共查询到20条相似文献,搜索用时 23 毫秒
1.
Dr Lothar Mueller Axel Behrendt T. Graham Shepherd Uwe Schindler Thomas Kaiser 《Archives of Agronomy and Soil Science》2013,59(2):137-146
Abstract The aim of the study was to analyse aspects of fen soil quality for grassland use with regard to the different topsoil structure and their status of earthification/moorshification (degradation). Fifty fens of different origin, structural status and land use intensity were sampled, analysed and scored by different methods: Visual Soil Assessment, Peerlkamp test and Muencheberg Soil Quality Rating. Suitable soil structure scores were found at different land use intensities with the exception of stock tracks on pastures. These had lower water and air permeability and lower soil strength. Highest visual scores of macrostructure were found where the water table was deeper; while highest overall soil quality scores occurred where the water table was optimum. The accelerated status of moorshification had no effect on the soil quality scores and on the crop yield. At lower levels of soil development (earthification) the crop yield was slightly lower due to higher proportions of inedible plants. It may be concluded that degraded peat soils will have no loss of soil quality and have relatively high soil quality for grassland use if the water table can be managed in a suitable range and the sward quality is maintained. 相似文献
2.
Soil organic carbon(SOC) is the largest terrestrial carbon(C) stock, and the capacity of soils to preserve organic C(OC) varies with many factors,including land use, soil type, and soil depth. We investigated the effect of land use change on soil particulate organic matter(POM) and mineral-associated organic matter(MOM). Surface(0–10 cm) and subsurface(60–70 cm) samples were collected from paired sites(native and cropped) of four contrasting soils.Bulk soils were separated into POM and MOM fract... 相似文献
3.
G. Girmay B. R. Singh H. Mitiku T. Borresen R. Lal 《Land Degradation \u0026amp; Development》2008,19(4):351-367
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Vladimir Ćirić Milivoj Belić Ljiljana Nešić Srđan Šeremešić Borivoj Pejić Atila Bezdan 《Archives of Agronomy and Soil Science》2016,62(12):1654-1664
Soil organic carbon (SOC) has a high impact on the sustainability of ecosystems, global environmental processes, soil quality and agriculture. Long-term tillage usually leads to SOC depletion. The purpose of this study was to determine the impact of different land uses on water extractable organic carbon (WEOC) fractions and to evaluate the interaction between the WEOC fractions and other soil properties. Using an extraction procedure at 20°C and 80°C, two fractions were obtained: a cold water extractable organic carbon (CWEOC) and a hot water extractable organic carbon (HWEOC). The results suggest that there is a significant impact from different land uses on WEOC. A lower relative contribution of WEOC in SOC and a lower concentration of labile WEOC fractions are contained in arable soil compared to forestlands. Chernozem soil was characterized by a lower relative contribution of WEOC to the SOC and thus higher SOC stability in contrast to Solonetz and Vertisol soils. Both CWEOC and HWEOC are highly associated with SOC in the silt and clay fraction (<53 µm) and were slightly associated with SOC in the macroaggregate classes. The WEOC fractions were highly and positively correlated with the SOC and mean weight diameter. 相似文献
5.
不同土壤类型和农业用地方式对土壤微生物量碳的影响 总被引:23,自引:0,他引:23
通过野外调查与室内分析,研究了山东桓台县3种土壤类型(潮土、褐土和砂姜黑土)与农业用地方式(林地、菜地和粮田)对土壤表层(0—10.cm)微生物量碳的影响。结果表明,不同农业用地方式对微生物量碳的影响较大,3种利用方式的微生物量碳含量差异显著,依次为:粮田>菜地>林地;土壤类型不同,土壤微生物量碳含量也不相同。任何一种土壤,菜地的N、P、K含量都高于粮田和林地;有机质含量粮田>菜地>林地;pH值林地>粮田>菜地。全N、有机质与土壤微生物量碳呈极显著正相关,有效P与微生物量碳呈弱负相关,速效K、pH值和微生物量碳不相关。不同用地方式下土壤养分与微生物量碳的相关程度不同。秸秆还田和施用有机肥有利于提高土壤中微生物量碳水平,施用化肥在一定程度上能够增加微生物量碳。 相似文献
6.
Pristine peat soils are characterized by large porosity, low density and large water and organic matter contents. Drainage and management practices change peat properties by oxidation, compaction and mineral matter additions. This study examined differences in physical properties (hydraulic conductivity, water retention curve, bulk density, porosity, von Post degree of decomposition) in soil profiles of two peatland forests, a cultivated peatland, a peat extraction area and two pristine mires originally within the same peatland area. Soil hydraulic conductivity of the drained sites (median hydraulic conductivities: 3.3 × 10?5 m/s, 2.9 × 10?8 m/s and 8.5 × 10?8 m/s for the forests, the cultivated site and the peat extraction area, respectively) was predicted better by land use option than by soil physical parameters. Detailed physical measurements were accompanied by monitoring of the water levels between drains. The model ‘DRAINMOD’ was used to assess the hydrology and the rapid fluctuations seen in groundwater depths. Hydraulic conductivity values needed to match the simulation of observed depth to groundwater data were an order of magnitude greater than those determined in field measurements, suggesting that macropore flow was an important pathway at the study sites. The rapid response of depth to groundwater during rainfall events indicated a small effective porosity and this was supported by the small measured values of drainable porosity. This study highlighted the potential role of land use and macropore flow in controlling water table fluctuation and related processes in peat soils. 相似文献
7.
S. Pulley H. Taylor J. M. Prout S. M. Haefele A. L. Collins 《Soil Use and Management》2023,39(3):1068-1081
Building up stocks of agricultural soil organic carbon (SOC) can improve soil conditions as well as contribute to climate change mitigation. As a metric, the ratio of SOC to clay offers a better predictor of soil condition than SOC alone, potentially providing a benchmark for ecosystem service payments. We determined SOC:clay ratios for 50 fields in the North Devon UNESCO World Biosphere Reserve using 30 cm soil cores (divided into 0–10 cm and 10–30 cm depth samples), with soil bulk density, soil moisture and land-use history recorded for each field. All the arable soils exceeded the minimum desirable SOC:clay ratio threshold, and the ley grassland soils generally exceeded it but were inconsistent at 10–30 cm. Land use was the primary factor driving SOC:clay ratios at 0–10 cm, with permanent pasture fields having the highest ratios followed by ley grass and then arable fields. Approximately half of the fields sampled had potential for building up SOC stock at 10–30 cm. However, at this depth, the effect of land use is significantly reduced. Within-field variability in SOC and clay was low (coefficient of variation was ~10%) at both 0–10 cm and 10–30 cm, suggesting that SOC:clay ratios precisely characterized the fields. Due to the high SOC:clay ratios found, we conclude that there is limited opportunity to market additional carbon sequestration as an asset class in the North Devon Biosphere or similar areas. Instead, preserving existing SOC stocks would be a more suitable ecosystem service payment basis. 相似文献
8.
采用野外采样和室内分析的方法研究了林地、园地、耕地3种利用方式对典型棕壤总有机碳(TOC)、颗粒有机碳(POC)及重组有机碳(HFOC)在0~20 cm、20~40 cm、40~60 cm 3层次中垂直分布的影响。结果表明,与林地相比,园地和耕地各层次的TOC含量和储量均显著下降;其分布份额和分布比则为园地中、下层略向上层转移,耕地则明显向中、下层转移。3种利用方式下POC的相对数量均随土层加深而递减,林地开垦为园地和耕地后,POC的相对数量仅在园地上、中层显著降低,分别减少6.67和1.70个百分点,而耕地则各层次均显著降低,其相对数量分别减少13.65、5.43和3.03个百分点;HFOC的相对数量随干预强度和土层深度增加而增大,耕地和园地比林地分别高出:上层5.77和4.00个百分点、中层10.44和6.40个百分点、下层7.35和3.92个百分点,且差异均显著。因此,将林地棕壤开垦为园地或耕地后应注重有机物料的投入,以减缓因开垦对有机碳所造成的损失和不尽合理的分布状况。 相似文献
9.
To investigate the changes of hydrological properties of peat soil in course of soil development, field measurements at 84 fen sites (Histosols) in 19 fen regions of North‐East Germany were carried out. Capillary water supply at all the stages of soil development was not limited up to 70 cm of ground water level. Worsening of plant water supply was the result of mud accumulation in the capillary fringe, ground water levels located deeper than 70 cm below soil surface, low hydraulic conductivity in the ground water zone, and hysteresis effects, affected by high dynamics of ground water level during the day. 相似文献
10.
The influence of different types of urban land use on soil microbial biomass and functional diversity in Beijing,China 总被引:1,自引:0,他引:1
Soil microbes in urban ecosystems are affected by a variety of abiotic and biotic factors resulting from changes in land use. However, the influence of different types of land use on soil microbial properties and soil quality in urban areas remains largely unknown. Here, by comparing five types of land use: natural forest, park, agriculture, street green and roadside trees, we examined the effects of different land uses on soil microbial biomass and microbial functional diversity in Beijing, China. We found that soil properties varied with land uses in urban environments. Compared to natural forest, soil nutrients under the other four types of urban land use were markedly depleted, and accumulation of Cu, Zn, Pb and Cd was apparent. Importantly, under these four types of land use, there was less microbial biomass, but it had greater functional diversity, particularly in the roadside‐tree soils. Furthermore, there were significant correlations between the microbial characteristics and physicochemical properties, such as organic matter, total nitrogen and total phosphorus (P < 0.05), suggesting that lack of nutrients was the major reason for the decrease in microbial biomass. In addition, the larger C/N ratio, Ni concentration and pool of organic matter together with a higher pH contributed to the increase in microbial functional diversity in urban soils. We concluded that different land uses have indirect effects on soil microbial biomass and microbial community functional diversity through their influence on soil physicochemical properties, especially nutrient availability and heavy metal content. 相似文献
11.
基于GIS的土壤有机碳储量核算及其对土地利用变化的响应 总被引:6,自引:3,他引:6
土地利用变化是影响土壤有机碳储量变化的重要驱动因素,为了进一步探讨土地利用变化对土壤碳储量的影响,该文根据土壤样点数据、土壤类型图、土地利用类型图,分析了江苏省1985年和2005年表层土壤有机碳密度的变化以及土地利用变化对表层土壤有机碳密度的影响,主要结论如下:1)江苏省表层土壤有机密度的空间变化趋势为:黄淮平原生态区南北差异明显,北部的沂沭泗平原丘岗以增加为主,南部的淮河下游平原以减少为主;沿海滩涂与海洋生态区持平为主;而长江三角洲平原生态区表现不一:沿江平原丘岗生态亚区以增加为主,而茅山宜溧低山丘陵生态亚区和太湖水网生态亚区均表现为有机碳密度的减少;2)各地类表层土壤有机碳密度均有所增加;耕地-林地、草地;草地-林地、建设用地;建设用地-耕地、草地、林地;水域的转出以及未利用地的转出等转换类型有利于土壤碳储量的增加、其他地类间的转换会造成一定的碳排放。 相似文献
12.
Barbara Kraigher Janez Hacin Ivan Mahne Ines Mandic-Mulec 《Soil biology & biochemistry》2006,38(9):2762-2771
Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled from the Ljubljana Marsh under different seasonal conditions. Substrate-induced respiration and dehydrogenase activity were used as indicators of total microbial activity. Both methods indicated higher microbial activities in the fen soil with the higher SOC content on all dates of sampling. To determine whether the differences in microbial activity were associated with differences in the microbial community structures, terminal restriction fragment length polymorphism (T-RFLP) of bacterial 16S rRNA genes was performed. Comparison of the T-RFLP profiles revealed very similar community structures in both fens and in the two seasonal extremes investigated. This suggested a stable community structure in the two fens, which is not affected by the SOC content or seasonal variation. In addition, a bacterial 16S ribosomal RNA gene based clone library was prepared from the fen soil with the higher SOC content. Out of 114 clones analysed, approximately 53% belonged to the Proteobacteria, 23% to the Acidobacteria, 21% to a variety of other taxa, and less than 3% were affiliated with the Firmicutes. 相似文献
13.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
不同土地利用方式对黄河三角洲盐碱地土壤理化性质的影响 总被引:4,自引:0,他引:4
采用野外调查取样和室内分析相结合的方法,分析3种不同土地利用方式对黄河三角洲河口区盐碱地土壤理化性质的影响。结果表明:1)刺槐林地土壤表层0~10 cm有机质和全氮质量分数均最高,分别为17.30和1.04g/kg,0~20 cm平均土壤密度(1.33 g/cm3)和0~100 cm平均土壤电导率(290.25μs/cm)均小于柽柳林地和棉花地,0~20 cm平均土壤孔隙度(51.91%)和黏粒质量含量(3.99%)均大于柽柳林地和棉花地;2)柽柳林地0~100cm平均土壤pH值为6.77,极显著低于刺槐林地和棉花地(P<0.01),平均土壤速效钾质量分数最高(104.47 mg/kg),极显著高于棉花地(P<0.01),而与刺槐林地差异不显著,0~100 cm平均土壤速效磷质量分数为棉花地>柽柳林地>刺槐林地;3)人工栽植的刺槐林地土壤理化性状优于天然更新的柽柳林地和人工耕作的棉花地。研究结果可为黄河三角洲河口区盐碱地土地合理利用和改良提供参考。 相似文献
15.
16.
Anastasia V. Vasilchenko Lyudmila V. Galaktionova Nikolay Yu. Tretyakov Sergey M. Dyachkov Alexey S. Vasilchenko 《Soil Use and Management》2023,39(1):618-633
The presence of aggregates of various sizes in the soil is an important condition for soil carbon sequestration. In this system, microbial biomass is a key link. This work was devoted to the study of the influence of land use systems on the distribution of SOС, MB-SIR, microbial activity and eco-physiological indices (qCO2, QR, MB-SIR/SOС and qCO2/SOС) in relation to the size of soil aggregates. The distribution of SOС, MB-SIR and mineralization activity among the aggregates was heterogeneous. In the soil of crop rotation, high mineralization activity and MB-SIR were found in the aggregates 0.5–0.1 mm, in the monoculture soil in aggregates <0.1 mm and in the control soil in the aggregates 1–0.25 mm. There was a general trend towards a decrease in microbial activity, MB-SIR and SOС availability with an increase in aggregate size. In agricultural soils, microbial activity was determined by large aggregates (>5 mm), while in the control soil, by the aggregates 5–1 mm. Depending on the type of site and the size of aggregates, the differences in microbial metabolism were revealed. The qCO2 and QR values decreased, and the MB-SIR/SOС and qCO2/SOС increased in the series: control soil > crop rotation > monoculture. In the control soil, the values of the eco-physiological indices decreased with decreasing aggregate size. And vice versa, in agricultural soils, these parameters were the highest in the microaggregates (<0.25 mm). The monoculture soil, in contrast to the control soil and crop rotation soil, turned out to be more energy efficient. 相似文献
17.
Soils receiving organic manures with and without chemical fertilizers for the last 7 yr with pearlmillet–wheat cropping sequence were compared for soil chemical and biological properties. The application of farmyard manure, poultry manure, and sugarcane filter cake alone or in combination with chemical fertilizers improved the soil organic C, total N, P, and K status. The increase in soil microbial‐biomass C and N was observed in soils receiving organic manures only or with the combined application of organic manures and chemical fertilizers compared to soils receiving chemical fertilizers only. Basal and glucose‐induced respiration, potentially mineralizable N, and arginine ammonification were higher in soils amended with organic manures with or without chemical fertilizers, indicating that more active microflora is associated with organic and integrated system using organic manures and chemical fertilizers together which is important for nutrient cycling. 相似文献
18.
Soil structure of arable and non‐arable land in the Western Siberian Grain Belt in Russia—Application of the soil fingerprint code for topsoil characterization 下载免费PDF全文
Maria Störrle Lisa Hagedorn Andrey Yurtaev Hans‐Jörg Brauckmann Gabriele Broll 《植物养料与土壤学杂志》2016,179(4):510-519
Soil structure is a key indicator for soil quality. Often, a degradation of the soil structure is the result of inappropriate land management. This investigation was carried out in the Western Siberian forest steppe, because soil degradation is an important issue in this part of the Siberian Grain Belt. Therefore, soil structure and further soil properties were examined in the vicinity of the city of Tyumen, Russia. Arable and non‐arable sites were compared by means of the soil fingerprint code (SFC). With SFC the soil surface conditions, chemical and physical parameters of the topsoil were recorded and evaluated in two depths: 0–5 cm and 5–30 cm. The suitability of the SFC to quantify changes of the soil structure of the topsoil was tested. The SFCs of arable and non‐arable sites show that soil structure deteriorates due to arable use. The percentage of granular aggregates decreases and the percentage of subangular blocky and angular blocky aggregates increases. Furthermore, ploughing leads to strong clod formation. Differences in soil structure between 0–5 cm and 5–30 cm soil depth were smaller at arable sites in comparison to non‐arable sites. It was ascertained the SFC is suitable to quantify changes of the soil structure. 相似文献
19.
适宜超高压处理条件脱除大蒜臭味保持抗氧化和抑菌能力 总被引:2,自引:2,他引:2
为了提升大蒜头产品的品质,该研究将超高压技术应用于大蒜头产品处理中,探究了在200、300、400、500 MPa压力条件下处理10 min,大蒜风味物质,尤其是含硫挥发性化合物的变化,同时考察超高压对大蒜主要活性成分大蒜素含量、抗氧化和抑菌能力的影响.试验结果表明,超高压处理较于在95℃下60 s的蒸汽漂烫处理,不仅具有良好的杀菌作用,同时还可以去除大蒜中的刺激性风味,起到脱臭作用.大蒜经500 MPa处理后,主要蒜臭味嗅感物质二烯丙基二硫化物含量降低至30.69%,经过热处理的大蒜,二烯丙基二硫醚化合物则降低至54.68%,与超高压处理后的大蒜具有显著性差异(P<0.05).500 MPa处理后的大蒜中大蒜素浓度上升至0.079 mmol/L,高出热处理组具有显著性差异(P<0.05);铁离子还原能力较热处理组高出64.24%,具有显著性差异(P<0.05),1,1-二苯基-2-三硝基苯肼清除率高出热处理组28.68%,具有显著性差异(P<0.05);经热处理后的大蒜均丧失全部抑菌能力,而超高压处理后的大蒜对不同种的细菌仍具有一定的抑菌能力,对黑曲霉的抑菌能力与无处理组无显著差异.相关性分析结果显示,大蒜的抑菌能力与硫醚类化合物显著相关(r>0.884),与二烯丙基二硫醚、总酚含量未呈现显著相关,抗氧化能力未与硫醚类化合物含量、二烯丙基二硫醚、总酚呈显著相关趋势.研究结果为大蒜头产品的品质改良提供参考. 相似文献
20.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed. 相似文献