首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is a worldwide concern and designation of drought stress adaptive mechanisms is one of the main directions in plant physiology and crop breeding. Genotypes diversity can be used to identify effective unexploited genes and pathways. In order to that, the effect of varying terminal drought intensity treatments on physiological and biochemical traits was evaluated in ILC3279, ICCV2 and FLIP9855 C chickpea lines. Well-watered, intermediate and severe drought treatments were applied from flowering till maturity. Photosynthetic efficiency, membrane stability, soluble sugar and proline content, leaf protein profile, and antioxidant enzyme activities were compared on 1st, 3rd, and 5th week after applying stress. Based on the results, it was found that the susceptibility of photosynthetic machinery of ILC3279 was more than others. Tolerant genotypes responded to drought differently; an increase and a decrease in catalase activity have been observed in ICCV2 and FLIP9855 C, respectively. The prominent role of soluble sugars was observed in ICCV2. Expressions of polypeptides 27 and 45 kDa in tolerant lines refer to their possible role in drought stress adaptation. Generally, in spite of significant variability in chickpea lines to cope with drought, lower ascorbate peroxidase activity, higher peroxidase activity, and higher Fv/Fm ratio can be tested as markers of chickpea drought tolerant.  相似文献   

2.
The enhancement in both frequency and intensity of high temperature, besides its large variability will result in up to 40% yield reduction in rice by the end of 21st century. Vegetative growth in rice continues with day time temperature up to 40°C but development of florets is extremely sensitive to temperature higher than 35°C. The effect of night time temperature stress is even more adverse than day. Heat stress results in deprived anther dehiscence, impaired pollination and abnormal pollen germination that cause floret sterility. The decrease in pollen viability is presumably caused by imbalance in proteins expression, abandoned biosynthesis, partitioning and translocation of soluble sugars, imbalance in phytohormones release, and loss of pollen water content. Rice responds to heat stress by adjusting various physiochemical mechanisms viz., growth inhibition, leaf senescence and alteration in basic physiological processes. Antioxidant enzymes, calcium and iron also play an important role in managing heat stress. Response of rice to heat stress varies with plant ecotype, growth stage, heat intensity and time of stress application. High temperature stress can be managed by developing heat-tolerant genotypes. Rice breeding and screening may be based on anther dehiscence, pollen tube development and pollen germination on stigma.  相似文献   

3.
The root-knot nematode, Meloidogyne javanica (Treub) Chitwood is an important parasite of chickpea (Cicer arietinum L.). Four chickpea genotypes were evaluated for tolerance to M. javanica in naturally infested fields at three locations. Each genotype was evaluated for number of galls, gall size, root area covered with galls and number of egg masses produced. All the cultivars were susceptible or highly susceptible. Seed yield, weight of 100 undamaged seeds, total dry matter and plant height were compared with checks. Chickpea cultivar Annigeri and a local check were used as nematode susceptible checks in all locations. The four promising nematode tolerant genotypes produced significantly greater yield and total dry matter than the checks in fields naturally infested with M. javanica at three locations. These M. javanica tolerant lines represent new germplasm and they are available in the chickpea genebank at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) bearing the identification numbers ICC 8932, ICC 11152, ICCV 90043 and ICCC 42.  相似文献   

4.
Abstract

This study was conducted to investigate the effects of four boron (B) doses (control, 0 kg B ha?1; B1, 1 kg B ha?1; B2, 3 kg B ha?1; and B3, 6 kg B ha?1) in soils deficient in available B (0.19 mg B kg?1) and lime (CaCO3) content (20.7%) on yield and some yield components of five chickpea (Cicer arietinum L.) genotypes, namely Akçin‐91, Population, Gökçe, ?zmir‐92, and Menemen‐92 in central Anatolian Turkey in the 2002 and 2003 growing seasons. Plant height, pods per plant, grain yield, protein content, protein yield, thousand seed weight, and leaf B concentration were measured. Grain yields in all genotypes (except for Gökçe) were significantly increased by 1 kg ha?1 B application. Application of 1 kg ha?1 B increased the yield by an average of 5%. Genotypes studied showed significant variations with respect to their responses to additional B. Akçin‐91 gave the highest grain yield (1704.8 kg ha?1) at 3 kg B ha?1, whereas Population, ?zmir‐92, and Menemen‐92 yielded best (1468.2 kg ha?1, 1483.0 kg ha?1, and 1484.7 kg ha?1, respectively) at 1 kg B ha?1. Interestingly, Gökçe reached to the highest level of grain yield (1827.1 kg ha?1) at the control. Gökçe was a B deficiency B tolerance genotype. The other genotypes appeared to have high sensitivity to B deficiency. This study showed that B deficiency could result in significant yield losses in chickpea under the experimental conditions tested. Thus, B contents of soils for the cultivation of chickpea should be analyzed in advance to avoid yield losses.  相似文献   

5.
The objective of this study was to detect plant hormone levels in different plant parts of chickpea, and to compare cultivars with different characteristics such as simple leaf vs. normal leaves, simple leaf vs. bipinnate leaf, kabuli type vs. desi types, double-podded vs. single-podded. It was found that there was a great variation in basic plant hormone levels among genotypes, and plant hormone concentrations varied according to leaf type, pod and seed characteristics in these genotypes. IAA level in leaves was the highest in ICC 6119 (bipinnate leaf) and followed by ICC 552 (double-pod) and Kusmen 99 (simple leaf), while it was highest level in pods of ICC 552 (double-pod). Zeatin concentration in leaves and pods was the highest level in ICC 6119 (bipinnate leaf). GA3 concentration was the highest in leaves of ICC 6119 (bipinnate leaf). ICC 552 (double-pod) has the highest GA3 in leaves. It was postulated that leaf type and pod characteristics may be related to hormones induced growth and development.  相似文献   

6.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

7.
Leaf mineral content along the crop cycle may explain differences in response to fertilization among strawberry genotypes. A two year field experiment was conducted using responsive (‘Camarosa’, ‘Ventana’) and nonresponsive (‘Camino Real’, ‘Candonga’) to fertilization genotypes under proportional increases in nutrients supply: from a control dose “C” [120 kg nitrogen (N) ha?1, 70 kg phosphorus pentoxide (P2O5) ha?1, 220 kg potassium oxide (K2O) ha?1, 40 kg calcium oxide (CaO) ha?1 and 20 kg magnesium oxide (MgO) ha?1] to “1.33C” and “1.66C” in 2007 and to “1.5C” and “2C” in 2008. Response to fertilization was high (45–120%) at begining of harvesting and low (10-28%) at middle and end of harvesting. Correlation between leaf area and total yields was high (r ≈ 0.73) at begining of harvesting, except on ‘Camino Real’ (late and compact genotype). At begining of flowering and harvesting, responsive genotypes showed higher potassium (K) and lower calcium (Ca) leaf contents than nonresponsive genotypes, accentuated with the fertilization increase.  相似文献   

8.

Purpose

Impacts of a commercially available decay-facilitating microbial inoculum on carbon (C) and nitrogen (N) mineralization were evaluated during decomposition of rice straw in a paddy soil.

Materials and methods

Two incubation experiments were conducted for 105 days with a typical low-yield high-clay soil in central China to monitor effects of straw and the inoculum on CO2 evolution, as well as dissolved organic C (DOC), NH4 +, NO3 ?, and pH under conditions of 15 °C 70 %, 25 °C 40 %, 25 °C 70 %, 25 °C 100 %, and 35 °C 70 % of water-holding capacity (WHC) with adequate N, supplied as urea or manure, respectively.

Results and discussion

Treatments of 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC generally achieved significant higher CO2 evolution while treatment of 25 °C 40 % WHC had least. This was more evident with added manure compared to urea (P?<?0.05). The inoculum generally increased the decomposition of C inputs and the largest increases were in the initial 28 day in treatments 25 °C 70 % WHC, 25 °C 100 % WHC, and 35 °C 70 % WHC; only the 25 °C 40 % WHC actually immobilized C. The CO2 release rates were positively correlated with DOC, but with different slopes within treatments. Despite equivalent N application rates, manure treatments had significantly less N (including NO3 ?, NH4 +, and total dissolved N) than those with urea. Incubation of 25 °C 40 % WHC decreased soil pH the least, probably due to relative low moisture causing delayed nitrification.

Conclusions

The results implied that the inoculum, especially fungi, would adjust to edaphic and N fertilization in regulating organic C mineralization, during which water potential would exhibit a great role in regulating substrate and nutrient availability.
  相似文献   

9.
Emissions of nitrous oxide (N2O), a potent greenhouse gas, from agricultural soil have been recognized to be affected by nitrogen (N) application and temperature. Most of the previous studies were carried out to determine effects of temperature on N2O emissions at a fixed N application rate or those of N application rates at a specific temperature. Knowledge about the effects of different ammonium (NH4+) application rates and temperatures on N2O emissions from tropical agricultural soil and their interactions is limited. Five grams of air-dried sandy loam soil, collected in Central Vietnam, were adjusted to 0, 400, 800 and 1200 mg NH4-N kg–1 soil (abbreviated as 0 N, 400 N, 800 N and 1200 N, respectively) at 60% water holding capacity were aerobically incubated at 20°C, 25°C, 30°C or 35°C for 28 days. Mineral N contents and N2O emission rates were determined on days 1, 3, 5, 7, 14, 21 and 28. Cumulative N2O emissions for 28 days increased with increasing NH4+ application rates from 0 to 800 mg N kg–1 and then declined to 1200 mg N kg–1. Cumulative N2O emissions increased in the order of 35°C, 20°C, 30°C and 25°C. This lowest emission at 35°C occurred because N2O production was derived only from autotrophic nitrification while other N2O production processes, e.g., nitrifier denitrification and coupled nitrification-denitrification occurred at lower temperatures. More specifically, cumulative N2O emissions peaked at 800 N and 25°C, and the lowest emissions occurred at 1200 N and 35°C. In conclusion, N2O emissions were not exponentially correlated with NH4+ application rates or temperatures. Higher NH4+ application rates at higher temperatures suppressed N2O emissions.  相似文献   

10.
Extensive use of synthetic pyrethroids has resulted in concerns regarding their potential effects on human health and ecosystems. In the present study, we evaluated the influence of coexisting Cu2+, Zn2+, soil water contents (15%, 25%, 40% by weight and waterlogged) and temperature levels (15°C, 25°C, 35°C, and 45°C) on the dissipation of cypermethrin, fenvalerate and deltamethrin in red soil. To further clarify the influence of Cu2+ and Zn2+ on biological and chemical dissipation processes, serial concentrations of the synthetic pyrethroids containing Cu2+ (21.3, 50, 100, and 400 mg kg?1) and Zn2+ (35.8, 100, 250, and 500 mg kg?1) were used to spike the soil and then incubated at 25°C in the dark at 25% moisture. The results revealed a very severe inhibitory effect on the dissipation rates with increasing Cu2+ and Zn2+ levels. Conversely, there were no significant decreases in dissipation rates in response to exposure to 50 mg kg?1 Cu2+ or 100 mg kg?1 Zn2+, and the dissipation rates decreased significantly (p?<?0.05) when the Cu2+ and Zn2+ concentration increased to 100 and 250 mg kg?1, respectively, which were the respective maximum field recommended rates. When compared with unsterilized batch treatments, the t 1/2 in sterilized (chemical dissipation) batch treatments increased by 1.0–4.8-fold. Additionally, there was a highly significant difference in the dissipation of pyrethroids in the 15% water content treatments and waterlogged treatments (p?<?0.05). Finally, the difference in the dissipation rates at 15°C and 25°C was significant (p?<?0.05).  相似文献   

11.
Abstract

Milk thistle [Silybum marianum (L.) Gaertn] is an annual plant belonging to the Asteraceae family whose ripe seeds contain flavonoid substances, which are important in the modern pharmaceutical industry. Seed germination is a major factor limiting the establishment of plants under saline conditions. The effect of salinity and temperatures on germination and seedling establishment was studied in two genotypes of milk thistle, an Iranian wild type and German (Royston) type in the laboratory and in the field. Experiments were done with seven salt concentrations [0.1 (control), 1, 3, 6, 9, 12, and 15 dS/m] and three temperatures (15, 25, and 35°C). There were three replications for each treatment, and the experiment was run three times. The results showed that the percentage of germination and the number of normal seedlings at different salt treatment at 15°C were higher than at 25 or 35°C. The mean time to 50% germination was least at this temperature for both genotypes. Results suggested all germination indices and seedling emergence (50%) were achieved at levels up to 9 dS/m salinity at 15°C. Also, seeds at a salinity of 9–15 dS/m will germinate and up to 25% of the control nonstress treatment could emerge at the low temperature of 15°C.  相似文献   

12.
About 90% of chickpea (Cicer arietinum L.) in the world is grown under rainfed conditions where it is subjected to drought and heat stress. Unlike the cultivated chickpea, annual wild Cicer species possess sources of resistance to multiple stress; annual wild Cicer species were therefore evaluated for resistance to drought and heat stress. Eight annual wild Cicer species (Cicer bijugum, C. chorassanicum, C. cuneatum, C. echinospermum, C. judaicum, C. pinnatifidum, C. reticulatum, and C. yamashitae) were compared with special checks, the cvs ICC 4958 and FLIP 87-59C (drought resistant) and ICCV 96029 (very early double-podded). ILC 3279 and 8617 as drought susceptible checks were sown after every 10 test lines. Yield losses due to drought and heat stress in some accessions and susceptible checks (ILC 3279 and ILC 8617) reached 100%. Accessions were evaluated for drought and heat resistance on a 1 (free from drought and heat damage)−9 (100% plant killed from drought and heat) visual scale. Four accessions of C. reticulatum and one accession of C. pinnatifidum were found to be as resistant to drought and heat stress (up to 41.8°C) as the best checks. C. reticulatum should be taken account in short term breeding programs since it can be crossed with the cultivated chickpea.  相似文献   

13.
Fusarium wilt, caused by Fusarium oxysporum Schlechtend.: f. sp. ciceris (Padwick) Matuo & K. Sato, is a major production problem in many countries. A study was conducted to develop an integrated management of Fusarium wilt of chickpea using genotypes, sowing dates (January as early sowing and March/April as spring sowing) and fungicide seed treatments under natural infested plots in research plots and farmers’ fields 2007–2009 cropping seasons. In most cases, sowing date and fungicides did not affect disease parameters and seed yield. Chickpea genotypes showed significant differences in seed yield but different responses for disease parameters. Averaged over locations and seasons, the rate of disease development was higher in early (0.035 units day?1) than spring (0.023 units day?1) sowing. Chickpea genotypes showed different responses in affecting rate of disease development and cumulative wilt incidence in early and late sowing periods. Higher mean seed yield (1.3 t ha?1) was recorded in early than late sowing (1.0 t ha?1) of chickpea. The average seed yield reduction due to spring sowing ranged from 9% to 60% and highest yield losses were observed in FLIP-97–706 and Ghab-3. This study showed that integrating January sowing with genotypes having good levels of resistance for Fusarium wilt and Ascochyta blight helps farmers to narrow chickpea yield gaps in Syria.  相似文献   

14.
Nitrogen balances, i.e. the difference between N 2 fixation inputs and N in harvested products (outputs), and rotational benefits of chickpea ( Cicer arietinum) on soil organic fertility and wheat ( Triticum aestivum) yields were quantified for rain-fed systems in the northern Punjab, Pakistan. The experiments were conducted during 1995–2000 at three sites. The four treatments were continuous wheat (0 N), continuous wheat (+N), chickpea-wheat (0 N) and chickpea-wheat (+N). The +N fertiliser rate was 100 kg N ha -1 applied to the wheat. Grain yields of the wheat with 0 N varied in the range 1.0–3.0 t ha -1, compared with 2.0–3.2 t ha -1 for the N-fertilised wheat. Chickpea grain yields were in the range 0.6–2.0 t ha -1. Chickpea N 2 fixation was assessed using the natural 15N abundance method. Percentage of chickpea N derived from N 2 fixation (%Ndfa) estimates were 58% (Mandra), 65% (Taxila) and 86% (Islamabad). The overall mean %Ndfa was 78%. Crop N fixed by the chickpea varied between sites (87–186 kg N ha -1) and essentially reflected crop biomass. The overall mean N balance for chickpea (crop N fixed minus N removed in grain and above-ground residues) was +28 kg N ha -1. Wheat grain yields responded to chickpea (19–73% increase for the three sites), to fertiliser N (99–136% increase) and to the combination of chickpea and fertiliser N (106–145% increase). Chickpea in the rotation increased soil organic C by 30% and soil N by 38%, relative to the continuous wheat with 0 N. These experiments indicated that chickpea could have a positive N balance, even when shoot residues were removed, and confirmed the rotational benefits of chickpea for improving soil organic fertility and yield of a following wheat crop.  相似文献   

15.
A laboratory study was initiated to investigate the effects of temperature (25, 30, 35, and 40 °C) and water quality on the loss of fertilizer nitrogen (N) through volatilization out of irrigation waters collected from 10 different Arizona sources. A 300‐mL volume of each water source was placed in 450‐mL beakers open to the atmosphere in a constant‐temperature water bath with 10 mg of analytical‐grade ammonium sulfate [(NH4)2SO4] dissolved into each sample. Small aliquots were drawn at specific time intervals over a 24‐h period and then analyzed for ammonium (NH4 +)‐N and nitrate (NO3 ?)‐N concentrations. Results showed potential losses from volatilization to be highly temperature dependent. Total losses (after 24 h) ranged from 30–48% at 25 °C to more than 90% at 40 °C. Volatilization loss of fertilizer N from irrigation waters was found to be significant and should be considered when making decisions regarding fertilizer N applications for crop production in Arizona particularly when using ammonia‐based fertilizers.  相似文献   

16.
Field experiments were conducted during summer (2013/2014) and winter (2014) in two different soil types to evaluate the effect of biochar and P fertilizer application on growth, yield, and water use efficiency of chickpea. Soil types include Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design and replicated three times. Biochar application at 5 t ha?1 significantly increased biomass, grain yield and water use efficiency of biomass production (WUEb) in the clay soil compared to 10 and 20 t ha?1. However, the increase was attributed to the addition of P fertilizer. Biochar application had no effect on yield components in the loamy sand soil, but P fertilizer addition increased number of seeds/pod in the loamy sand soil and number of pods/plant in the clay soil. Biochar and P fertilizer application on growth and yield of chickpea varied in soil types and seasons, as the effect was more prominent in the clay soil than the loamy sand soil during the summer sowing.  相似文献   

17.
Soil solarization is a nonchemical method of soil disinfection achieved by covering the soil surface with sheets of vinyl plastic to generate elevated soil temperature, generally over 45°C. Such elevated temperatures may be detrimental to some nitrifying microorganisms and favorable to others. However, little information exists to indicate how nitrification activity in soil is affected after solarization. We performed several experiments to investigate the effects of soil solarization on nitrification activity. We found that: (1) if a soil was subjected to pretreatment of 45 or 50°C for as little as 1 d, nitrification activity in a subsequent incubation at 30°C was less than that of a soil that did not receive any high-temperature pretreatment. However, if a soil received pretreatments of 45 or 50°C for more than 7 d, nitrification activity in a subsequent incubation at 45 or 50°C was greater than that of soil that did not receive high temperature pretreatment. (2) Nitrification activity in three kinds of soil taken from 0–5 cm depth after solarization treatment was greater at 45°C than 30°C. (3) Nitrification activity at 45°C in soil that had received solarization in the preceding year was greater than that in soil that had not been subjected to solarization. This was consistent with the fact that the population densities of ammonia oxidizers were greater in soils that had been subjected to solarization. These results suggest that soil solarization induces nitrifying microorganisms that are more active at 45–50°C than they are at 30°C, and that the effect of solarization on nitrification persists until the next crop season.  相似文献   

18.
To determine the effect of boron (B) deficiency on biomass, reproductive yield, metabolism, and alterations in seed reserves of chickpea (Cicer arietinum L.) cv. ‘13.G‐256,’ plants were grown in refined sand until maturity at deficient (0.033 mg L?1) and adequate (0.33 mg L?1) B, supplied as boric acid (H3BO3). Boron‐deficient plants exhibited visible deficiency symptoms in addition to reduced number of pods and seeds, resulting in lowered biomass and economic yield. Boron deficiency lowered the concentration of B in leaves and seeds, photosynthetic pigments (leaves), Hill reaction activity, starch (in leaves and seeds), and proteins and protein N (in seeds), whereas phenols, sugars (in leaves and seeds), and nonprotein N (in seeds) were elevated. Specific activity of peroxidase (POX) increased in leaves and pod wall and decreased in seeds, while activity of acid phosphate and ribonuclease were stimulated in leaves, seeds, and pod wall in B‐deficient chickpea.  相似文献   

19.
The legume pod borer, Helicoverpa armigera (Hübn.), is one of the major constraints to chickpea production, and host plant resistance is an important component for the management of this pest. The levels of resistance in the cultivated chickpea are low to moderate, and therefore, we evaluated 17 accessions of perennial Cicer along with three cultivated chickpea genotypes for resistance to H. armigera. There was a significant reduction in both leaf feeding and larval weights when the larvae were fed on the leaves of Cicer microphyllum Benth. accessions ICC 17146, ICC 17236, ICC 17240, and ICC 17248. Relative resistance index based on leaf feeding, larval survival, and larval weight indicated that C. microphyllum accessions ICC 17146, ICC 17236, ICC 17234, ICC 17240, ICC 17243, and ICC 17248 were highly resistant to H. armigera. Under natural infestation, accessions belonging to C. microphyllum, C. canariense Santos Guerra et Lewis, and C. macracanthum M. Pop suffered a damage rating of <2.0 compared to 4.0 in C. judaicum Boiss. accession ICC 17148 (annual species) and 8.5–9.0 in the cultivated chickpeas (1 = <10% leaf area damaged, and, 9 = >80% leaf area damaged). There was considerable diversity in the accessions belonging to perennial wild species of chickpea, and these can be exploited to increase the levels and diversify the basis of resistance to H. armigera in the cultivated chickpea.  相似文献   

20.
This investigation was undertaken to study the compatibility of Mesorhizobium sp. Cicer with captan (fungicide) and chlorpyrifos (insecticide) for growth, symbiotic parameters and yield in chickpea. In an in vitro experiment, a significant reduction in the number of viable mesorhizobia was observed in Mesorhizobium sp. Cicer treated chickpea seeds at the recommended doses of captan (3 g kg?1 seed) and chlorpyrifos (10 ml kg?1 seed) after 4 h storage at 4°C, and further reduction was seen after 8–16 h contact with Mesorhizobium. The results showed that captan was more toxic than chlorpyrifos. In field experiments, improved growth and symbiotic parameters (plant height, dry weight of shoot, nodulation, leghaemoglobin content, chlorophyll content and nitrogen content) and a reduction in per cent damaged by termites and diseases were observed in the Mesorhizobium alone treatment compared with the uninoculated control. Grain yield was increased significantly in treatments with Mesorhizobium alone or in a mixture with fungicide and insecticide (captan and chlorpyrifos) compared with the control treatment. It is evident that chemically treated seeds should always be sown as soon as possible after inoculation. Recommended rates of captan and chlorpyrifos application with Mesorhizobium inoculant as a seed treatment was innocuous to chickpea–Mesorhizobium symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号