首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

2.
Because soil biota is influenced by a number of factors, including land use and management techniques, changing management practices could have significant effects on the soil microbial properties and processes. An experiment was conducted to investigate differences in soil microbiological properties caused by long- and short-term management practices. Intact monolith lysimeters (0.2 m2 surface area) were taken from two sites of the same soil type that had been under long-term organic or conventional crop management and were then subjected to the same 2.5-year crop rotation [winter barley (Hordeum vulgare L.), maize (Zea mais L.), lupin (Lupinus angustifolius L.), and rape (Brassica napus L. ssp. oleifera)] and two fertilizer regimes (following common organic and conventional practices). Soil samples were taken after crop harvest and analyzed for microbial biomass C and N, microbial activity (fluorescein diacetate hydrolysis, arginine deaminase activity, and dehydrogenase activity), and total C and N. The incorporation of the green manure stimulated growth and activity of the microbial communities in soils of both management histories. Soil microbial properties did not show any differences between organically and conventionally fertilized soils, indicating that crop rotation and plant type had a larger influence on the microbial biomass and enzyme activities than fertilization. Initial differences in microbial biomass declined, while the effects of farm management history were still evident in enzyme activities and total C and N. Links between enzyme activities and microbial biomass C varied depending on treatment, indicating differences in microbial community composition.  相似文献   

3.
The type of conservation-tillage management employed could impact surface-soil properties, which could subsequently affect relationships between soil and water quality, as well as with soil C sequestration and greenhouse gas emissions. We determined soil bulk density, organic C and N fractions, plant-available N, and extractable P on Typic Kanhapludults throughout a 7-year period, in which four long-term (>10 years), no-tillage (NT) water catchments (1.3–2.7 ha each) were divided into two treatments: (1) continuation of NT and (2) paraplowing (PP) in autumn (a form of non-inversion deep ripping) with NT planting. Both summer [cotton (Gossypium hirsutum L.), maize (Zea mays L.), sorghum (Sorghum bicolor L. Moench), soybean (Glycine max L. Merr.)] and winter [wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale L.), crimson clover (Trifolium incarnatum L.)] crops were NT planted throughout the study under each management system. Soil bulk density was reduced with PP compared with NT by as much as 0.15 Mg m−3, but the extent of reduction was inversely related to the time lag between PP operation and sampling event. Soil organic C became significantly enriched with time during this study under NT (0.49 Mg C ha−1 year−1), but not under PP, in which poultry litter was applied equivalent to 5.7 Mg ha−1 year−1 to all water catchments. Soil maintained a highly stratified depth distribution of organic C and N fractions and extractable P under both NT and PP. Inability to perform the PP operation in the last year of this study resulted in rapid convergence of soil bulk density between tillage systems, suggesting that PP had <1-year effectiveness on soil loosening. The high energy cost of PP (ca. 30 kW shank−1) and the lack of sustained improvement in surface-soil properties put into question the value of PP for improving upon long-term NT management in sandy loam and sandy clay loam Ultisols of the Southern Piedmont USA, unless large effects on crop yield, water quality, or other ecosystem processes warrant its use.  相似文献   

4.
An outdoor study was undertaken using polyethylene containers to assess the suitability of different organic residues, soybean straw (Glycine max L. Merril.), wheat straw (Triticum aestivum L.), maize stover (Zea mays L.), chickpea straw (citer arietinum L.) and city garbage, as food for the tropical epigeic earthwormPerionyx excavatus, and to assess the influence of this earthworm on the decomposition of these materials. Maize stover was found to be the most suitable of the food materials used. Population growth ofP. excavatus was enhanced by addition of these organic materials in the temperature range 24°-30°C, while the population was adversely affected above 30°C in a vermiculture system. Addition of earthworms accelerated the breakdown of residues, which ultimately resulted in a lowering of the C:N ratio, water-soluble carbon and carbohydrates, and increased ash percentage and cation exchange capacity compared with their respective controls.  相似文献   

5.
Temperature is a limiting factor on legume-Bradyrhizobium symbiosis of subtropical plants in the temperate region. Twelve strains of Bradyrhizobium spp. that nodulate pigeonpea [Cajanus cajan (L.) Millsp], and cowpea [Vigna unguiculata (L.) Walp], were evaluated for tolerance to three temperature regimes (20°C/10°C, 30°C/20°C, and 38°C/25°C day/night temperature) by determining their growth following exposure to the regimes. The five most temperature-tolerant strains were further evaluated for symbiotic effectiveness with pigeonpea and cowpea under controlled temperatures. These strains were USDA 3278, USDA 3362, USDA 3364, USDA 3458, and USDA 3472. Plant heights of both crops were generally independent of Bradyrhizobium strains and were dependent mainly on temperature regimes. Plant heights were the shortest at the lowest temperature. At the lowest temperature regime, biological nitrogen (N) fixation by pigeonpea was almost completely inhibited. Cowpea genotype IT82E-16 inoculated with USDA 3458 formed the most effective symbiosis. The 30°C/20°C temperature regime was optimum for effective symbiotic association in both crops, and also for Bradyrhizobium survival.  相似文献   

6.
In this study, the effects of growing maize plants on the microbial decomposition of easily degradable plant residues were investigated in a 90-day pot experiment using a sandy arable soil. Four treatments were carried out: (1) untreated control, (2) with freshly chopped alfalfa residues (Medicago sativa L.) incorporated into soil, (3) with growing maize plants (Zea mays L.), and (4) with growing maize plants and freshly chopped alfalfa residues incorporated into soil. The amount of alfalfa residues was equivalent to 1.5 mg C g−1 soil and 120 μg N g−1 soil. At the end of the experiment, only the combination of growing maize plants and alfalfa residues significantly increased the contents of microbial biomass C, microbial biomass N, and ergosterol in soil compared to the non-amended control. The dry weight of the maize shoot material was more than doubled in the treatment with alfalfa residues than without. In treatment (2), 6% of the alfalfa residues could be recovered as plant remains >2 mm. In treatment (4), this fraction contained 14.7% alfalfa residues and 85.3% maize root remains, calculated on the basis of δ 13C values. This means that 60% more alfalfa-C was recovered than in treatment (2). The reasons for the retardation in the breakdown of alfalfa residues might be water deficiency of soil microorganisms in the increased presence of maize roots. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 23% of the alfalfa residues were found as CO2 monitored with a portable gas analyzer with a dynamic chamber. The discrepancy is probably due to problems in measuring peak concentrations of CO2 evolution in the two alfalfa treatments at the beginning of the experiment and in the two maize treatments at the end, especially in treatment (4).  相似文献   

7.
碳酸氢根与水肥同层对玉米幼苗生长和吸收养分的影响   总被引:4,自引:1,他引:4  
把水分(NaHCO3溶液或纯水)供应于底施了铵态或硝态N肥的土层内,以研究HCO3-及水肥供应方式对石灰性土壤上玉米生长及养分吸收的影响。结果表明,在限制灌水量的条件下,在土壤上层供应HCO3-显著抑制根系生长,但在下层供应对生长无明显影响;当施用不同形态N素时,HCO3-对N素吸收并无明显影响;此外,供应HCO3-溶液能明显提高灌水土层的土壤pH。总体来看,在供试条件下,HCO3-对玉米幼苗生长量、根系分布及养分吸收量的影响均较为有限,而后三者主要受施肥灌水层次的影响,即:在土壤上层施肥灌水,幼苗生长量显著降低;而在下层施肥灌水是一种节水节肥的水肥供应方式。但下层施肥灌水不利于植株的直立性。因为下层施肥灌水时根系主要分布在下层,在上层分布数量极少;而上层施肥灌水根系在上下两层中的分布无明显差异;下层施肥灌水的玉米植株,其N、P、K吸收量远高于上层施肥灌水的植株。  相似文献   

8.
Summary It is commonly assumed that the adverse effect of plant residues on crop yields is largely or partly due to phytotoxic compounds leached from these residues or produced by their decomposition. There has been substantial support for the hypothesis that the phytotoxic compounds responsible for reduced crop yields are phenolic acids such as p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid. To test the validity of this hypothesis, we studied the effects of nine phenolic acids (caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid) on (1) seed germination of corn (Zea mays L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale cereale L.), sorghum [Sorghum bicolor (L.) Moench], wheat (Triticum aestivum L.), and alfalfa (Medicago sativa L.) on germination paper and soil, (2) seedling growth of alfalfa, oats, sorghum, and wheat on germination paper and soil, and (3) early plant growth of corn, barley, oats, rye, sorghum, and wheat in soil. The results showed that although the phenolic acids tested affected germination and seedling growth on germination paper, they had no effect on seed germination, seedling growth, or early plant growth in soil even when the amounts applied were much greater than the amounts detected in soil. We conclude that the adverse effect of plant residues on crop yields is not due to phenolic acids derived from these residues.  相似文献   

9.
The elemental ratios of plant tissues are associated with the adaptive and competitive success of a plant species in an ecosystem. So far, no study has evaluated if and how crop–weed competition influences the elemental ratios of competing populations, although such information is important to understand weed infestation dynamics and to improve weed management in agroecosystems. The objective of this study was to analyze weed–crop elemental ratios during interspecific competition between weeds and crops in greenhouse experiments. For this, maize (Zea mays L.) and the weeds Amaranthus viridis L, Bidens pilosa L., and Ipomoea grandifolia (Dammer) O'Donell were grown under seven treatments: maize and weed monocultures, and maize in competition with weeds. Competition between plants practically did not influence growth and nutrient contents of maize but reduced weed growth and nutrient uptake. Maize showed few changes in elemental ratios. In contrast, B. pilosa and I. grandifolia were very sensitive to competition and showed significant increases in C : N, C : P, C : K, N : P, and N : K ratios when grown with maize. A. viridis showed low flexibility of nutrient : nutrient ratios under the same competitive pressure as that faced by B. pilosa and I. grandifolia. The interspecific competition led to increases only in the C : P ratio of A. viridis shoots. Therefore, interspecific competition changes the elemental ratios, mainly of the weeds, and the magnitude of this change is dependent on the plant species involved. Interspecific competition changes plant biomass quality (higher C : nutrient ratios), mainly for B. pilosa and I. grandifolia.  相似文献   

10.
The oxygen uptake and nitrification rates of the organic layer (mat) and underlying soil from two irrigated white clover (Trifolium repens L.) pastures produced on different soil types, were measured at moisture tensions ranging from pF o to 4.2. The highest rate of oxygen uptake was at pF 2 for the mats and at pF 2.8 for the soils. The highest rate of nitrification was at pF 2.8 for both mats and soils. The rate of oxygen uptake/g organic C at moisture tensions greater than pF 2 was of the same order of magnitude for both mats and soils, despite their having widely different organic C contents. This was probably due to the organic matter in both mats and soils having similar C/N ratios. At moisture tensions of pF 2 and less, the oxygen uptake/g organic C was usually greater for the mats than for the soils and this reflected the differences in physical characteristics of the two horizons. There was a greater production of nitrates in the mats than in the soils, at all moisture tensions. At low moisture tensions, there was no significant decrease in nitrates for the mats. Poorly aerated conditions prevailed at low moisture tensions in both soils and this coincided with low uptake of oxygen, respiratory quotients well in excess of unity, and a decrease in nitrate content, probably indicating denitrification.  相似文献   

11.
Three field experiments were conducted on Gray Luvisol (Typic Cryoboralf) soils in northeastern Saskatchewan to compare the effects of alfalfa (Medicago sativa Leyss) stand termination with tillage and herbicides at different times on mineral nitrogen (N) (ammonium-N and nitrate-N) and moisture content of soil in spring (experiments 1 and 2), soil moisture, volunteer alfalfa and dandelion control, plant density, seed yield, protein concentration and N uptake for wheat (Triticum aestivum L.), barley (Hordeum vulgare L), canola (Brassica rapa L.), and pea (Pisum sativum L.) crops (experiment 3). Termination treatments included combinations of times (in mid-June after cut 1, in mid-August after cut 2 and in mid-May during spring) and methods [tillage alone, herbicides alone (glyphosate + 2,4-D amine and also clopyralid + 2,4-D ester in experiment 3) and these herbicides + tillage]. Tillage alone significantly increased spring soil nitrate-N levels over herbicides alone or herbicides + tillage. Termination after cut 1 had the highest levels of soil nitrate-N. There was little effect of time and method of termination on soil ammonium-N and moisture content in spring. Herbicides + tillage generally provided better control of both volunteer alfalfa and dandelion in the four crops than tillage or herbicides alone. In general, alfalfa termination with herbicides alone significantly reduced plant density, seed yield, and N uptake of all crops and protein concentration of cereals only due to effects on levels of soil nitrate-N, dandelion control, and crop injury by clopyralid or 2,4-D residues in soil. Plant density, seed yield, N uptake and protein concentration of crops tended to decline with delay in termination time. The results of this study support the use of some tillage in alfalfa stand termination in helping to control volunteer alfalfa and dandelion and optimize annual crop yields and quality.  相似文献   

12.
The efficiency in the use of nitrogen (N) and potassium (K) may be severely limited in soils with high rates of nutrient loss and that also tend to harden and restrict root growth. The choice of legume residues should take into account the nutrient supply and the need for soil improvement. We assessed the capacity of alley cropping systems to enhance root development, increase nutrient uptake and improve the use of N and K in maize. The experiment included six treatments with residues of four perennial Fabaceae: Clitoria + Gliricidia (C + G); Acacia + Gliricidia (A + G); Leucaena +Gliricidia (L + G); Leucaena + Clitoria (L + C); Leucaena + Acacia (L + A) and a control without legumes. We determined chemical and physical indicators, root length density (RLD) and an efficiency index. The results demonstrate the effects of amending soils with N and K with root growth constrained by hard‐setting. The application of combined residues improved the physical properties of hard‐setting soils and increased basic cations in the topsoil. A combination of residues with N and K fertilizer increased the maize yield. The relative efficiency and RLD in the L + A treatments were highest as a result of increased application through the residues containing N and K. The choice of residues for hard‐setting soils should take into account the supply of nutrients as well as the improvement of soil properties.  相似文献   

13.
The aim was to investigate different organic fertilizers derived from plant materials with respect to their nitrogen and carbon turnover in soil in comparison with organic fertilizers derived from animal‐waste products. In a 64‐day incubation study at 5°C and 15°C, the following fertilizers were used: coarse faba bean–seed meal (Vicia faba L.), coarse meals of yellow and white lupin seeds (Lupinus albus L. and Lupinus luteus L.), Phytoperls® (waste products of maize [Zea mays L.] processing), coarse meal of castor cake (Ricinus communis L.) as a widely used organic fertilizer, and horn meal as a reference fertilizer‐derived from animal waste products. At 15°C, horn meal showed the highest apparent net N mineralization of fertilizer‐derived N, followed by castor cake and the two lupin meals. At 5°C, apparent net N mineralization of fertilizer‐derived N from horn meal and coarse meal of yellow lupin seeds was nearly identical, followed by castor‐cake meal. Net N mineralization from legume‐seed meals showed no or even a negative temperature response, at least temporarily. In contrast, the other fertilizers showed a positive temperature response of net N mineralization. The content in recalcitrant structural components and the decoupling of decomposition of N‐rich and C‐rich tissue components in time are discussed as controlling factors of fertilizer‐N turnover at low temperature. Microbial residues seem to be an important temporary sink of fertilizer‐derived C and N. Legume‐seed meals induced considerable N‐priming effects. Temperature induced differences in the decomposition of total fertilizer C, indicated by changes in the sum of cumulative CO2‐C evolution, total K2SO4‐soluble organic C and microbial‐biomass C were much smaller than indicated by cumulative CO2‐C evolution alone. Our results indicate that legume‐seed meals have the potential to replace horn meal and castor‐cake meal in organic vegetable production, especially when soil temperatures in early spring are still low.  相似文献   

14.
Growth and N‐P‐K uptake in pumpkin (Curcubita moschata Poir.) cv ‘Libby‐Select’ were studied in dryland and irrigated culture. In both moisture regimes, maximum rates of dry matter accumulation occurred between the early and mid‐fruiting developmental stages. Higher total dry matter production with irrigated than dryland culture was primarily associated with increased shoot growth. Concentrations of N, P, and K in foliage generally decreased as pumpkin age increased. Irrigated pumpkins in conjunction with higher total vegetative dry matter accumulated more N, P, and K than dryland pumpkins. Up through early fruit development, N, P, and K accumulation was primarily in leaves and vines and by the late growth stages was almost entirely in the fruit. Total N, P, and K uptake at late fruiting was estimated at 219, 32, and 228 kg/ha in irrigated pumpkins and 180, 21, and 177 kg/ha in dryland pumpkins. Approximately 58% of the N, 52% of the K, and 68% of the P accumulated by late‐fruiting was absorbed by the plant after the early‐fruiting stage in both moisture regimes. Potassium redistribution from vegetative tissues during late fruit development decreased foliar K contents 32% in dryland pumpkins and 21% in irrigated pumpkins.  相似文献   

15.
Traditional soil testing has a limited predictability about available nutrients for plant uptake. Potential of ion exchange resin membrane (RM) or plant root simulator probe is evaluated to determine the effect of moisture on nutrient availability and uptake by corn (Zea mays L.), under greenhouse condition. Available nutrient concentrations measured by RM in two soil series at three soil moisture levels (40%, 60%, and 80% of field capacity) with (W) and without (W/O) the plant at V3 and V7 stages were compared with plant nutrient content at the V7 stage. Soil moisture did not influence RM-extracted nutrient concentrations (except for N at V3). Concentrations of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and iron (Fe) from RM at the V3 stage significantly correlated with shoot uptake. The presence of plant (W- vs. W/O-plant) significantly influenced RM-nutrient concentration at both stages. RM can predict crop nutrient requirements.

Abbreviations: Ion exchange resin membrane (RM); nitrogen (N); phosphorus (P); potassium (K), sulfur (S), field capacity (FC)  相似文献   


16.
The growth of sesame (Sesamum indicum L.) was studied at three root temperature regimes (25/25, 20/10 and 15/15°C day/night) factorially combined with three NO3 : NH4 + ratios (mM ratios, 10:0, 8:2, or 6:4), as a source of nitrogen (N), in the irrigation solution. The air temperature was kept constant at 30°C. Transpiration, nutrient composition, and level of root‐born cytokinins and gibberellins in the xylem exudate were monitored. The two low root temperature regimes, 15/15 and 20/10°C, restricted the growth of sesame, reduced transpiration and increased the accumulation of soluble carbohydrates in the shoot and in the roots compared to the 25/25°C regime. The NO3:NH4 + ratios had no effect on growth. Nutrient contents in the shoot at low root temperatures, particularly K+, NO3 , and H2PO4 were decreased markedly, but Na+ increased relative to it's content in the 25/25°C regime. Increasing NH4 + proportion in the irrigation solution raised total N concentration in the plant tissues at all root temperatures. The amounts of cytokinins and gibberellins in the xylem exudate decreased at the low root temperature regimes relative to the 25/25°C regime. Low root temperature reduced xylem transport of nutrients and root born‐phytohormones, most probably because of reduced water flow through the plant relative to the 25/25°C regime.  相似文献   

17.
Abstract

Nitrogen (N) and potassium (K) fertility management of maize (Zea mays L.) in the humid subtropical Mississippi Delta may differ from a temperate climate because of its use in rotation with cotton (Gossypium hirsutum L.), soil temperatures rarely falling to 0°C, and heavy winter rains that facilitate nutrient losses. An experiment to determine the [N] (concentration=[ ]), phosphorus [P], [K], calcium [Ca], magnesium [Mg], iron [Fe], manganese [Mn], zinc [Zn], and copper [Cu] and their total contents plant?1 of maize grown in rotation with cotton, using N fertility levels of (134, 179, 224, 269, and 314 kg N ha?1) in combination with K fertility levels of (0, 45, 90, and 134 kg K ha?1) was conducted in 2000 and 2001 at Tribbett, MS. Ear leaves, immature ears, and husks collected at growth stage R2 and grain and stover collected 21 days after R6 were dried, weighed, and analyzed for nutrient concentration. Plots were also harvested for yield, kernel weight, grain bulk density, and harvest index (HI). Increased [N] values of about 1.3 mg g?1 occurred in all organs except the stover between 134 and 314 kg N ha?1 N fertility. Stover [N] increased approximately 3.0 mg g?1 within the same N fertility range. Total N content of ear leaves, grain, and stover increased by about 11.0, 550.0, and 730.0 mg plant?1, respectively, with N fertility increased from 134 to 314 kg N ha?1. Yields, kernel weights, grain bulk densities, and harvest indices also increased with added N fertility. Several micronutrient concentrations and contents increased as N fertility increased. Increased K fertility had only limited influence on concentrations of most nutrient elements. The nutrient contents of most elements in the stover increased with added K fertility compared with plots that received no supplemental K fertilizer. These data showed between 139 and 265 kg N ha?1 was permanently removed by grain harvest and suggest that N fertility recommendations for the Mississippi Delta may be low for maize yield goals above 10 Mg ha?1. Added K fertilizer has minimal benefit to maize when soil test levels are adequate but are important to succeeding cotton crops where K uptake during fruiting can exceed the soil's ability to release K for uptake.  相似文献   

18.
Regenerable callus cultures of Zea mays L. (maize) and organogenic callus cultures of Giycine max (L.) Merr. (soybean) were grown on media with decreased levels of N, P, K or Fe for three successive transfers on the same concentration. The soybean callus was generally more sensitive than maize to decreased levels of the elements. After three transfers soybean callus growth was completely inhibited with 1/3 of the normal Fe level and was reduced to 6 to 19% of the control growth with 1/30 of the normal medium levels of N, P or K. The maize callus growth was most sensitive to decreases in N with complete growth inhibition with 1/30 of the normal N concentration. When the P, K or Fe concentrations were 1/30 of normal, the maize callus growth was from 18 to 36% of the control. In most cases the growth decreased progressively from the first to the third transfer on the deficient media.

These studies define the N, P, K and Fe concentrations which can be used for screening the maize and soybean callus systems for genotypic differences and for mutants which might show more efficient element usage or uptake. The studies also show that the levels of these elements in the normal culture media cannot be lowered to one‐third the normal level and still maintain optimal growth.  相似文献   

19.
An outdoor study was undertaken using polyethylene containers to assess the suitability of different organic residues, soybean straw (Glycine max L. Merril.), wheat straw (Triticum aestivum L.), maize stover (Zea mays L.), chickpea straw (citer arietinum L.) and city garbage, as food for the tropical epigeic earthwormPerionyx excavatus, and to assess the influence of this earthworm on the decomposition of these materials. Maize stover was found to be the most suitable of the food materials used. Population growth ofP. excavatus was enhanced by addition of these organic materials in the temperature range 24°-30°C, while the population was adversely affected above 30°C in a vermiculture system. Addition of earthworms accelerated the breakdown of residues, which ultimately resulted in a lowering of the C:N ratio, water-soluble carbon and carbohydrates, and increased ash percentage and cation exchange capacity compared with their respective controls.  相似文献   

20.
The litter carbon (C) pool of a single litter cohort in an agroecosystem is the difference between net primary productivity and decomposition and comprises 11–13% of the total C pool (litter and soil 0–15 cm depth) post-harvest. This litter-C pool is highly dynamic and up to 50% can be decomposed in the first 12 months of decomposition. Thus, understanding litter-C dynamics is key in understanding monthly and annual total ecosystem carbon dynamics. While the effects of management practices such as irrigation and fertilization on productivity are well understood, the effects on decomposition are less studied. While irrigation and fertilization increase productivity, this will only lead to increased litter-C residence time and litter-C pool accretion if these techniques do not also result in equivalent or greater increases in decomposition. Management could potentially have impacts on litter-C accretion by increasing litter inputs, changing plant-C allocation, plant tissue quality, or decomposition rates. We examined carbon loss of one annual cohort of maize litter using in situ nylon litter bags for 3 years in three no-till fields with differing management regimes: irrigated continuous maize with a pre-planting fertilization application and two fertigation events, irrigated maize–soybean rotation with the same fertilization regime as the irrigated continuous maize management regime, and rainfed maize–soybean rotation with a single pre-planting fertilization event. We addressed the effects of these different management regimes on net primary productivity and litter inputs, litter nitrogen (N) concentrations and carbon quality measures, plant C allocation, decomposition rates and the potential changes in the overall litter-C balance. We found that irrigation/fertigation management increased litter inputs, led to changes in plant tissue quality, had no effect on carbon allocation, and increased decomposition rates. This balance of both greater litter inputs and outputs of C from the irrigated management regimes led to a similar litter-C balance for this litter cohort in the irrigated and rainfed management regimes after 3 years of decomposition. Our data clearly show that merely increasing litter-C inputs through irrigation/fertigation practices is not sufficient to increase litter-C residence time because decomposition rates also increase. Therefore, close monitoring of decomposition rates is essential for understanding litter-C pool dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号