred in 1999, 2003, and 2007. Soil samples were collected annually in increments of 5 cm to a 30 cm depth for pH determinations. After 10 years, the continuous chisel system increased soil pH in the top 20 cm and had grain yields comparable to the no-tillage system, but not different than the no lime treatment. The no-tillage system increased the pH in the surface 15 cm of soil. The inversion treatments after soybean mixed the lime more thoroughly in the top 15 cm than inversion after corn and also increased the pH to a deeper depth. The pelleted lime had no effect on soil acidity. Soybean yields were affected by lime treatment with the no lime and pelleted lime having the lowest yields. This is most likely due to manganese (Mn) toxicity with these treatments. There was no perceived benefit of inversion of the soil with no-till or chisel systems.  相似文献   

15.
The effects of agricultural–pastoral and tillage practices on soil microbial populations and activities have not been systematically investigated. The effect of no-tillage (NT), no-tillage agricultural–pastoral integrated systems (NT-I) and conventional tillage (CT) at soil depths of 0–10, 10–20 and 20–30 cm on the microbial populations (bacteria and fungi), biomass-C, potential nitrification, urease and protease activities, total organic matter and total N contents were investigated. The crops used were soybean (in NT, NT-I and CT systems), corn (in NT and NT-I systems) and Tanner grass (Brachiaria sp.) (in NT-I system); a forest system was used as a control. Urease and protease activities, biomass-C and the content of organic matter and total N were higher (p < 0.05) in the forest soil than the other soils. Potential nitrification was significantly higher in the NT-I system in comparison with the other systems. Bacteria numbers were similar in all systems. Fungi counts were similar in the CT and forest, but both were higher than in NT. All of these variables were dependent on the organic matter content and decreased (p < 0.05) from the upper soil layer to the deeper soil layers. These results indicate that the no-tillage agricultural–pasture-integrated systems may be useful for soil conservation.  相似文献   

16.
耕作对土壤生物碳动态变化的影响   总被引:20,自引:2,他引:20  
本文讨论了耕作方法对作玉米地土壤生物碳动态变化的影响。实验证明,传统耕法、短期免耕和长期免耕处理中的不同点位,土壤生物碳量分布有系统的差异。  相似文献   

17.

Purpose

Humic substances are recalcitrant and might act as persistent binding agents to form macroaggregates. The focus of this study is in investigating the contribution of humic carbon (HC) to soil aggregation in response to various tillage and residue managements.

Materials and methods

Arable soils following 8-year contrasting managements were collected to determine aggregate size distribution and stability and HC fractions including humic acid (HA) and fulvic acid (FA). The contribution of HC to aggregation was divided into three special effects including positive effect (PE), negative effect (NE), and combined effect (CE), and these effects were measured using aggregate fractionation techniques.

Results and discussion

As well as to promote structural stability, HC bounds predominantly with the silt + clay fraction and secondarily with microaggregates to form larger aggregates. The PE increased with increasing aggregate size, whereas the NE followed the opposite pattern. A positive CE was observed for large and small macroaggregates, whereas the CE for microaggregates and the silt + clay fraction was negative. Compared to continuous tillage, reduced- and no-tillage decreased the PE for large and small macroaggregates by 1.58–30.98% at the 0–20 cm depth, and straw returning also slightly decreased the corresponding PE relative to straw removing. By contrast, a significantly higher NE for small macroaggregates at the 0–10 cm depth while 6.33–81.11% decreases in CE for large and small macroaggregates at the 0–10 cm depth as well as for large macroaggregates at the 10–20 cm depth, were observed under reduced- and no-tillage. The extraction of HC significantly reduced the aggregate stability and reduced- and no-tillage effectively limited its decrease magnitude. Small macroaggregates and microaggregates made larger contributions to soil HC accumulation than did other fractions. An averagely increased contribution from large or small macroaggregates was observed under both reduced-/no-tillage and straw returning at the 0–20 cm depth. A significant and positive relationship was found between the mass proportion of macroaggregates and the HC accumulation in 0–20 cm soil. Large macroaggregates had significantly higher HA/FA ratios than small macroaggregates, and reduced- and no-tillage significantly increased these ratios both in large and in small macroaggregates. The CE for large or small macroaggregates was also significantly negatively correlated with their HA/FA ratios.

Conclusions

Overall, the HC accumulation in soil is likely to play a key role in macroaggregation, but conservation tillage might decrease the contribution magnitude of HC to large or small macroaggregation through increasing the corresponding HA/FA ratios.
  相似文献   

18.
耕作对旱区坡耕地土壤碳素转化及冬小麦产量的影响   总被引:5,自引:0,他引:5  
利用长期定位试验(1999开始保护性耕作,2004年采样测定),在豫西旱区坡耕地上进行了不同耕作对土壤有机碳、微生物态碳及水分利用效率的影响研究。结果表明:深松覆盖和免耕覆盖处理的耕层有机碳增加较明显,以深松覆盖有机碳含量最高为6.79gkg-1,比传统耕作高13.82%,其次是免耕,较传统高11.58%,而少耕却较传统降低了1.38%,随着土层的加深,土壤有机碳含量降低,0~60cm有机碳平均值,深松和免耕较传统分别增加了14.08%、5.41%,少耕较传统减少1.12%。土壤微生物碳对耕作敏感,其含量免耕>深松>传统>少耕,分别为206.87mgkg-1、138.43mgkg-1、115.42mgkg-1和112.57mgkg-1,较传统增加79.3%、19.9%和-2.5%。土壤有机碳和土壤微生物态碳都有坡下富集现象。少耕、免耕、深松和传统的SMBC/SOC的值分别为1.91%、3.11%、2.04%和1.93%,免耕和深松对培肥地力、改善环境有好的应用前景;同时免耕覆盖与深松覆盖可提高产量,增产分别达10.22%与9.26%;可提高水分利用效率。  相似文献   

19.
Chemical and biochemical properties as potential indicators of disturbances   总被引:1,自引:0,他引:1  
 The response of a series of soil microbial, chemical, and enzymatic chacacteristics to two different tillage systems (conventional and no-tillage) and two crop rotations (continuous corn and soybean–corn) was evaluated in a long-term field experiment in the Rolling Pampas Region, Marcos Juárez, Córdoba, Argentina. The parameters studied included: oxidizable, soluble and respiration C, total and hydrolyzable N, microbial activity, ammonifiers, nitrifiers, cellulolytic and total microflora, protease and urease activities. After 15 years, oxidizable C, total N and hydrolyzable N showed no differences regarding no-tillage systems. However, differences were found regarding control soil. While soluble C did not exhibit any significant differences, respiration C and microbial activity were indicators sensitive to different treatments. Enzymatic activities, protease in particular, did reflect changes due to management. Fluctuation in microbial population counts were more related to plant residues than to tillage systems. Received: 29 May 1999  相似文献   

20.
Summary Soil mite abundance was measured at four depths (0–5, 6.5–11.5, 13–18, and 19.5–24.5 cm) in agricultural plots under no-tillage or conventional tillage in Clarke County, Georgia, USA. The vertical distribution of mites was not significantly different between the two tillage systems: Most mites were found in the top 0–5 cm zone. This was the zone where greater moisture content occurred, and (in other studies) was the zone of maximum root biomass and microbial activity. Among mite suborders, only the Prostigmata were found in any abundance below 5 cm. Mite populations declined dramatically on occasions when the soil moisture exceeded field capacity, but did not appear to migrate vertically.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号