首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Field experiments were conducted at the fields of Crop Research and Seed Multiplication Farm of Burdwan University, Burdwan, West Bengal, India during the winter seasons of 2005–2006, 2006–2007, and 2007–2008 in old alluvial soil (pH-6-7) to evaluate the influence of integrated nutrient management on soil physicochemical and biological properties under mustard (Brassica campestris cv. ‘B9’) cropping system. In the first year (2005–2006), seven varieties of mustard were cultivated under recommended dose of chemical fertilizer (100:50:50). In the second year of the experiment (2006–2007), six different doses of biofertilizer and chemical fertilizer were applied. In the third year (2007–2008), six different level of compost along with a combined dose of biofertilizer and chemical fertilizer (T3-3/4 Chemical fertilizer: 1/4 biofertilizer) were applied. The results indicated significant improvement in the soil quality by increasing soil porosity and water holding capacity significantly, as well as gradual build-up of soil macronutrient status after harvesting of the crop. Applications of biofertilizers have contributed significantly toward higher soil organic matter, nitrogen (N), available phosphorus (P), and potassium (K). The use of biofertilizers and compost have mediated higher availability of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and boron (B) in soil. The use of biofertilizers and compost significantly improved soil bacterial and fungal population count in the soil, thereby increasing the soil health.  相似文献   

2.
Experiments were conducted on mustard (Brassica campestris cv.B9) in an old alluvial soil zone of Crop Research and Seed Multiplication Farm, Burdwan University, Burdwan, West Bengal, India, during the winter seasons of 2011–2012 and 2012–2013. The aim was to evaluate the use of vermicompost prepared from municipality waste and Eichhornia mixture and its efficacy on crop growth and yield. Different combined doses of vermicompost, dried cow dung and chemical fertilizer along with Azotobacter and phosphate-solubilizing bacteria compared to full recommended dose of chemical NPK fertilizer (100:50:50) were used to develop an alternative farming technology for sustainable crop production and conservation of natural resources. The variety B9 gave a significantly higher seed yield and oil content along with other growth and yield-contributing factors as well as being the most economically viable option against treatment T4 (i.e. 75% NPK + vermicompost at 2.5 tons per hectare) among all the treatments applied for the experiment and was found to be superior to other treatments in old alluvial soil of Burdwan, India. In both the experimental years, seed yield and oil content were found to be the best for the treatment T4 and was better than using chemical fertilizer.  相似文献   

3.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

4.
A field experiment was conducted during two consecutive years of 2010–2011 and 2011–2012 to study the effect of biofertilizers in conjunction with organic and inorganic sources of nutrient management on productivity, quality and soil health on field pea at ICAR RC for NEH Region, Nagaland Centre Jharnapani, Nagaland, India. The experiment was laid out in split plot design with five nutrient sources in main plots and four treatment of biofertilizers with zinc in sub plots. Results indicated that the application of 100% recommended dose of fertilizer (RDF) through inorganic + 50% recommended dose of nitrogen (RDN) through vermicompost significantly improved root nitrogen (N) content, cation exchange capacity (CEC) of roots, NA activates, seed yield (1153 and 1262 kg ha?1), straw yield (2182 and 2332 kg ha?1) in the year of 2010–2011 and 2011–2012, respectively. Nutrients (N, P, K, S and Zn) uptake by seed and straw, protein content, protein harvest, soil organic carbon (SOC), available N, P, K, S, Zn and economics significantly higher with 100% RDF through inorganic + 50% RDN through vermicompost during both the years. Seed inoculation with biofertilizers along with 5 kg Zn ha?1 markedly enhanced the root N content, CEC of roots, nitrogenase activities (NA), seed yield (1080 and 1193 kg ha?1), straw yield (1978 and 2128 kg ha?1), nutrients [N, phosphorus (P), potassium (K), sulfur (S) and zinc (Zn)] uptake, soil organic carbon (SOC) (%), and available N, P, K, S, and Zn of pea in both the years, respectively. These sources also give more income and benefit cost ratio per rupees invested.  相似文献   

5.
The field experiment was conducted to study the effect of conventional chemical fertilizer (urea),conventional biofertilizers (charcoal based) and organic matrix entrapped biofertilizer; (OMEB: a consortium of Azotobacter chroococcum, Azospirillum brasilense and Pseudomnas putida entrapped with clay soil, neem leaves, and cow dung in ratio of 1:1:1 and 15% saresh (plant gum of Acacia sp.) in various doses on growth parameters of Rauwolfia serpentina in terms of root length, shoot length, number of leaves, number of roots and fresh and dry weight of roots and shoots. Replacement of conventional chemical fertilizer by the consortium of biofertilizers (un-entrapped) increased plant growth in a dose dependent manner up to triple dose of the recommended dose (RD) of biofertilizers (1.80 kg ha-1). This increase in plant growth was not up to the level which appeared in the application of RD of urea. Entrapment of the same biofertilizers in an organic matrix mentioned above enhanced the plant growth similar to that observed for urea. The percentage increase of 9.57 and 7.54 in fresh weight (FW) and 11.93 and 11.12% in dry weight (DW) of shoot and 17.94 and 37.87% in FW of roots and 31.90 and 50.08% in DW of roots were recorded in 75 days old plant by the application of OMEB- triple dose over the conventional biofertilizers triple dose and recommended dose of urea. Conventional biofertilizers enhanced the availability of nitrate, nitrite and phosphate in the roots and leaves of the plant over application of urea as well as conventional biofertilizers. This formulation also increased alkaloid contents of in the roots of this plant. Microbial population of soil was also improved indicating enhanced soil fertility with application of OMEB. The results indicate that replacement of chemical fertilizers with microbial biofertilizers is possible with application of higher dose of biofertilizers entrapped into the organic matrix for the cultivation of medicinal plants like R. serpentina.  相似文献   

6.
Nutrients play an important role in improving productivity and quality of banana. It has been observed that the nutrient applied alone was less effective in improving banana production as compared to nutrients applied in combination with organic manures and biofertilizers. Keeping in view the conservation of soil health and quality production on a long-term basis, a field experiment was conducted during 2009–2011 to find out the influence of Integrated Nutrient Management of banana on leaf characteristics, growth and nutrient status of tissue cultured banana cv. ‘Grand Naine’. The study indicates that combination of inorganic fertilizers with organic manures, biofertilizers and bioagents significantly increased growth parameters, leaf characteristics, and leaf nutrient status of banana. The leaf characteristics in terms of functional leaves, total number of leaves, phyllochron, leaf area, and leaf area index were significantly influenced by the combination of inorganic fertilizers with different biofertilizers and organic manures. Similarly, leaf nutrient status like nitrogen, phosphorus pentoxide, (P2O5), potassium dioxide (K2O), and leaf relative water content were also influenced greatly by different nutrients. Treatment involving combination of 100% recommended dose of fertilizer (RDF) + arbuscular mycorrhizal fungi (AMF) + Azospirillum+ Trichoderma harzianum showed overall superiority in most of the parameters.  相似文献   

7.
Incubation and pot experiments were conducted to investigate the impact of commercially distributed biofertilizers (effective microorganisms [EM], BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B) on soil microbial‐biomass content and activity, net N mineralization in soil, and growth of Lolium perenne. According to the manufacturers, the products tested are based on microbial inoculants or organic growth stimulants, and are supposed to influence soil microbial properties and improve soil conditions, organic‐matter decomposition, and plant growth. In the incubation experiment (40 d, 20.6°C, 50% maximum water‐holding capacity), EM was repeatedly applied to soil together with different organic amendments (nonamended, chopped straw, and lupine seed meal). Under the experimental conditions of this study, no or only marginal effects of EM on organic C, total N, and mineral N in soil could be observed. In soil treatments without any organic amendment, EM suspension slightly enhanced microbial activity measured as soil CO2 evolution. In soil with easily degradable plant residues (lupine seed meal), EM suspension had a suppressive effect on microbial biomass. However, comparisons with sterilized EM and molasses as the main additive in EM suspension showed that any effect of EM could be explained as a pure substrate effect without the influence of added living organisms. In the pot experiment with Lolium perenne (air‐conditioned greenhouse cabin, 87 d, 16.8°C, 130 klxh d–1 light quantity), the products EM, BIOSTIMULATOR, BACTOFIL‐A, and BACTOFIL‐B were tested in soil with growing plants. The products were repeatedly applied for a period of 42 d. Within this study, no effects of the different biofertilizers on mineral N in soil were detectable. There were clear suppressive effects of all tested biofertilizers on microbial‐biomass content and activity. Comparisons with sterilized suspensions showed that the effects were not due to living microorganisms in the suspensions, but could be traced back to substrate‐induced processes.  相似文献   

8.
The study was done to evaluate enzyme activities (amylase, cellulase and invertase) from the soils of different vegetation sites, with seasonal variation, of social forest, Burdwan, India. Study results showed significant lower enzymatic activities in the subsoil compared to those of the topsoil. The seasonal variations indicated that amylase, cellulase and invertase enzyme activities had reached peaks during the rainy seasons in different soil depths. Amylase activity was highest in Tectona litter containing soil in all seasons in both the soil layers. All the three enzyme activities have shown significant positive correlation with available nitrogen (p < 0.05) and available phosphorous (p < 0.05) during rainy season in both the soil depths. Correlation study revealed that soil organic carbon was positively correlated with cellulase and invertase activities except in the Anacardium vegetation site in the topsoil during rainy season. Irrespective of the seasons and the depths of soil, control site without vegetation showed much lower levels of organic carbon and enzyme activity compared to those of the experimental sites. Therefore, it is concluded that carbon transformation will be higher during rainy season in the vegetation sites of forest soil under such agroclimatic conditions.  相似文献   

9.
A field experiment was conducted during the two consecutive kharif seasons of 2011 and 2012 on sandy-loam lateritic soil of Indian subtropics to investigate the impact of integrated nutrient management (INM) on crop productivity, nutrient use efficiency of applied nutrients and soil fertility in restoring sustainability with hybrid rice cultivation. Application of 50% recommended dose of fertilizer (RDF) + 50% recommended dose of nitrogen (RDN) through mustard oil cake (MOC) or 75% RDF + 25% RDN through MOC + biofertilizer recorded significantly higher grain and biomass yields, greater NPK removal and higher partial factor productivity of applied nutrient (PFPN) than those of the crop having 100% RDF, 100% RDN through MOC and 25% RDF + 75% RDN through MOC, which showed very poor performance. The former treatments also improved organic carbon and available NPK contents in soil in spite of greater removal of NPK by the crop. Results of study suggested integrated use of 50% RDF + 50% RDN through MOC or 75% RDF + 25% RDN through MOC + biofertilizer for increasing hybrid rice productivity, PFPN and improving soil fertility for sustainability.  相似文献   

10.
In the present study, gyttja and its humic–fulvic concentrate were applied to soil either alone or in combination with a chemical fertilizer in a 2-year replicated field experiment with continuous bread wheat cropping during two seasons between 2005 and 2007 in Cukurova, Adana, Turkey. The changes in soil organic matter (SOM) characteristics and available micronutrient status were monitored by soil samplings performed immediately after the harvest in the 2005 and 2006 cropping seasons. The results showed that single and combined applications of humic substances with different types and doses showed different inclinations on selected soil characteristics in consecutive cropping seasons. The levels of SOM, available phosphorus, and grain yield significantly increased under different humic treatments in the first year of the experiment. However, humic substances added to the soil did not affect selected soil parameters and macro- and micronutrient status in the second year of the experiment.  相似文献   

11.
Phosphate-solubilizing fungal strains were isolated from organically managed soil and tested for their ability to solubilize rock phosphate (RP), ferric phosphate and aluminium phosphate. These strains were identified as Aspergillus tubingensis and Aspergillus niger based on internal transcribed spacer sequence analysis. A field study was conducted in two different seasons in organically managed soil to test the efficacy of two strains, A. tubingensis (PSF-4) and A. niger (PSF-7) on the yield and soil fertility. RP was amended at the rate of 59 kg P2O5 ha?1 to study the effect of RP on soil fertility. The maize was grown in rainy season (July–October 2011) and wheat in winter season (November 2011–April 2012). Plant heights, shoot and root dry biomass and phosphorous (P) uptake in roots, shoots and grains were significantly increased due to inoculation in both crops. The yield of maize and wheat were significantly increased when inoculated along with RP fertilization. Organic carbon, P levels and soil enzyme activities were significantly increased due to inoculation. Results of present study suggested that A. tubingensis and A. niger improved the crop yield and soil fertility of organic farm when inoculated with RP fertilization.  相似文献   

12.
In seeking effective methods to prevent soil degradation, conservation tillage plays an important protective role. Apart from significantly reducing production costs, cover crops contributes to beneficial changes in the soil environment. A three-year field experiment included three cover crops (winter rye, winter oilseed rape, and white mustard) subjected to mulching or desiccation and to the action of a herbicide at three rates (100%, 75%, and 50%). The study evaluated soil moisture and the content of organic matter, phosphorus, potassium, and magnesium in two soil layers (0–15?cm and 15–30?cm). Cover cropping had a positive effect on soil organic matter content. More organic matter (by 4.7%) was recorded in the topsoil layer (0–15?cm). Among the cover crops most favorable effect on the content of organic matter in the soil had white mustard (an increase of 14.2%) compared to the control. Moreover, rye and white mustard mulch increased the soil content of phosphorus and magnesium, while oilseed rape mulch increased the potassium content. At the critical growth stages (the flowering/pod set) of soybean (Glycine max (L.) Merril), soil moisture was dependent on mulching treatment and soil layers.  相似文献   

13.
To find effective alternatives to reduce the application of conventional urea (CU), a conventional biofertilizer (CB) preparation (charcoal mixed Azotobacter chroococcum and Bacillus subtilis) and the same biofertilizers entrapped in an organic matrix consisting of cow dung, rice bran, dried powder of neem leaves, and clay soil in 1:1:1:1 ratio and 25% (w/w) saresh (plant gum of Acacia sp.), named as super granules of biofertilizers (SGBF) were applied to cultivate wheat (Triticum aestivum L. cv. ‘WH-711’) in experimental plots. The results revealed that the efficacy of commercially available charcoal mixed biofertilizers could not prove as effective alternative to CU, whereas the same dose of biofertilizers entrapped in the organic matrix, SGBF, resulted in a significant increase in growth and productivity of wheat. It appears that SGBF prepared and applied in this study is an effective organic alternative to the urea for wheat cultivation in semi-arid subtropical agro-ecosystems.  相似文献   

14.
Plants and associated microbial communities can actively participate in the biodegradation of organic pollution. Potexperiments were conducted to explore the plant–microbe interrelations on Di-(2-ethylhexyl) phthalate (DEHP) and pyrene degradation in a soil culture system. Three dicotyledonous plant species, Ceylon spinach (Gynuracusimbua (D. Don) S. Moore), sunflower (Helianthus annuus L.), and Shuidong mustard (Brassica juncea (L.) Coss.var. foliosa Bailey), were cultivated for 45 days in DEHP and pyrene co-contaminated soils using three initial content levels: 0 (T0), 20 (T20) and 50 mg?kg?1 (T50) with no plants (NP) as control. The results demonstrated that Shuidong mustard biomass and sunflower biomass had significantly positive correlations with the removal rate of DEHP (P?.05), respectively, while Ceylon spinach biomass has no significant correlation with the removal rate of DEHP. Shuidong mustard–actinomycetes and Ceylon spinach–actinomycetes accelerated the removal rate of pyrene, and sunflower–gram-positive bacteria could also enhance the removal rate of pyrene. Our results suggest that a better understanding of plant–microbe interrelations could be exploited to enhance the phytoremediation of organic co-contaminated soils.  相似文献   

15.
ABSTRACT

Soil acidity is one of the main limitations for optimal use of land resources for better crop production. And, long-term fertilization experiments found to be helpful in increasing the nutrient supply in these acidic soils. Keeping this in view, a field experiment on rice was carried out by applying biofertilizers and enriched compost in an acidic Inceptisol of Assam over 10 successive years (2006–15) to examine its effects on nutrient availability and soil enzymatic activity. This experiment had five treatments viz. absolute control (T1), 100% recommended doses (RD) of inorganic NPK (T2), 50% RD of inorganic NP + 100% K +biofertilizers (T3), 50% RD of inorganic NP + 100% K +1 tonne enriched compost ha?1 (T4) and 25% RD of inorganic NP + 100% K +2 tonnes enriched compost ha?1 (T5) under randomized block design with four replications. After completing 10 years of experiment, it was observed that integrated use of enriched compost and biofertilizers with reduced doses of inorganic fertilizers enhanced the soil enzymatic activity as well as nutrient availability in rice grown in acidic clay loam soils of Assam. Application of biofertilizers and enriched compost had positive impact on plant accessible nitrogen, phosphorus and potassium in soil as compared to inorganic fertilizers. Also soil organic matter content increased considerably by these treatment. Integrated nutrient management practice in rice had also significantly enhanced the dehydrogenase, fluorescein diacetate and phospho-monoesterase activity in soil.  相似文献   

16.
In this experiment, vermicomposts, prepared from five different waste materials, were applied to acid lateritic soil under field conditions and soil samples were collected after 90 days to study the effect of vermicomposts on different chemical and biochemical. Results suggest that vermicompost prepared from paddy straw is most effective to improve nutrient content, enzymatic activities and microbial properties of lateritic soil. Vermicompost application significantly (P ≤ 0.05) increased the concentration of organic C, mineralizable N, available P and exchangeable K in soil. Amylase, protease, urease and acid phosphatase activities were also significantly (P ≤ 0.05) higher in vermicompost treated soils compared with the control. Both basal and substrate‐induced microbial respiration, microbial biomass C and N and fungal population in lateritic soil were increased due to vermicompost application. Ergosterol and chitin content were significantly (P ≤ 0.05) higher in vermicompost treated soils over the control. Application of vermicompost increased the proportion of fungal biomass in total soil microorganisms.  相似文献   

17.
Abstract

Field experiment was conducted for 7 years continuously to evaluate the influence of combined application of organic and inorganic fertilizer on soil fertility buildup and nutrient uptake in mint (Mentha arvensis) and mustard (Brassica juncea) cropping sequence. Maximum organic carbon was observed under full supply of organic manure (T2; FYM at 20 t ha?1) averaged across all the Stages of cropping sequence. It was increased by 38, 50, and 51% in T2 in Stages I (after mint harvest/presowing of dhaincha), II (after incorporation of dhaincha (Sesbania aculeata)/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective controls. In general, magnitude of organic carbon was recorded higher in Stage II after green manuring of Sesbania compared with Stages I and III. Nitrogen availability in treated plots was increased by 26.0–89.9, 15.2–64.5, and 4.9–52.0% in Stages I (after mint harvest/presowing of Sesbania), II (after incorporation of dhaincha/presowing of mustard), and III (after harvest of mustard/preplanting of mint), respectively, over their respective control. Average across all the three Stages showed a positive balance of nitrogen (N), phosphorus (P), and potassium (K) in soil under different treatments. Mean of the three Stages indicated that maximum available N, P, and K were increased by 36.1, 129.0, and 65.20% in T4 (N:P:K: 133:40:40 and FYM at 6.7 t ha?1), T4 (N:P:K::133:40:40 and FYM at 6.7 t ha?1), and T3 (N:P:K::100:30:30 and FYM at 10 t ha?1), respectively, over their initial status. Supply of organic and inorganic fertilizer (T4; N:P:K::133:40:40 and FYM at 6.7 t ha?1) was found most suitable combination with respect to N, P availability in soil, and productivity of mint and mustard crop.  相似文献   

18.
The trophic structure of soil arthropods in earthworm casts or vermicomposts produced by Eisenia fetida (Savigny) from paper waste, food waste and cow manure, and in field trials was studied during summer 1999. The numbers of soil arthropods in the soil were counted before treatment (as a control), in the vermicomposts, and after application of vermicomposts to soil in the field. The vermicomposts were applied to soil in rows of tomatoes and peppers, at rates of 4.5 ton ha–1, and the numbers of soil arthropods in trophic groups were compared with those in soil receiving conventional composts and inorganic fertilizers. All treatments received the same total amounts of nutrients. Most of the vermicomposts were rich in microbial biomass-N. There was a tendency for the application of inorganic fertilizers, and conventional compost, to tomato and pepper plots to decrease the numbers of trophic groups of soil arthropods. The applications of vermicomposts increased the number of trophic groups of soil arthropods.  相似文献   

19.
A pot experiment was conducted in a greenhouse to evaluate the effects of different levels of cadmium (Cd) on Cd accumulation and their effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) Czern.]. Cadmium accumulation in shoots and interactions among other metals [manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn)] were investigated. Ten levels of Cd ranging from 0 to 200 mg kg–1 soil were tested. The crop was grown for 60 days in a loamy sand soil with adequate basal fertilization of nitrogen (N), phosphorus (P), and potassium (K), and dry-matter yield (DMY) was recorded. The plants were analyzed for total Cd and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)–extractable Cd. Experimental results showed that the DTPA-extractable Cd in the soil increased consistently and significantly with increase in rates of Cd application up to 200 mg Cd kg–1 soil. Significant reduction in the DMY of Indian mustard occurred with application of 5 mg Cd kg–1 soil and greater. The content as well as uptake of Cd by Indian mustard increased significantly over the control at all rates of its application. It increased from 5.95 μg pot–1 in the control to 150.6 μg pot–1 at Cd application of 200 mg kg–1 soil. Application of Cd to soil though decreased the content of micronutrients in plants, but significant reduction occurred only for Fe at rates beyond 50 mg Cd kg–1 soil. However, the total removal of Fe, Zn, and Cu registered a significant decline over the control at and above Cd application of 10 mg kg–1 and that of Mn beyond 10 mg kg–1. In loamy sand soil, a DTPA-extractable Cd level of 3.8 mg kg–1 soil and in plant content of 28.0 μg Cd g–1 DMY was found to be the upper threshold levels of Cd for Indian mustard. Considerable residual content in the soil suggests that once the soil is contaminated by Cd it remains available in the soil for decades, and food crops grown on these soils may be a significant source of Cd toxicity to both humans and grazing animals.  相似文献   

20.
Nowadays the main task of scientists is to find natural ways of improving plant productivity that lead to environmentally friendly agriculture. Biofertilizers have a great potential to achieve this aim but unfortunately there is little information about their application in grape growing in Hungary. For this reason, a foliar nutrition experiment was conducted to investigate the effect of two biofertilizers (an algae product and a biostimulator, containing amino acids) on yield, leaf nutrient concentration, and quality parameters of Blaufrankish grape variety. The study was conducted in 2012 at Noszvaj in northeastern Hungary in a 24-year-old grapevine plantation on cv. Blaufrankish. Treatments (application time and doses) were adjusted to the phenological phases of grapevine. Effect of treatments was monitored by soil and leaf analysis, grape quality measurements, and field observations. Treatments increased the yield but did not affect the fruit quality compared to the control. The applied products significantly increased the bunch weight and the size of berries. Applied biofertilizers had no effect on leaf nutrient concentration. According to our field observations, it seemed that treated vines had larger and greener leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号