首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine drought tolerance characteristics of dryland wheat genotypes based on leaf gas exchange and water-use efficiency in order to identify promising genotypes for drought tolerance breeding. Physiological responses of ten genetically diverse wheat genotypes were studied under non-stressed (NS) and water stressed (WS) conditions using a 2?×?10 factorial experiment replicated 3 times. A highly significant water condition?×?genotype interaction (P?<?0.001) was observed for photosynthetic rate (A), ratio of photosynthetic rate and internal CO2 concentration (A/Ci), ratio of internal and atmospheric CO2 (Ci/Ca), intrinsic (WUEi) and instantaneous (WUEinst) water-use efficiencies suggesting genotypic variability among wheat genotypes under both test conditions. Principal component analysis (PCA) identified three principal components (PC’s) under both test conditions accounting for 84% and 89% of total variation, respectively. Bi-plot analysis identified G339 and G344 as drought tolerant genotypes with higher values of A, T, gs, A/Ci, WUEi and WUEinst under WS condition. The current study detected significant genetic variation for drought tolerance among the tested wheat genotypes using physiological parameters. Genotypes G339 and G344 were identified to be drought tolerant with efficient A, T, gs, A/Ci and water-use under water stressed condition.  相似文献   

2.
Manganese efficiency is a term used to describe the ability of plants to obtain higher relative yields at low Mn supply compared to other species. To evaluate Mn efficiency of wheat (Triticum aestivum L.) and raya (Brassica juncea L.), a greenhouse pot experiment was conducted using Mn deficient Typic Ustochrept loamy sand soil, treated with 0, 50, and 100 mg Mn (kg soil)–1. In the no‐Mn treatment, wheat had produced only 30 % of its maximum dry matter yield (DMY) with a shoot concentration of 10.8 mg Mn (kg DM)–1 after 51 days of growth, while raya had produced 65 % of its maximum DMY with 13.0 mg Mn (kg DM)–1. Taking relative shoot yield as a measure of Mn efficiency, raya was more efficient than wheat. Both crops produced the maximum DMY with 50 mg Mn (kg soil)–1. Even though raya had a lower root length : DMY ratio and a higher shoot growth rate, it acquired higher Mn concentrations in the shoot than wheat under similar soil conditions, because of a 2.5 times higher Mn influx. Model calculations were used to calculate the difference of Mn solution concentration (ΔCL) between the bulk soil (CLi) and the root surface (CL0) that is needed to drive the flux by diffusion equal to the measured influx. The results showed that ΔCL was smaller than CLi, which indicates that chemical mobilization of Mn was not needed to explain the observed Mn uptake even for raya. According to these calculations, the higher Mn influx of raya was caused by more efficient uptake kinetics, allowing for a 4.5 times higher Mn influx at the same Mn concentration at the root surface.  相似文献   

3.
Low phosphorus use efficiency (PUE) is one of the major reasons of poor wheat production worldwide. Among the various approaches used to enhance PUE, polymer coated fertilizers are relatively a new concept. Keeping this in view, a field study was conducted to evaluate polymer coated di-ammonium phosphate (DAP) to enhance growth, yield and PUE of wheat. Commercial DAP and polymer coated DAP (50%, 75% and 100% of recommended dose) were tested in wheat. Results revealed that application of 50% polymer coated DAP produced the same results or higher than 100% commercial DAP. However, the maximum increase in growth (plant height, root length, number of tillers m?2, inter-nodal distance), yield (number of grains per spike, 1000 grain weight, grain yield and biological yield) and phosphorus acquisition by wheat was observed with 100% polymer coated DAP. Moreover, 100% polymer coated DAP increased phosphorus recovery and agronomic efficiency compared to other treatments.  相似文献   

4.
Thermography is proposed to be an alternative non-destructive and rapid technique for the study and diagnosing of salt tolerance in plants. In a pot experiment, 30 cultivars of wheat (Triticum aestivum L.) were evaluated in terms of their leaf temperature and shoot growth and their ion distribution responses to NaCl salinity at two concentration levels: the control with electrical conductivity (EC) of 1 dS m?1 and salinity treatment with EC of 16 dS m?1 (150 mM). A completely randomized block design with factorial treatments was employed with three replications. The results indicated that thermography may accurately reflect the physiological status of salt-stressed wheat plants. The salt stress-based increase in leaf temperature of wheat cultivars grown at 150 mM NaCl reached 1.34°C compared to the control. According to the results obtained, it appears that thermography has the capability of discerning differences of salinity tolerance between the cultivars. Three salt-tolerant wheat cultivars, namely Roshan, Kharchia and Sholeh, had higher mean shoot dry matter (0.039 g plant?1) and higher mean ratio of leaf K+/Na+ (14.06) and showed lower increase in the mean leaf temperature (0.37°C) by thermography compared to the control. This was while nine salt-sensitive cultivars, namely Kavir, Ghods, Atrak, Parsi, Bahar, Pishtaz, Falat, Gaspard and Tajan, had lower mean plant dry matter production (0.027 g plant?1), lower mean ratio of K+/Na+ (9.49) and higher mean increases in leaf temperature (1.24°C).  相似文献   

5.
Random amplified polymorphic DNA (RAPD) markers were used to estimate the genetical variability of three salt-resistant genotypes, SARC-1, SARC-5 and S-24, exposed to saline environment. High-yielding and salt-sensitive variety MH-97 was used as standard for comparison. The behavior of these genotypes under saline environment was analyzed by using the hydroponics screening methods at the seedling stage. One hundred and fifty primers were tested of which 52 primers revealed differences between SARC-1 and SARC-5, 54 revealed differences between SARC-1 and S-24 and 61 revealed differences between SARC-5 and S-24. Polymorphism differences between MH-97 and SARC-1, MH-97 and SARC-5 and MH-97 and S-24 were 53%, 64% and 42%, respectively. Four primer pairs amplified special fragments, which were located in all the three salt-resistant genotypes but none on the salt-sensitive genotype MH-97. Primer GLD-15 (5?-CCGTGGCATT-3?) generated a prominent fragment of length 1460 bp; primer GLF-18 (5?-ACCCGGAACC-3?) produced a fragment of length nearly 980 bp in the salt-resistant genotype; the primer pair GLE-5 (5?-TTCAAGCCCG-3?) located one polymorphic amplified band of 1290 bp and the primer GLH-9 (5?-ATCCAGGTCA-3?) performed as a weak polymorphic band of 640 bp, respectively.  相似文献   

6.
The sensitivity of crop genotypes determines the level of growth reduction by salinity. Effect of salinity levels (7.5 and 15 dihydrate m?1) using completely randomized design (CRD) with four replications per treatment were compared on germination, chlorophyll content, water potential, ionic sodium and potassium (Na+, K+) balance, and other growth-related parameters of six wheat genotypes for varietal differences under long-term salinity stress. Chlorophyll contents at flowering stage and yield aspects at maturity of all the wheat genotypes decreased with increasing salinity. The maximum Na+ concentration was observed at 7.5 and 15 dS m?1 in Bhakhar and Saher-2000, respectively, while minimum Na+ concentration was observed for 9476. However, the maximum K+ concentration and water potential was noticed in 9476 at 7.5 dS m?1. Careful selection of salt-tolerant genotypes for field crops is an important perspective especially in the developing countries facing salinity problem. Our results revealed that the wheat genotype 9476 performed best regarding growth and physiological parameters compared to other wheat genotypes.  相似文献   

7.
不同小麦品种生育期氮素效率差异的变化特征   总被引:1,自引:0,他引:1  
以6个小麦品种(洛麦1、郑麦9023、豫麦18、小偃22、小偃6和小偃107)为材料,设置低氮和高氮两个处理,分别在小麦的4个生育期收获取样,研究了不同小麦品种生育期氮吸收和利用效率差异的变化特征及其与相关生理参数的关系。研究结果表明,氮吸收方面,洛麦1为低氮高效品种,小偃107为高氮高效品种;氮利用方面,豫麦18为低氮高效品种,洛麦1为高氮高效品种;小偃6在两个氮处理中无论是氮吸收还是氮利用均为低效品种。造成小麦氮吸收或利用效率差异的主要时期为灌浆期到成熟期之间的籽粒产量形成阶段。低氮条件下,氮利用高效品种灌浆期的地上部谷氨酰胺合成酶活性也较高,而根系生物量和根系活力与小麦氮吸收效率无明显相关。  相似文献   

8.
施磷量对小麦物质生产及吸磷特性的影响   总被引:14,自引:7,他引:14  
在低磷土壤条件下,以中筋小麦扬麦12号和弱筋小麦扬麦9号为材料,研究了施磷量对小麦物质生产和吸磷特性的影响。结果表明,在施磷量(P2O5)0~180.kg/hm2范围内,植株对磷的吸收量、吸收速率和磷的积累量随施磷量增加而上升;以施磷量108.kg/h2处理的叶面积指数(LAI)、植株茎蘖数、茎蘖成穗率、干物质积累量、花后干物质积累量和子粒产量最高。当施磷量超过108.kg/hm2时,相关物质生产指标则呈下降趋势,说明即使在缺磷土壤上,施磷量有其适宜值。小麦一生对磷的吸收存在两个高峰,出苗至越冬始期为第一个吸收高峰,拔节至孕穗期为第二个吸收高峰。植株磷素积累量的70%~75%是在拔节后吸收,表明拔节期施磷对满足小麦第二个吸磷高峰和磷的最大积累期需磷有重要意义。  相似文献   

9.
By the application of geographic information system (GIS) based on existing databases on soil characteristics, it is possible to quantify and assess categories of soil suitability important for crop cultivation. In this article we demonstrate such methods for winter wheat. The objective was to differentiate the Slovak rural landscape with respect to the possibility of effective winter wheat cultivation. The differentiation was based on soil climatic and production economic parameters. For soil categorization, correlation relationships between the site properties (soil and climatic conditions) and crop biological and agro-technical requirements were considered. The prediction was subsequently interpolated into four suitability categories: soils not suitable for wheat cultivation, less suitable soils, suitable soils, and very suitable soils. The database was developed and each area was added to it as well as the particular category of suitability for wheat cultivation. By using the GIS distribution in Slovakia, the maps of soil suitability categories for wheat cultivation were generated. In Slovakia, 29% of farmland was found to be very suitable for wheat cultivation, 25% suitable, 9% less suitable and 37% non-suitable by our calculations. These categories are characterized in detail and specified from the point of view of geographic, soil, climatic, production, economic and energetic parameters.  相似文献   

10.
磷水平对不同磷效率小麦叶绿素荧光参数的影响   总被引:6,自引:2,他引:4  
采用溶液培养方法,研究了磷水平(0、10、100、500和1000μmol/L)对不同磷效率小麦(西农979和小偃6号)幼苗基部第1叶叶绿素荧光参数与叶绿素含量的影响。结果表明,随着磷水平的增加,两小麦幼苗基部第1叶的叶绿素a荧光参数均表现出先升高后降低的趋势,不同的是小偃6号在磷水平为100μmol/L时就达到了峰值,而西农979的最大值则出现在500μmol/L磷水平下。说明小偃6号(磷高效)的光能转换效率和电子传递效率高于西农979,且受低磷胁迫的影响较小。  相似文献   

11.
In Iran, rice is grown in areas where the groundwater depth (GD) is low. Therefore, water-saving irrigation (WSI) can be used instead of continuous flood irrigation (CFI) in order to use the groundwater. The objectives of this study were to investigate the interaction effects of irrigation regimes and GDs on growth and yield of rice and groundwater contribution (GC) to crop evapotranspiration (ET) in cylindrical greenhouse lysimeters. Irrigation regimes were CFI and intermittent flood irrigation (IFI) with 4- and 8-day intervals (IFI-4 and IFI-8, respectively), and GDs were 0.3, 0.45, and 0.60 m. Results indicated that in a climate condition similar to experimental environment in greenhouse, using IFI-4 at a GD of 0.3 m produced grain yield and straw and root dry matter (DM) similar to those obtained when using CFI, with 53% reduction in irrigation water use. However, straw and root DM increased in CFI with increasing soil column length. Maximum GC/ET (41%) was observed when using IFI-4 at a GD of 0.3 m. A multiple regression equation was presented to estimate GC/ET as a function of GD and soil moisture deficit (SMD). This equation indicates that at a given GD with extension of irrigation intervals and increased SMD GC/ET reached a maximum value followed by a decrease afterwards. Maximum values of GC/ET were obtained at SMD values of 0.47, 0.40, and 0.33 at GDs of 0.3, 0.45, and 0.6 m, respectively.  相似文献   

12.
Abstract

Critical values of boron (B) for wheat nutrition in soil and plant were determined through a pot experiment with twenty-one surface soils of Alluvial flood plain and Red-latertic belt comprising three major soil orders (Entisols, Alfisols, Inceptisols) with four levels of boron. Application of boron significantly increased the dry matter yield as well as uptake of B by plants. Critical concentration of hot calcium chloride (CaCl2) extractable B in soil for wheat was found to be 0.53?mg?kg?1. The critical plant B concentration varied with growth stages and values were 7.4?mg?kg?1 at panicle initiation and 4.18?mg?kg?1 at maturity, respectively. The findings of this investigation also recommend the application of 2?kg?B?1?ha?1 for ensuring B sufficiency to wheat in Indo-gangetic alluvial and Red-Lateritic soils.  相似文献   

13.
冬小麦生物量高光谱遥感监测模型研究   总被引:5,自引:2,他引:5  
【目的】高光谱遥感能快速、实时、无损监测作物长势。研究不同氮磷水平下冬小麦不同生育时期地上部生物量高光谱遥感监测模型,可提高地上部生物量高光谱监测精度。【方法】在西北农林科技大学连续进行了 5 年田间定位试验,设置 5 个施氮水平 (N, 0, 75, 150, 225 和 300 kg/hm2) 和 4 个磷施用水平 (P2O5, 0, 60, 120 和 180 kg/hm2),选用不同抗旱类型冬小麦品种,测定了从拔节期至成熟期生物量与冠层光谱反射率,通过相关分析、回归分析等统计方法,建立并筛选基于不同植被指数的冬小麦不同生育时期生物量分段遥感监测模型。【结果】冬小麦生物量与光谱反射率在 670 nm 和 930 nm 附近具有较高相关性,在可见光和近红外波段处均有敏感波段;在拔节期、孕穗期、抽穗期、灌浆期、成熟期,生物量与归一化绿波段差值植被指数 (GNDVI)、比值植被指数 (RVI)、修正土壤调节植被指数 (MSAVI)、红边三角植被指数 (RTVI) 和修正三角植被指数Ⅱ (MTVIⅡ) 均达极显著相关性 (P < 0.01),相关系数 (r) 范围为 0.923~0.979;在不同生育时期,分别基于 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 能建立较好的生物量分段监测模型,决定系数 (R2) 分别为 0.987、0.982、0.981、0.985、0.976;估计标准误差 SE 分别为 0.157、0.153、0.163、0.133、0.132;预测值与实测值间相对误差 (RE) 分别为 8.47%、7.12%、7.56%、8.21%、8.65%;均方根误差 (RMSE), 分别为 0.141 kg/m2、0.113 kg/m2、0.137 kg/m2、0.176 kg/m2、0.187 kg/m2。【结论】在拔节期、孕穗期、抽穗期、灌浆期、成熟期可以用 GNDVI、RVI、MSAVI、RTVI 和 MTVIⅡ 监测冬小麦生物量,具有较好的年度间重演性和品种间适用性。同时,分段监测模型较统一监测模型具有较好的监测效果及验证效果,能有效改善高光谱遥感监测模型精度。  相似文献   

14.
Wheat (Triticum aestivum L.) is one of the most widely cultivated crops in rainfed areas of Iran, where drought is the main limiting factor on yield. The object of this study was the identification of drought-tolerant genotypes in bread wheat. Forty bread wheat genotypes were tested in separate experiments under drought stress and normal conditions in two years (2009–2010 and 2010–2011). Nine drought-tolerance/susceptibility indices including stress susceptibility index (SSI), mean productivity (MP), tolerance (TOL), stress tolerance index (STI), geometric mean productivity (GMP), yield index (YI), yield stability index (YSI), linear regression coefficient (β) and drought response index (DRI) were determined. Simultanously applied factor analysis used two factors instead of nine indices in this study. Mahdavi was recognized as the most drought-tolerant genotype in both years based on factor analysis. In this study an equation was developed for estimating the Stress Tolerance Score (STS). The results of the equation were identical to those of factor analysis in both years. The equation was much easier to use than factor analysis and is suggested as a screening tool for the identification of drought-tolerant genotypes. In this study, Mahdavi was the most drought-tolerant genotype also corresponding to this equation.  相似文献   

15.
The recent drought in South Africa has reduced the production of both dryland and irrigated wheat. This study evaluated physiological traits of irrigated wheat genotypes in response to water stress (WS) imposed at different growth stages. A 8?×?2?×?3 [(genotypes)?×?(water treatmets; stresses and non-stressed)?×?(growth stages; tillering, flowering and grain filling)] factorial experiment based on a randomised complete block design with three replicates was conducetd. In general, the rate of photosynthesis was unaffected by WS except for genotypes LM43 at tillering and LM98 at grain filling. Stomatal conductance (SC) and transpiration rate (Tr) followed the same treand except for genotype LM35 which reduced its SC and Tr significantly at grain filling. Instantaneous waster use efficiency (IWUE) of genotype LM35 and LM57 was unaffected (p?>?0.05) by WS at tillering but at flowering stage it was affected. However, at grain filling IWUE was affected (p?<?0.05) in genotypes LM35, ML57, LM79 and LM 98. The relative water content was unaffected at tillering except for LM35 and LM47 genotypes whereas at flowering LM57, ML79, LM83 and LM98 were affected. These results indicate some degree of drought tolerance of these genotypes at different growth stages.  相似文献   

16.
Studies were conducted to screen eight sunflower (Helianthus annuus L.) genotypes for their allelopathic potential against weeds and wheat crop, which customarily follows sunflower in Iraq. All sunflower genotypes significantly inhibited the total number and biomass of companion weeds and the magnitude of inhibition was genotype dependent. Among the eight genotypes tested, Sin-Altheeb and Coupon were the most weed-suppressing cultivars, and Euroflor and Shumoos were the least. A subsequent field experiment indicated that sunflower residues incorporated into the field soil significantly inhibited the total number and biomass of weeds growing in the wheat field. Sunflower genotypes Sin-Altheeb and Coupon appeared to inhibit total weed number and biomass more and significantly increased wheat yield compared with the least-suppressive genotypes (Euroflor and Shumoos). Chromatographic analyses by HPLC revealed the presence of 13 secondary metabolites in residues of the tested sunflower genotypes. All the isolated compounds appeared to be phenolic, with the exception of terpinol, which is a terpenoid derivative. The total concentration of Phytotoxins (phenolic compounds) was found to be higher in the most-suppressive potential genotypes compared with the least-suppressive genotypes.  相似文献   

17.
In a 3-year study, grain yield, nitrogen use efficiency (NUE), and grain protein (GP) were evaluated as a function of rate and timing of nitrogen (N) fertilizer application. Linear models that included preplant N, normalized difference vegetation index (NDVI), cumulative rainfall, and average air temperature from planting to sensing (T-avg) were evaluated to predict NUE and GP in winter wheat. GreenSeeker readings were collected at Feekes (F) 3, 4, 5, and 7 growth stages. Combined with rainfall and/or T-avg, NDVI alone was not correlated with NUE. However, NDVI and rainfall explained 45% (r2 = 0.45) of the variability in GP at F7 growth stage. Preplant N, NDVI, rainfall and growing degree days (GDD) combined explained 76% (r2 = 0.76) of the variability in GP at F3. Mid-season climatic data improved the prediction of GP and should therefore be considered for refining fertilizer recommendations when GP levels are expected to be low.  相似文献   

18.
Abstract

A pot experiment was conducted to study the interaction effects of phosphorus and copper on wheat. The soils used were calcareous loamy sand (ls) and non calcareous sandy loam (sl). Four levels of Cu (0, 5, 10 and 20?mg Cu kg?1 soil) and six levels of P (0, 25, 50, 100, 200 and 400?mg P kg?1 soil) were applied in all possible combinations with three replications. Soil pH decreased with Cu application while Olsen P increased with P application in both soils. Growth and yield of wheat improved significantly with graded levels of applied P. However, when any level of P was combined with 20?mg Cu kg?1 soil, severe iron chlorosis of leaves, a drastic reduction in growth and chlorophyll content was observed in calcareous ls only. The results indicated that it was Cu and not P that induced Fe deficiency in wheat grown in alkaline calcareous soil and the Cu requirement of the crop seemed to be much lower in the calcareous ls. Root dry matter, grain and straw yield decreased with increasing levels of applied Cu in ls but in sl maximum increase of 62.5, 74.3 and 63.7 per cent in root, grain and straw yield was observed with a combined application of 400?mg P and 5?mg Cu kg?1 soil over control. Accumulation of Cu in roots decreased the Fe absorption by roots which indicated that Fe chlorosis of wheat leaves is expected when Cu: Fe concentration ratio in root is > 0.30.  相似文献   

19.
The present experiment comprised seven wheat cultivars, two drought levels (0 and 17% PEG-8000) and four replicates. The seeds of six wheat cultivars (Al-lugaimi, Bonus, Kronos, Yecora-rojo, Irena and Sama) were supplied by the King Saud University, Riyaz, Saudi Arabia, whereas S-24 was obtained from the Department of Botany, University of Agriculture, Faisalabad. The seeds were allowed to germinate and grow for 20 days in medium having full-strength Hoagland's nutrient solution or Hoagland's solution with 17% PEG-8000. For the appraisal of drought tolerance, various physiological traits such as gas-exchange attributes (A, E, Ci, gs , and A/E), leaf water relations (ψw, ψs and ψp) and the activities of key antioxidant enzymes (SOD, POD and CAT) were determined. On the basis of biomass and gas-exchange attributes (A, E, and gs ), cultivars Al-lugaimi and Sama were found to be drought tolerant, cultivars Yecora-rojo and Irena moderately drought tolerant, and cultivars S-24, Bonus and Kronos drought sensitive. However, plant osmotic adjustment and the activities of potential antioxidant enzymes (SOD, POD and CAT) were not found to be associated with drought tolerance of the different wheat cultivars.  相似文献   

20.
为了回答温度升高是否会改变痕量元素在士壤中的溶解性,以及作物对痕量元素的生物利用率,在人工气候室模拟未来气候变化温度升高背景下,对种植在不同温度处理的3种春小麦,测定了籽粒中Cd,Cu,Fe和Zn含量.结果发现温度升高引起了土壤中Cd,Cu,Fe和Zn溶解性的显著变化,也显著地影响小麦籽粒中Cd,Cu,Fe和Zn的生物利用率.最高升温3℃处理使西旱1号、2号和3号小麦籽粒中Cd浓度相比对照分别下降43.4%、11.1%和13.4%,Cu浓度相比对照处理分别下降了30.4%、25.1%和10.8%.但Fe和Zn的情况却不同,1℃和2℃升温处理使西旱1号籽粒中Zn浓度比对照处理分别增加了28.9%和35.8%.根据未来气候变化两北地区温度升高1.9℃,估计到2050年,小麦籽粒中的质量分数范围分别在Cd(0.59-0.65)、Cu(5.91-7.64)、Zn(63.73-69.41)和Fe(185.23-202.70) mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号