首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of source or sink limitations on maize (Zea mays L.) yield and yield components is important for the rational design of agricultural practices as well as breeding strategies. There is little information on how the source or sink limitations during the effective grain-filling period affect final kernel quality. The objective of this study was to evaluate the effect of source/sink manipulation in different times after mid-silking stage on kernel weight (KW), kernel number per square meter (KN m?2), kernel protein and oil of different maize hybrids. Field experiments were conducted at the experimental field of College of Agriculture, Shiraz University, Shiraz, Iran, located at Bajgah (52° 35′ N and 39° 4′ E and 1810 m above sea level, asl) during the 2008 and 2009 growing seasons. The treatments included three hybrids and defoliation that were arranged in the main, and subplots, respectively. Leaves removal treatments were imposed when plants were at the mid-silking stage. Silking was taken as the time when 50% of the plants in a row presented visible silks. Defoliations included control, 50% of defoliation at 25 (early defoliation), and 35 (late defoliation) days after silking (defoliation treatments were applied to all plants of each plot). The experiments were conducted in randomized complete block (RCB) design with three replications and the treatments in a split-plot arrangement. Early defoliation greatly reduced kernel growth rate and grain filling period, resulting in lower mean kernel weight. Defoliation treatments modified KN m?2 and kernel number per ear (KNPE) and variations in these components affected protein and oil content. Decreased source size by defoliation decreased kernel protein content dramatically with no significant change in oil content. Differences among treatments appeared to be related only to the post-flowering source/sink ratio. Therefore, to improve protein yield in maize, hybrids and agronomic practices should aim to increase the post-flowering source/sink ratio.  相似文献   

2.
Best nitrogen (N) management practices are most important for increasing maize (Zea mays L.) productivity and profitability in Northwest Pakistan. Field experiments were performed at the New Developmental Research Farm of NWFP Agricultural University, Peshawar during summer 2002 and 2003. Factorial experimental treatments were two plant densities (D1 = 60,000 and D2 = 100,000 plants ha?1) and three N rates (N1 = 60, N2 = 120 and N3 = 180 kg N ha?1) as main plots, and six split N applications in different proportions at different growth stages of maize (cv. ‘Azam’) in two equal, three equal, three unequal, four equal, five equal and five unequal splits at sowing and with first, second, third, and fourth irrigation at two week intervals as subplots. Application of the higher N rate (180 kg ha?1) with 4 to 5 splits significantly increased leaf, stem, ear, and total plant dry weight at silking and physiological maturity as well as grain yield plant?1 at both low and high plant densities. Variation in dry matter partitioning and grain yield in maize due to fluctuation in the rainfall data of the two years suggests zonal specific effective N management practices for sustainable maize production in different agro-ecological zones of Northwest Pakistan.  相似文献   

3.
In this study, the agro-hydrological SWAP model was employed for simulation of grain yield, biomass, evapotranspiration (ET), soil water balance components, and water productivity for maize in Shiraz, Iran. The results showed that the irrigation regime is an important factor effecting on the yield and biomass. In general, the model slightly overestimates the yield, biomass, and leaf area index (LAI) for all irrigation treatments. Statistic criteria for the evaluation of the model such as the root mean square error (RMSE) and mean error (ME) were for grain yield (772 kg ha?1, ?9.6), biomass (265.6 Mg ha?1, ?1.5), and evapotranspiration (ET) (25.1 mm, ?6). The amount of water productivity for maize based on I, P, T, and ET were in the range of 1.74 to 3.22 kgm?3. The results indicated that, in general, the SWAP model was an appropriate tool for simulation of grain yield, biomass, and ET with an acceptable precision. The optimization of irrigation management is made to determine the maximum rate of water productivity (WP). The amounts of WP for maize were in the range of 1.74 to 3.22 kgm?3 based on irrigation (I), precipitation (P), transpiration (T), and ET. The results showed that 500 mm of irrigation depth, water productivity is the highest. Therefore, irrigation management can improve WP and thus the impact of limited water can be reduced.  相似文献   

4.
A two-year field experiment was conducted in 2011 and 2012 at the College of Agriculture and Natural Resources, Shiraz University, Iran to determine the effect of the herbicide trifluralin, mechanical and integrated weed control under different application methods of P fertilizer (midrow banded and surface broadcast) on weed biomass and yield of rapeseed, cultivar Talayeh. Plants grown in unweeded plots at midrow banded and surface broadcast P fertilization methods produced the greatest rapeseed yield (3217 and 1034 kg ha?1, respectively). The increasing effect of P fertilizer on rapeseed yield was less consistent when rapeseed was competing with weeds. It showed that weeds were able to prevent rapeseed from capturing the full benefit of P fertilizer. Trifluralin at 1400 g ha?1 + rotary cultivator + sweep cultivator consistently provided the highest rapeseed grain (2953.5 and 2912 kg ha?1, respectively) and oil yield (1363 and 1320 kg ha?1, respectively). Additionally, trifluralin alone did not provide acceptable full season weed control in rapeseed. Since mechanical weed control implements such as rotary and sweep cultivators are available and inexpensive to Iranian farmers, trifluralin at 1400 g ha?1 + rotary cultivator + sweep cultivator is recommended to improve weed control in rapeseed.  相似文献   

5.
Crop residues are beneficial substances affecting crop production and soil properties. A field experiment was carried out to evaluate the effects of wheat (Triticum aestivum L.) residue rates (0, 25, 50 and 75%) combined with N levels (0, 34.5, 69, 103.5 kg ha?1) on yield and yield components of two red common bean (Phaseolus vulgaris L.) cultivars and to monitor chemical soil parameters. The experiment was conducted at Research Center, College of Agriculture, Shiraz University, Shiraz, Iran for two years (2008–2009). The experiment was conducted as a split–split plot arranged in a randomized complete blocks design with three replications. The highest seed yield was obtained when 25–50% of residues were incorporated. The highest seed yield, seed weight per plant, 100-seed weight and seed number per pod were obtained with 103.5 kg N ha?1 with no significant difference to 69 kg N ha?1. Residue incorporation significantly increased soil organic carbon (SOC) as well as available K and P content. It is possible to sow red common bean as a double cropping by soil incorporation of 25–50% wheat residues with application of 69 kg N ha?1.  相似文献   

6.
Field experiments were conducted in 2010 and 2011 at the Agricultural College of Shiraz University to evaluate the effects of cattle manure and nitrogen (N) fertilizers on soil properties such as soil organic carbon (SOC), soil organic nitrogen (SON), soil electrical conductivity, soil pH and corn yield under two tillage systems. Treatments included tillage systems in two levels as conventional tillage and reduced tillage as subplots, cattle manure (0, 25 and 50 tons ha?1) and N fertilizer (0, 125 and 250 kg N ha?1) as sub-subplots. Results showed that SOC and SON were significantly affected by tillage system in both years of the experiment. SOC and SON were higher in reduced tillage compared to conventional tillage. Tillage system had no significant effect on grain yield, plant height and 1000 seed weight. Increased cattle manure rates at 25 and 50 tons ha?1 increased grain yield by 27% and 38%, respectively, in 2010 and 25% and 25% in 2011. The results showed that application of cattle manure combined with N fertilizer might be an efficient management to increase soil productivity in southern Iran, in soils with poor organic content. Additionally, reduced tillage showed to be an efficient method to increase soil organic matter.  相似文献   

7.
ABSTRACT

Nitrogen (N) and plant density are considered some of the most important factors affecting crop phenology (days to tasseling, silking, and maturity), morphology (leaves plant?1, seeds ear?1, ears 100 plants?1) and grain yield. The effects of plant density and N on phenology, morphology, and yield of maize (Zea mays L.) at Peshawar in northwestern Pakistan were evaluated during 2002 to 2004. The 2 × 3 × 6 factorial experiment was designed having two plant densities (60,000 and 100,000 plants ha?1) and three N levels (60, 120, and 180 kg N ha?1) applied to main plots, while six split application of N in different proportions were applied to subplots in two equal, three equal, three unequal, four equal, five equal and five unequal splits at sowing and with 1st, 2nd, 3rd, and 4th irrigation at two week intervals. All the phenological characteristics were significantly affected by year, plant density, rate and timing of nitrogen application. Year and plant density had no significant effect while rates and split application of N had significant effects on the leaf number plant?1 and seed number ear?1. Year, plant density and N rate had significant effects while N splits had no significant effects on the number of ears 100 plants?1 of maize. Significantly higher grain yield was observed under high plant densities, high N rate and split application of N, while its response to year effects was statistically non-significant. Tasseling, silking and physiological maturity were delayed and maximum grain yield was obtained from those plots maintained at higher plant density. Delaying in the phenological characteristics while increasing the number of leaves and seeds plant?1, and number of ears 100 plant?1 through high rate and split application of N results in maximum yield of maize at Peshawar. This study suggested that maize production can be maximized through high plant density and high N split application.  相似文献   

8.
In order to investigate the changes in chlorophyll fluorescence, chlorophyll, relative water content (RWC) and forage yield of corn and sorghum under various irrigation regimes and combination treatments of barley residue, zeolite and superabsorbent polymer, an experiment was conducted over 2 years in Kerman, Iran. A randomized complete block design arranged in a factorial split was used with three replications. Two irrigation regimes of normal and drought stress based on 70 and 140 mm cumulative pan evaporation, respectively, and two plant species (corn and sorghum) as factorial combinations were compared in the main plots. Five treatments, (1) 10 t ha?1 zeolite + 4.5 t ha?1 residue, (2) 60 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (3) 5 t ha?1 zeolite + 30 kg ha?1 superabsorbent + 4.5 t ha?1 residue, (4) 4.5 t ha?1 residue and (5) – control, were compared in subplots. In both plants, forage yield, potential quantum yield (Fv/Fm), chlorophyll a, total chlorophyll and carotenoid contents decreased significantly under drought stress. Chlorophyll a content, SPAD index and Fv/Fm were higher in corn than in sorghum, but RWC was higher in sorghum. Corn produced higher forage yield (62.8 t ha?1) than sorghum (49.3 t ha?1). The application of 10 t ha?1 zeolite with 4.5 t ha?1 residue increased most traits more than any of the other treatments, but the superabsorbent had no significant effect on the studied traits.  相似文献   

9.
Corn (Zea mays L.) is planted in two seasons per year in northern Iran (mid-April as a main crop and mid-June as a second crop). The main objective of this study was to determine whether corn yield response would differ between these two seasons and different plant populations. Two field experiments were conducted at the Agricultural Research Center of Golestan – Iran in 2007 and 2008 at different planting densities. The results showed that the values of grain yield and most traits were significantly lower in the second season. Maximum grain yield was observed at planting densities of 6.5 plants m?2 in the first season, whereas in the second season grain yield was the same for planting densities between 2.5 and 12.5 plants m?2. Based on the second-year experimental results, the following functions were fitted to show the relationship between yield ha?1 (Y) and planting densities (X) for the first and second seasons, respectively: (Y = ?167.6X 2 + 2672.2X + 511.77; R 2 = 0.992) and (Y = 1200.1 ln(X) + 2924.4; R 2 = 0.935). This study found that the optimum plant population was 6.5 plants m?2 under low heat stress, and should be reduced to 2.5–4.5 plants m?2 under heat stress conditions.  相似文献   

10.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

11.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

12.
Determining the proper rate of wheat residues incorporation into the soil under a wheat–maize double cropping system is an important issue in southern parts of Iran, where these two irrigated crops are consecutively grown. A 2-year experiment (2010–2011) was conducted to evaluate the effect of wheat residue incorporation rates (25%, 50% and 75%) and irrigation intervals (12, 16 and 20 days) on yield and growth of maize under no-tillage system compared to control without residue and under conventional tillage (CT) at the College of Agriculture, Shiraz University, Shiraz, Iran. The experiment was conducted as a split plot arranged in randomized complete block design with three replications. The results showed that increased irrigation intervals reduced the plant height (14.6%), leaf-area index (12.9%), rows (10.1%) and grains per ear (29.8%), thousand grain weight (6.9%), grain (33.8%) and biological yield (24.2) and harvest index (23.2%). Water deficit had no significant effect on soil organic matter and carbon-to-nitrogen ratio. Under 12 and 20 days irrigation intervals, the highest grain yields were obtained with 12.7 and 8.6 t ha?1 in CT and 25% residue incorporation into soil, respectively. Therefore, according to the results of this 2-year study, realized incorporation of 25% wheat residue soil covering percentage is recommended for this area with limited water resources.  相似文献   

13.
Abstract

Maize (Zea mays L.) is an important cereal crop with multiple uses in the world. Stay‐green hybrids have been developed because of their higher productivity. Few studies have been conducted to evaluate the influence of nitrogen (N) levels on N uptake, remobilization, grain yield and N concentration in stay‐green hybrids compared to senescent ones. Field studies were undertaken in P.R. China on an Ustochrepts soil to determine the effects of N levels and hybrids differing in leaf senescence on grain yield and N concentration, N uptake, remobilization, and residual in vegetative tissues in 1996 and 1997. The stay‐green hybrid ND108 had greater yields than TK5 (intermediate senescing) and ZD120 (fast senescing) under both high (225 kg N ha?1) and low N (0 in 1997 or 45 kg N ha?1 in 1996, respectively) supply. ND108 took up more N than the two other hybrids. Grain N concentration of ND108 did not decrease by low N significantly, excepting the experiment sown in the summer of 1996, when post‐silking N uptake was reduced greatly by the shortened grain filling duration. Nitrogen remobilization efficiency in vegetative tissue was higher in senescent hybrids ZD120 than ND108. Nitrogen retained in the stover at harvest was higher in ND108, which can lead to a deficit of soil N for the next crop if the stover is not returned into soil. It was suggested that, though stay‐green hybrids have been developed for high N conditions, they have advantages over senescent hybrids also under N limited conditions.  相似文献   

14.
Wheat (Triticum aestivum L.) residues and nitrogen (N) management are the major problems in the southern part of Iran where irrigated wheat–cotton (Gossypium hirsutum L.)–wheat rotation is a common practice. A 2-year (2009–2011) field experiment was conducted as a split plot design with four replications at a cotton field (Darab), Fars Province, Iran, to determine the influence of different rates of wheat residue (0%, 25%, 50%, and 75%) incorporation and N rates (150, 200, 300, and 400 kg ha?1) on weed suppression, yield, and yield components of cotton. Results showed that a higher residue incorporation and a lower N rate improved weed suppression in both years. For treatments receiving 150 kg N ha?1 and 75% of wheat residues (2250 kg ha?1), weed biomass and density were significantly lower compared to treatments receiving 400 kg N ha?1. The highest cotton lint yield (about 2400–2700 kg ha?1) was obtained by 300 kg N ha?1 in the absence of residue application, in both years. Incorporation of 25% of wheat residue (750 kg ha?1) and application of 300 kg N ha?1 are recommended to guarantee an optimum level of cotton lint yield and weed suppression in a wheat–cotton–wheat rotation in this region.  相似文献   

15.
In order to study the effects of desert dust on yield and yield components of cowpea, two field experiments were conducted in the factorial layout based on randomized complete block design with three replicates in Dezful and Mashhad, Iran in 2015. The experimental treatments were combinations of desert dust in three levels (0, 500 and 1500 µg m?3), numbers of desert dust application (once, twice and thrice) and two types of desert dust. The desert-dust particles were collected during dust storms occurred in Dezful and Zabol, which are the main sources of dust in Iran. The results showed that the biological yield and the grain yield were significantly decreased in both studied sites (Dezful and Mashhad) when the plants exposed to 500 µg m?3 desert dust treatment compared to normal conditions. Total soluble sugar and proline contents in plant leaf tissues increased significantly when they affected by 1500 µg m?3 of desert dust, while the plant height was significantly decreased by increasing the desert-dust concentrations at both sites. Biological yield, grain yield, and 100-seed weight were also significantly affected by the desert dust. Overall, the desert dust has adverse effects on yield of cowpea.  相似文献   

16.
Grain sorghum production in calcareous soils is frequently affected by iron (Fe) chlorosis. Greenhouse experiments were conducted to screen sorghum hybrids for their tolerance to iron deficiency chlorosis (IDC) and evaluate the effectiveness of Fe chelate application in alleviating IDC. Treatments in Exp. 1 were a factorial combination of 14 sorghum hybrids and three Fe chelate application rates (0, 3.4 and 6.8?kg product ha?1) applied in-furrow with the seed at the time of planting. Exp. 2 evaluated two sorghum hybrids (85Y40 and NK5418) and three Fe chelate rates (0 and 3.4?kg product ha?1) at planting, and a split treatment of 3.4?kg ha?1. Results showed iron chelate application suppressed IDC and increased leaf chlorophyll content and grain yield in susceptible hybrids. Split application of Fe chelate suppressed IDC and increased grain yield. Our results indicate sorghum hybrids G8G08, 86G32 and 87P06 showed promise for tolerance to IDC.  相似文献   

17.
This paper considers the implications of ORYZA2000 model in simulating physiological traits of rice at different nitrogen concentrations. The experiment was conducted over the course of the growing season in 2012 and 2013 in Rice Research Institute, Deputy of Mazandaran, Iran. The variety used was Shiroudi as a high yielding variety. The considered factors were the amount of nitrogen at four levels (40, 80, 120, 160 kg N ha?1 and control) and nitrogen splitting in four levels. We compared simulated and measured grain yield, biomass, grain nitrogen, total plant nitrogen uptake, and leaf area index (LAI) by Student’s t-test of means and by absolute and normalized root mean square errors (RMSE). Results showed that grain yield was simulated with an RMSE of 411–423 kg ha?1 and a normalized RMSE of 6%. RMSE was 671–910 kg ha?1 for biomass on harvesting date. RMSE were 7–11 for grain nitrogen, and 10–13 for total plant nitrogen uptake. LAI was simulated with a normalized RMSE of 17–23%. Generally the model simulated LAI, an exceeded measured value for different nitrogen treatments. The most obvious finding that emerged from this study was that ORYZA2000 model can be applied as a supportive research tool for selecting the most appropriate strategies for rice yield improvement at various nitrogen fertilization concentrations.  相似文献   

18.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

19.
Nitrogen (N) is often applied to first year maize (Zea mays L.) after alfalfa (Medicago sativa L.) at rates greater than needed to attain maximum yields. This study explored other potential benefits of excess N fertilizer applications to maize after alfalfa. Effects of N fertilizer (no N fertilizer, 73, or 135 kg N ha?1) to maize after alfalfa on stalk dry weight, stalk mineral concentrations [N, phosphorus (P), and potassium (K)], grain yield, and kernel components (protein, oil, starch, P, and K) were investigated. Fertilizer N increased stalk N concentration but not stalk dry weight. Grain yields and yields of protein, oil, starch, P, and K kernel components, expressed on a kg ha?1 basis, were also unaffected by N fertilizer treatments. Thus, there appears to be no advantage, in terms of yield or kernel components, in applying N fertilizer to maize after alfalfa under the environments experienced during this two year field experiment.  相似文献   

20.
A field experiment conducted on rapeseed (Brassica juncea L.) during 2005–2006 in a typical lateritic soil (Alfisol) of West Bengal, India revealed that sources of sulfur viz. gypsum and magnesium sulfate and levels of sulfur (0, 20, 40, 60 kg S ha?1) have significant influence on grain yield, total biological yield, sulfur concentration in grain and stover, total sulfur uptake, oil content and oil yield and chlorophyll content. The maximum grain yield (18.28 q ha?1) and oil yield (8.59 q ha?1) was obtained with magnesium sulfate followed by gypsum yielded the grain yield of 17.99 q ha?1 and oil yield of 8.22 q ha?1 at 40 kg S ha?1. Overall, the best performance was recorded when sulfur was applied at 40 kg S ha?1 either as magnesium sulfate or gypsum. Results revealed that magnesium sulfate may be considered as the better source of sulfur than gypsum to raise the mustard crop in sulfur deficient acidic red and lateritic soils of West Bengal and if farmers apply either magnesium sulfate or gypsum to soils, the possible deficiency of sulfur and magnesium/calcium in soils and plants can be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号