首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Being macronutrient, K+ is involved in a number of metabolic processes including stimulation of over 60 enzymes. The present study was conducted to investigate whether K-priming could alleviate the effects of salinity on the growth and nutrient status of cotton seedlings. The seeds of two cotton cultivars, namely FH-113 and FH-87, were primed with solutions of three potassium sources (KNO3, K2SO4 and K2HPO4) using three concentrations (0%, 1.25% and 1.5%) of each potassium source. After 1 week of germination, the seedlings were subjected to salinity (0 and 200 mM NaCl) stress. The results showed that salinity significantly affected growth and nutrients status of cotton seedlings. The K-priming alleviated the stress condition and significantly improved dry matter as well as nutrient uptake in cotton seedlings. Of the priming treatments pre-sowing treatment with KNO3 (1.5%) was most effective in increasing shoot and root lengths and biomass of cotton seedlings. The seedlings raised from seed treated with KNO3 (1.5%) showed varied accumulation of cations (Ca2+, Na+ and K+) and faced less oxidative stress irrespective of cotton cultivars under salt stress. The results suggested that pre-sowing seed treatment with KNO3 (1.5%) might be recommended for synchronized germination and sustainable production of cotton crop under saline environments.  相似文献   

2.
Manganese (Mn) deficiency is a widespread crop micronutrient disorder. The aim of this work was to evaluate two NPK fertilizers coated with Mn that eliminate the specific labor cost for applying Mn and that allow the correction of Mn deficiency in wheat (Triticum aestivum L.). Two Mn sources [MnSO4 and Mn‐lignosulfonate (MnLS)] were compared as NPK coatings at doses of 0.1, 0.3, and 1.0% (w/w) in hydroponic, perlite, and soil pot cultures under growth chamber and greenhouse conditions with wheat to evaluate the effects on dry matter production and Mn concentrations. For the NPK+MnLS product, 52–63% of the total Mn remained in solution at calcareous conditions. However, the NPK+MnSO4 product was able to maintain only 14–25% of the total Mn added in solution. As expected, the MnLS product resulted in higher Mn concentrations in shoots than the MnSO4 product due to the Mn complexation by lignosulfonate which preserved Mn from precipitation and maintained it available for plants. In the experiment with perlite as growth substrate, at low Mn dose (0.1% Mn) a similar Mn concentration in wheat shoots was found (57 mg kg?1 DW for the MnSO4 coating versus 72 mg kg?1 DW for MnLS coating), but at the highest dose (1.0% Mn) the NPK+MnLS showed a significant increase in shoot Mn concentration (167 versus 132 mg kg?1 DW). Soil application of coated NPK products showed similar Mn concentrations in shoots with both Mn sources (29–37 mg kg?1 DW), except for the NPK+MnSO4 (0.1%) treatment (only 18 mg kg?1 DW). Based on the recommended Fe/Mn values (Fe : Mn ratio = 1.5–2.5) given in the literature for plants with a correct nutrition, only the NPK+MnLS (0.3%) fulfilled this ratio (Fe : Mn = 2.5).  相似文献   

3.
The reduction in tiller number is a major reason for a decrease in grain yield of wheat. Thus, we hypothesize that the limiting growth of tillering of wheat plant under saline conditions may be due to a different distribution of ions among tillers, which may be tested by tiller removal. Two contrasting spring wheat (Triticum aestivum L.) genotypes were subjected to five levels of detillering treatments under saline or non-saline conditions grown in a greenhouse. Sodium (Na+), potassium (K+), calcium (Ca2+), chloride (Cl?), and nitrate (NO3 ?) concentrations in the top leaves of tillers were determined at plant maturity. Regardless of genotypes, the moderate salinity significantly increased the Na+ and Cl? concentrations in the top leaves and the decreased NO3 ? in the mainstem, subtillers and whole plant. Potassium and Ca2+ concentrations in leaves were not affected or slightly increased by salinity. Under moderate salinity, Na+ and/or Ca2+ concentrations in mainstem, subtillers and the whole plant were increased with a decrease in tiller removal for both genotypes, while there was almost no effect of tiller removal on Cl? and NO3 ? concentration. The tiller removal increased the tolerance of wheat to tissue Na+ content, especially for the salt sensitive genotype. Thus, the salt-specific effects in wheat plant could be alleviated by fewer tillers per plant through the removal for the salt-sensitive genotype. However, our study did not show the competition for the mineral nutrients among tillers under saline conditions. Thus, we speculate that there is a competition for photoassimilates among the tillers under saline conditions, especially for the salt sensitive genotype, which needs to be investigated further.  相似文献   

4.
The influence of different nitrogen (N) forms on salt tolerance of Pisum sativum L. was investigated. Plants of the pea cultivar “Resal” were subjected to 0 (control) or 90 mM NaCl and one of the following nitrogen forms: 5 mM mineral N supplied as either NO , NH , or NH4NO3 or N supplied by biological N2 fixation (inoculated with Rhizobium leguminosarum bv. viciae). Root and shoot biomass were determined 15, 30, 45, and 60 d after emergence, and Na+, K+, and Cl concentrations were determined by capillary electrophoresis. Nitrogen sources induced significant differences in plant growth and in ion accumulation and distribution and in differentially affected salt tolerance. In the absence of salt, the largest biomass accumulation was obtained with NH4NO3. In the presence of NaCl, NO ‐fed plants experienced less salt toxicity than plants supplied with other N sources, as indicated by lower Na+ and Cl and higher K+ concentrations in the shoot. The results also suggest that it is possible to establish an effective symbiosis under saline conditions, provided that a salt‐tolerant Rhizobium isolate with good N2‐fixing ability is used. The use of the appropriate N‐fertilizer source can enhance the growth of Pisum sativum. Hence, NH4NO3 may be preferably used under non‐saline and NO under moderately saline conditions.  相似文献   

5.
A short-term experiment was conducted to investigate whether the effect of rootstock on plant response to salinity depends on the solanaceous species used as scion. Tomato cv. ‘Ikram’ and eggplant cv. ‘Black Bell’ were grafted onto two tomato interspecific hybrids (‘Beaufort’ and ‘He-Man’). Plants were grown in an open soilless cultivation system and supplied with two nutrient solutions: non-saline control and a saline solution (adding 15 mM Na2SO4, 3.7 dS m?1). Plant dry biomass production and partitioning were influenced by salinity, but its effect was depending on the rootstock/scion combination. ‘Beaufort’ eliminated the deleterious effect of salinity when tomato was used as scion, but reduced (?29.6%) the shoot biomass of eggplant. ‘He-Man’ had a different effect on scion growth under saline conditions: shoot biomass was less reduced in eggplant (?20.6%) than in tomato (?26.8%). Under salt stress, ‘Beaufort’ reduced the accumulation of Na+ in tomato leaves more than in eggplant, whereas no differences were observed between tomato and eggplant grafted onto ‘He-Man’. Stem Na+ accumulation followed a different pattern. The increase of Na+ in the stems was similar for tomato and eggplant grafted onto ‘Beaufort’, whereas stems of tomato accumulated more Na+ compared to eggplant grafted onto ‘He-Man’. The opposite response of the tested rootstocks to salt stress when the scion was either tomato or eggplant seems to be partially related to the capacity of the rootstock and scion to exclude Na+ from the shoot. However, the results of nutrient accumulation within plant tissues imply that other mechanisms in addition to ion competition are involved in the salt resistance of grafted plants.  相似文献   

6.
Physiological responses to salt stress were investigated in two cotton (Gossypium hirsutum L.) cultivars (Pora and Guazuncho) grown hydroponically under various concentrations of NaCl. Dry matter partitioning, plant water relations, mineral composition and proline content were studied. Proline and inorganic solutes were measured to determine their relative contribution to osmotic adjustment. Both leaf water potential (Ψw) and osmotic potential (Ψs)decreased in response to NaCl levels. Although Ψwand Ψs decreased during salt stress, pressure potential Ψp remained between 0.5 to 0.7 MPa in control and all NaCl treatments, even under 200 mol m?3 NaCl. Increased NaCl levels resulted in a significant decrease in root, shoot and leaf growth biomass. Root / shoot ratio increased in response to salt stress. The responses of both cultivars to NaCl stress were similar. Increasing salinity levels increased plant Na+ and Cl?. Potassium level remained stable in the leaves and decreased in the roots with increasing salinity. Salinity decreased Ca2+ and Mg2+ concentrations in leaves but did not affect the root levels of these nutrients. The K/Na selectivity ratio was much greater in the saline treated plants than in the control plants. Osmotic adjustment of roots and leaves was predominantly due to Na+ and Cl? accumulation; the contribution of proline to the osmotic adjustment seemed to be less important in these cotton cultivars.  相似文献   

7.
The watermelon cultivar ‘Crimson Tide’ was grafted onto three different rootstocks and grown under saline conditions to investigate effects of salinity on grafted and non-grafted watermelon. One Cucurbita maxima and 2 Lagenarai siceraria landraces (Skp and Brecik) were used as rootstock. Plants were irrigated with two different saline solutions [0.5 (control) and 8.0 dS m?1] by two days interval at the first 15 days of experiment and one day interval at the last 15 days of experiment. The experimental design was randomized block. Each treatment was replicated three times with three plants. Grafted plants had higher plant growth parameter than non-grafted plant under saline conditions. Reduction in shoot dry weight was 41% in non-grafted plants while it was varied from 22% to 0.8% in grafted plants under saline conditions. Accumulation of sodium (Na+) was higher in non-grafted plants than grafted one. Calcium (Ca++) and magnesium (Mg++) concentration were higher in all grafted plants than non-grafted plants. Non-grafted plants had higher K+ concentration than other treatments under saline conditions. Ratios of Ca++/Na+, K+/Na+ and Mg++/Na+ were significantly affected by salt treatments and positively correlated with plant growth parameters. The ratios were lower in non-grafted plants than grafted plants under saline conditions.  相似文献   

8.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   

9.
不同铵钾比对高铵下拟南芥地上部和根系生长的影响   总被引:1,自引:0,他引:1  
宋海燕  李光杰  施卫明 《土壤》2016,48(6):1077-1084
钾在缓解植物铵毒害的过程中起着重要的作用。本文研究了高铵(30 mmol/L)条件下,不同铵钾比(7.5︰1和150︰1)对拟南芥(Col-0)主根、侧根以及地上部生长的影响。结果表明:30 mmol/L NH4+条件下,高铵钾比(150)处理显著加重了拟南芥铵毒害现象,地上部和根系生长所受的抑制作用更为明显并导致更严重的氧化胁迫。相比低铵钾比水平,在高铵处理下,高铵钾比使得拟南芥主根伸长量降低57.4%,侧根数量减少33.3%,而地上部鲜重减轻69.9%。DAB(3,3¢-二氨基联苯胺,3,3¢-diaminobenzidine)叶片染色结果表明,不加铵处理下,外源不同钾水平(0.2和4.0 mmol/L)对拟南芥叶片的氧化胁迫作用没有显著差异;而高铵处理下,相比低铵钾比处理,高铵钾比显著增加了叶片中过氧化氢的含量,加重了其氧化胁迫。伊文思蓝(Evans blue,EB)染色结果表明,不加铵处理下,外源不同钾水平对拟南芥地上部和根部的膜透性没有显著差异,而高铵处理下,高铵钾比显著增强了拟南芥地上部和根部的膜透性,表明其对细胞的伤害程度加重。可见,高铵抑制拟南芥根系和地上部生长,高铵钾比则会加重这种抑制,其原因除了高浓度钾能减少植物对铵的吸收外,可能与高铵钾比条件加剧了植物的氧化胁迫有关。因此,适宜的铵钾比在植物应对铵毒害的过程中发挥重要作用。  相似文献   

10.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

11.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

12.
Dry matter (DM) partitioning into root, leaf, stem, shoot dry weight plant?1 response in four cool season C3-cereals viz. wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.) was investigated at 30, 60 and 90 days after emergence (DAE) under eight nitrogen, phosphorus and potassium (NPK) sources: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12 in pot experiment at Dryland Agriculture Institute, West Texas A&;M University, Canyon, Texas, USA during winter 2009-10. A considerable variation in DM partitioning into various plant parts was observed in the four crop species at different growth stages and NPK source. At 30 DAE, 27% of the total DM per plant (TDMPP) was partitioned into roots and 73% into shoots (19% stems + 54% leaf). Only16 % of the TDMPP was partitioned into roots and 84% into shoots (18 % stem + 66 % leaf) at 60 DAE. At 90 DAE, 29% of TDMPP was partitioned into roots and 71 % into shoots (33 % stems + 38 % leaf) at 90 DAE. Percent DM partitioning into stems ranked first (33%) at 90 DAE > at 30 DAE (19%) > at 60 DAE (18 %). With advancement in crops age, DM partitioning into various crop parts increased. The root DM plant?1 (RDMPP) increased from 11.5–722 mg plant?1; stem DM plant?1 (STDMPP) from 8.3–889.0 mg plant?1; leaf DM plant?1 (LDMPP) from 23.1–1031.0 mg plant?1; shoot DM plant?1 (SHDMPP) from 31.3–1921 mg plant?1, and TDMPP increased from 42.9–2693.0 mg plant?1 at 30 and 90 DAE, respectively. Because of the higher N contents in S7 (24:8:16) and S6 (31:11:11) reduced the DM partitioning into various plants parts as well as TDMPP at all three growth stages. The adverse effects of S6 and S7 on DM partitioning was more on oats > rye > wheat > barley. The S4 with 10:10:10 (NPK) and :20S was not toxic at 30 DAE, but at 60 and 90 DAE it became toxic that adversely affected the DM partitioning as well as TDMPP probably may be due its high sulfur (20%) content which lacking in other NPK sources. The DM partitioning to various parts of barley and wheat was more than oats and rye at different growth stages (barley > wheat > rye > oats). Since the DM portioning values were determined on the average of five plants in pot experiment under organic soil at field capacity; in case of field experiments more research is needed on various crop species/varieties under different environmental conditions particularly under moisture stress condition.  相似文献   

13.
Pistachio is one of the most important horticultural crops in Iran. The majority of the pistachio producing regions is located in arid and semi-arid areas with saline conditions. Therefore, selection of suitable rootstocks is important for increasing yield efficiency of this important nut crop. In this study, the effect of four water salinity levels (0.75, 5, 10 and 15 ds m?1) on growth indices and physiological parameters of four Pistacia vera L. rootstocks (Badami-e-Zarand A, Badami-e-Zarand B, Qazvini, and Sarakhs) were investigated under greenhouse conditions. After treatment for three months, leaf dry weight was reduced by about 30-50% at an irrigation water electrical conductivity (ECw) of 10 ds m?1. Badami-e-Zarand B was the most vigorous rootstock at the highest EC. Decreases in root and stem dry weight (average of all rootstocks combined) occurred at water salinity of 10 ds m?1. Chemical analysis of shoot and root indicated that the salinity affected the concentration and distribution of sodium (Na+), potassium (K+), and calcium (Ca2+) in pistachio rootstocks. The concentrations of Na+ and K+ increased with a rise in water salinity levels. Comparison between Na+ concentration of shoot and root showed that all examined rootstocks limited the Na+ transportation to shoot tissue up-to 15 ds m-1, and retained it in the roots. However, this ability was less in the Sarakhs rootstock. Based on measured parameters, Badami-e-Zarand B and Sarakhs could be considered as tolerant and sensitive pistachio rootstocks to water salinity, respectively.  相似文献   

14.
Long-term effects of chemical fertilizers and farmyard manure (FYM) in rice (Oryza sativa)–wheat (Triticum aestivum) cropping system were monitored for two consecutive years after 38 and 39 years on productivity and soil biological properties of Mollisols. The study encompasses varying chemical fertilizer levels of optimum fertilizer rate (120, 26 and 37 kg ha?1 N, P and K, respectively) for both the crops. The treatments were application of 50% NPK, 100% NPK, 150% NPK, 100% NPK + hand weeding (HW), 100% NPK + Zn, 100% NP, 100% N, 100% NPK + 15 t FYM ha?1, 100% NPK(-S) and unfertilized control. The rice and wheat yields were highest with 100% NPK + 15 t FYM ha?1. This treatment also gave maximum and significantly more counts of bacteria, fungi and actinomycetes in soil than all the other treatments after crop harvest. The soil microbial biomass C (410.0 and 407.5 µg g?1) and N (44.53 and 48.30 µg g?1) after rice and wheat, respectively, were highest with 100% NPK + 15 t FYM ha?1, which were significantly higher over all the other treatments. The activities of soil enzymes like dehydrogenase, acid and alkaline phosphatase, arylsulphatase and urease and CO2 evolution rate with 100% NPK + 15 t FYM ha?1 were also found significantly higher over the other treatments. Fertilizer treatments with 100% NPK and 150% NPK were comparable and significantly better than application of 50% NPK, 100% N, 100% NP and 100% NPK(-S) in various studied soil biological properties. Integrated use of 100% NPK with FYM sustained the higher yields and soil biological properties under ricewheat cropping system in Mollisols. Application of Zn and hand weeding with 100% NPK were found better over 100% NPK alone in rice and wheat productivity. Imbalanced use of chemical fertilizers had the harmful effect on soil biological health.  相似文献   

15.
The variety of tomato (Solanum lycopersicum) called ‘Poncho Negro’ by farmers represents an important source of genetic resources of agricultural interest, because it has managed to thrive at levels of salinity and excess B that other varieties of the same species find impossible. This work was conducted under controlled growth conditions in a greenhouse, evaluating and obtaining plant material that served for physiological, chemical, and biochemical determinations. Stress conditions were supplied by irrigation, using different concentrations of sodium chloride (NaCl; 75 and 150 mM) and excess boron (B; 5 and 20 mg L?1). The rate of net carbon dioxide (CO2) assimilation, the quantum efficiency of photosynthesis and the relative water content (RWC) were measured. In addition, B, sodium (Na+), potassium (K+), and calcium (Ca2+), soluble sugars, and proline were quantified. The results suggest that ‘Poncho Negro’ accumulated Na+ mainly in the roots, partly limiting its entry into the aerial parts. In addition, it should be noted that the interaction of B and salinity reduced the movement of Na+ to the leaves. The ability of cv. ‘Poncho Negro’ to minimize leaf Na+ accumulation, accumulate more leaf B than control plants, and maintain its K+ level, when grown with an excess of B, possibly allowed the observed increase in the rate of photosynthesis. In addition, these tomato plants used proline and soluble sugars as osmo-regulators under high-B and saline conditions. Under all stress conditions studied, this variety of tomato was able to regulate its water content, with RWC values of approximately 86%.  相似文献   

16.
Silicon (Si) is known to alleviate a number of abiotic stresses in higher plants including salinity stress. Two independent experiments were conducted to evaluate the role of Si in alleviating salinity stress in two contrasting wheat (Triticum aestivum L.) genotypes, Auqab-2000' (salt sensitive) and SARC-3 (salt tolerant). In the first experiment, genotypes were grown in hydroponics with two levels of salinity (0 and 60 mM NaCl) with and without 2 mM Si in a completely randomized design with four replications. Salinity stress significantly (P < 0.01) decreased all of the growth parameters, increased sodium (Na+) concentration, and decreased potassium (K+) concentration in shoots of both genotypes grown in hydroponics. Silicon significantly improved growth of both genotypes. The increase in growth was more prominent under salt stress (75%) than under normal condition (15%). In the second experiment, both genotypes were grown in normal [electrical conductivity (EC) = 1.23 d Sm–1] and natural saline field (EC = 11.92 d Sm–1) conditions with three levels of Si (0, 75, and 150 g g–1 Si) with three replications in a randomized complete block design. Silicon significantly (P < 0.05) decreased growth reduction in both genotypes caused by salinity stress. The grain yield under salt stress decreased from 62% to 33% and from 44% to 20% of the maximum potential in Auqab-2000 and SARC-3, respectively, when 150 g g–1 Si was used. Auqab-2000 performed better in normal field conditions, but SARC-3 produced more straw and grain yield in saline field conditions. Addition of Si significantly (P < 0.05) improved K uptake and reduced Na+ uptake in both of wheat genotypes and increased the K+/Na+ ratio in shoot. Enhanced salinity tolerance and improved growth in wheat by Si application was attributed to decreased Na+ uptake, its restricted translocation toward shoots, and enhanced K+ uptake.  相似文献   

17.
Using a split‐root system, we aimed to identify the limiting factors for the growth of the halophyte Atriplex portulacoides L. under extreme salinity (800 mM NaCl) conditions. One half of the root system was immersed in complete nutrient solution at 0 or 800 mM NaCl and the other half was immersed in NaCl‐free medium, containing all nutrients or deprived of potassium (K+) or calcium (Ca2+) or nitrogen (N). Data indicate that at high salinity levels A. portulacoides growth is limited by the restrictions imposed by NaCl on N uptake. Next, the alleviation of the adverse impact by salt stress (800 mM NaCl) on plant growth was investigated through urea (U) and/or thiourea (TU) external addition through foliar application. Whether separately or supplied together, both components mitigated the negative impact of salinity on the plant growth by significantly improving the photosynthetic activity parameters [CO2 assimilation rate, stomatal conductance and maximum quantum efficiency of PSII photochemistry (Fv/Fm)], as well as shoot N concentration and the photosynthetic nitrogen‐use efficiency (PNUE). A concomitant increase of protein and free amino acid concentrations was also observed. As a whole, the present study highlights the significance of N in A. portulacoides response to high salinity and suggests that combined application of U and TU could promote the growth of this halophyte potentially useful for saline soil reclamation and revegetation purposes.  相似文献   

18.
Application of organic waste to saline alkaline soils is considered to be a good practice for soil remediation. The effects of applying different organic amendments (e.g., cattle dung, vermicompost, biofertilizer) and earthworm inoculations (Eisenia fetida) on saline soils and cotton growth were investigated during 1 year of cotton cultivation. Compared to the control (applied with inorganic NPK fertilizer), applying organic amendments improved soil physicochemical properties. Biofertilizer application improved available nutrient content, reduced short-term soil electrical conductivity, and produced the highest cotton yield, whereas cattle dung and vermicompost applications resulted in higher soil organic matter content. Application of organic amendments significantly increased soil microbial biomass carbon during the flowering period, which sharply declined at harvest. This was especially true for the biofertilizer treatment, which also exhibited lower nematode abundance compared with the other organic materials. Earthworm inoculation following cattle dung application failed to significantly change soil physicochemical properties when compared to the treatments without earthworm inoculation. Results suggest that biofertilizer application to saline soil would improve soil nutrient status in the short-term, whereas cattle dung application would improve soil organic matter content and increase soil organism abundance to a greater extent. However, different strategies might be required for long-term saline soil remediation.  相似文献   

19.
We studied the growth and ionic composition of five wheat genotypes (Inqlab-91, Uqab 2002, SARC-1, SARC-3, and SARC-5) grown under salinity stress to applied silicon. Plants were grown with three levels of salinity [0, 60, and 120 mM sodium chloride (NaCl)] in the presence of 0, 2, and 4 mM Si in nutrient solution for 40 days. Salinity stress significantly decreased shoot and root biomass in plants with varying degrees. Genotype SARC-3 exhibited higher salt tolerance than other genotypes. Silicon (Si) application significantly (P < 0.05) increased plant biomass at both control as well as under saline conditions. Genotypes differed significantly for their response to applied Si in terms of biomass production. Silicon application significantly (P < 0.01) increased potassium (K+) concentration in shoots. Enhanced salinity tolerance in wheat by Si application was attributed to increased K+ uptake thereby increasing K+/sodium (Na+) ratio and lower Na+ translocation towards shoot.  相似文献   

20.
Fertigation with KNO3 as a means of reducing salinity hazards was tested with peanut (Arachis hypogaea) plants grown on dune sand, resulting in a reduction of plant growth and yield. The objective of this work was to study the interactions between N, K+ and NaCl as well as the effects of the NH4 +/NO3 ratio on vegetative and reproductive growth. Wheat (Triticum aestivum L.) plants were grown in polyethylene pots with fine calcareous dune sand with different proportions of NH4 + and NO3 , under saline (60 mM NaCl) and non‐saline conditions. Three replicates were harvested at the beginning of flowering, and one was grown to grain maturity. NaCl reduced shoot dry weight in all the treatments. Increasing the NH4 + proportion in the total of 6 mM N in the nutrient solution, increased shoot dry weight, did not change nitrogen concentration in the dry mass but increased P percentage, either with or without 60 mM NaCl. The number of tillers produced in each treatment was correlated with dry matter yield. The effect of the NH4 +/NO3 ratio may be explained by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration, by alteration of the cation‐anion balance on the nutrient uptake by roots, which lowered pH of the nutrient solution with increasing NH4 + concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号