首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a productive vineyard, the influence of different soil management practices on carbon sequestration and its dynamic in water-stable aggregates of Rendzin Leptosol was studied. In 2006, an experiment of different management practices in a productive vineyard was established in the locality of Nitra-Dra?ovce, in the Nitra winegrowing area of Slovakia. The following treatments were established: (1) control (grass without fertilization); (2) T (tillage); (3) T + FM (tillage + farmyard manure); (4) G + NPK3 (grass + NPK 120–55–195 kg ha?1); and (5) G + NPK1 (grass + NPK 80–35–135 kg ha?1). The results showed that the lowest soil organic matter content (9.70 g kg?1) in water-stable microaggregates was determined in G + NPK3, as well as in T. However, the highest soil organic matter content in the highest size fractions of water-stable macroaggregates (>5 mm) was observed in T + FM (19.7 g kg?1). The highest value for carbon sequestration capacity in water-stable microaggregates was observed in the ploughed farmyard manure treatment. However, the control treatment showed the highest values for carbon sequestration capacity in water-stable macroaggregates, including agronomically favourable size fractions (0.5–3 mm). In all soil management practices under a productive vineyard the most intensive changes in the soil organic matter content were observed in the highest size fractions (>3 mm) of water-stable macroaggregates.  相似文献   

2.
ABSTRACT

Mineralization is the main organic matter conversion process, which leads not only to preservation of organic matter in the soil but also to its sequestration. Soil organic matter has equal value as mineral part if we want to improve soil quality or increase the yield. Because of intensive farming, irresponsible use of mineral fertilizers and natural factors, soil organic matter is decreasing. To counteract this process, different soil-friendly management practices and techniques, such as shallow tillage, no-tillage or direct drilling and application of additional organic matter are used. The objective of the present study was to assess the changes in the intensity of soil organic matter mineralization as influenced by primary soil tillage of different intensity in combination with organic matter incorporation. Long-term studies showed that land management practices differentiated the soil into two layers: upper (0–10?cm) layer containing more moisture and nutrients and lower (10–20?cm) layer comprising less moisture and nutrients. The conditions of aeration in the arable soil layer did not change under the effect of ploughing. In this soil, the rate of mineralization was lower than that in the ploughless tillage treatment. The most active mineralization of soil organic matter in the ploughless tillage treatment occurred in the autumn period, when high level of rainfall promoted the loss of nutrients from the topsoil layer.  相似文献   

3.
Effects of soil organic matter (80M) on P sorption of soils still remain to be clarified because contradictory results have been reported in the literature. In the present study, pH-dependent P sorption on an allophanic Andisol and an alluvial soil was compared with that on hydrogen peroxide (H202)-treated, acid-oxalate (OX)-treated, and dithionite-citrate- bicarbonate (DCB)-treated soils. Removal of 80M increased or decreased P sorption depending on the equilibrium pH values and soil types. In the H2O2 OX-, and DCB-treated soils, P sorption was pH-dependent, but this trend was not conspicuous in the untreated soils. It is likely that 80M affects P sorption of soils through three factors, competitive sorption, inhibition of polymerization and crystallization of metals such as AI and Fe, and flexible structure of metal-80M complexes. As a result, the number of available sites for P sorption would remain relatively constant in the wide range of equilibrium pH values in the presence of 80M. The P sorption characteristics were analyzed at constant equilibrium pH values (4.0 to 7.0) using the Langmuir equation as a local isotherm. The maximum number of available sites for P sorption (Q max) was pH-dependent in the H202-, OX-, and DCBtreated soils, while this trend was not conspicuous in the untreated soils. Affinity constants related to binding strength (K) were less affected by the equilibrium pH values, soil types, and soil treatments, and were almost constant (log K ≈ 4.5). These findings support the hypothesis that 80M plays a role in keeping the number of available sites for P sorption relatively constant but does not affect the P sorption affinity. By estimating the Q max and K values as a function of equilibrium pH values, pH-dependent P sorption was well simulated with four or two adjustable parameters. This empirical model could be useful and convenient for a rough estimation of the pH-dependent P sorption of soils.  相似文献   

4.
Abstract. Vineyards in Champagne, France are generally situated on slopes where the soils are subject to erosion. Therefore it is important to find a soil‐surface management practice that protects the soil against water erosion. We assessed the potential of mulches or grass covers to stabilize soil aggregates in a calcareous sandy loam from a vineyard in Champagne after 9 years under different management systems. Four different treatments were studied: (i) a bluegrass (Poa pratensis) surface cover between the vine rows (GC) with bare soil under the vines (R); two organic mulches of (ii) coniferous (CB) or (iii) poplar (PB) bark that covered the entire soil surface, and (iv) bare soil between the rows as a control. The bark amendments were applied every 3 years at rates of 61 and 67 t ha?1 for the PB and CB treatments, respectively. The kinetics of soil disaggregation in water fitted a power law (A=K t?D), in which K was the fraction of water‐stable >200 μm aggregates remaining after 1 hour of wet‐sieving. In the 0–5 cm layer, aggregate stability was greater for GC (K=21.7), CB (K=15.2) and PB (K=13.6) than for the control (K=10.5) and R (K=11.8). In the 0–20 cm layer, CB also stabilized soil aggregates (K=14.0–15.0); but PB did not. Structural stability was more strongly related to total organic carbon (R2=0.64, P <0.001) than to microbial biomass carbon (R2=0.54, P<0.001). A bluegrass cover enhanced structural stability in the 0–5 cm and 0–20 cm layers (K=14.2), probably because of intense root development and rhizodeposition enhancing microbially produced metabolites, such as carbohydrates. Establishing grass cover or applying bark mulch are effective agricultural practices that improve soil aggregate stability and thus should reduce soil erosion. The vegetative growth of the vines was greater on the soils amended with bark mulches and less on the grass covered soils compared with the control soil; however, no difference in wine quality was observed among the different treatments.  相似文献   

5.
不同封育年限草地土壤有机质组分及其碳库管理指数   总被引:5,自引:0,他引:5  
土壤有机质对草地封育的生态效应具有重要指示作用,本文结合野外调查和室内分析,研究了半干旱区不同封育年限草地土壤有机质组分及其碳库管理指数变化,以分析土壤有机质对草地封育的响应特征,从而为该区土壤质量的改善和植被建设的生态效应评价提供依据。研究结果表明,土壤有机质及不同活性有机质含量均随土层加深而降低,且在各土层基本表现出封育18年、封育23年封育13年未封育封育3年的趋势。除封育3年土壤的3种活性有机质碳库管理指数在090cm土壤剖面均低于100外,封育13年草地060cm土层、封育18和23年草地090cm土层的3种活性有机质碳库管理指数均高于100,表明随年限的延长,封育对土壤有机质的改善深度也在加深。土壤3种活性有机质与有机质及多数土壤性质呈极显著正相关,能更为灵敏和直观地表征土壤管理的长期效应和土壤质量变化。  相似文献   

6.
县域土壤有机质动态变化及其影响因素分析   总被引:12,自引:5,他引:12  
本文以河北省曲周县为例, 采用 1980 年和 1999 年两次全县的土壤肥力监测以及农户调查数据和统计数据, 系统分析了过去 20 年中土壤有机质的动态及其与之相关的农作管理方式的变化。 结果显示, 在过去的近 20 年 间, 曲周县土壤表层的有机质含量呈现增长的趋势, 导致这种变化的农作管理方式有化肥施用量的大幅度提升、秸 秆还田量的增加、盐碱地的开垦利用、灌溉面积和复种指数的提高以及主要种植模式和种植作物的土壤有机质处 于正平衡状态。 然而当前的生产管理方式尽管有利于土壤有机质积累, 但是也带来了一系列的生态环境问题。 实 施保护性耕作、降低化肥用量、提高秸秆还田量和有机肥的用量成为今后农业生产管理方式调整的主要方向。  相似文献   

7.
The farming practices in vineyards vary widely, but how does this affect vineyard soils? The main objective of this study was to evaluate the effects of vineyard management practices on soil organic matter and the soil microbial community. To this end, we investigated three adjacent vineyards in the Traisen valley, Austria, of which the soils had developed on the same parent material and under identical environmental/site conditions but were managed differently (esp. tillage, fertilizer application, cover crops) for more than 10 yrs. We found that topsoil bulk density (BD) decreased with increasing tillage intensity, while subsoil BD showed the opposite trend. Soil organic carbon (SOC) stocks in 0–50 cm depth increased from 10 kg m?2 in an unfertilized and frequently tilled vineyard to 17 kg m?2 in a regularly fertilized but less intensively tilled vineyard. Topsoil microbial biomass per unit SOC, estimated by the sum of microbial phospholipid fatty acids (PLFAs), followed this trend, albeit not statistically significantly. Principal component analysis of PLFA patterns revealed that the microbial communities were compositionally distinct between different management practices. The fungal PLFA marker 18:2ω6,9 was highest in the vineyard with the lowest amount of extractable Cu (by 0.01 m CaCl2), and the bacterial‐to‐fungal biomass ratio was positively correlated with extractable Cu. Our results indicate that tillage and fertilizer application of vineyards can strongly affect vineyard soil properties such as BD and SOC stocks and that the application of Cu‐based fungicides may impair soil fungal communities.  相似文献   

8.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

9.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

10.
不同生物有机肥用量对土壤活性有机质和酶活性的影响   总被引:13,自引:3,他引:10  
通过盆栽试验研究了不同有机质含量的土壤中,不同用量生物有机肥对棉花苗期土壤活性有机质和5种酶活性的影响。结果表明,不同土壤随着生物有机肥施用量的增加,其活性有机质及碳库管理指数(CMI)均显著增加。其中高有机质含量土壤施用生物有机肥20 g/kg效果显著,中等有机质含量土壤和低有机质含量土壤施用生物有机肥30、40 g/kg效果显著。5种土壤酶活性施肥处理均高于对照(CK),并且土壤酶活性与施用量成正比。脲酶、蔗糖酶、多酚氧化酶在施用生物有机肥10、20 g/kg与其它处理相比变化显著,过氧化氢酶、蛋白酶变化不显著。相关分析表明,有机质与活性有机质和CMI在棉花出苗0 d相关系数分别为0.831**、0.542*;在出苗后60 d相关系数分别为0.928**、0.635**,其中有机质与活性有机质相关性最高。而CMI与有机质和活性有机质在棉花出苗0 d相关系数分别为0.542*、0.896**,在出苗后60 d分别为0.635**、0.842**,说明活性有机质相对于有机质与CMI关系更为密切。蔗糖酶、过氧化氢酶、多酚氧化酶与土壤有机质和活性有机质在棉花出苗0 d和出苗后60 d存在显著相关,表明活性有机质与土壤酶活性能够较好的反映肥力水平。  相似文献   

11.
Relationships between soil lightness, soil organic matter (SOM) composition, content of organic C, CaCO3, and texture were studied using 42 top‐soil horizons from different soil types located in southern Germany. SOM composition was determined by CPMAS 13C NMR spectroscopy, soil color was measured by diffuse‐reflectance spectrophotometry and given in the CIE L*a*b* color coordination system (Commission Internationale de l'Eclairage, 1978). Multiple‐regression analysis showed, that soil lightness of top‐soil horizons is principally determined by OC concentration, but CaCO3 and soil texture are also major variables. Soil lightness decreased with increasing OC content. Carbonate content had an important effect on soil lightness even at low concentrations due to its lightening property. Regressions between soil lightness and organic C content were strongly linear, when the soils were differentiated according to texture and CaCO3 content. The aryl‐C content was the only SOM component which correlated significantly with soil lightness (rS = –0.87). In the linear regressions carried out on the different soil groups, soil aryl‐C content was a more significant predictor for soil lightness than total OC content.  相似文献   

12.
含水率对土壤有机质含量高光谱估算的影响   总被引:3,自引:1,他引:3  
土壤含水率对有机质(soil organic matter,SOM)含量高光谱估算精度有很大的影响。为了探讨SOM高光谱估算中土壤含水率的影响,该文对烘干土、风干土和质量含水率为5%~40%(按5%递增)的土壤样本进行了室内高光谱测量,对光谱数据进行了反射率、反射率一阶导数和反射率倒数对数3种光谱数据变换,运用偏最小二乘回归法(partial least squares regression,PLSR)建立了相应的SOM估算模型。结果表明,风干土的SOM高光谱估算精度较好;当含水率水平小于25%时,SOM估算模型精度受含水率的影响较大,光谱数据进行反射率倒数对数变换后的模型精度最高;当含水率水平大于等于25%时,水分对土壤光谱反射率的影响要大于SOM,不适宜利用土壤光谱数据进行SOM含量高光谱估算。该研究可为大田环境不同含水率情况下光谱估算SOM提供参考。  相似文献   

13.
The crop rotation system in organic farming is a determinant factor to accumulate and preserve soil organic matter (SOM), and in depth knowledge on its effects is still lacking. Tillage intensity in particular is crucial to maintain soil aggregates and protect SOM from degradation. The evolution of SOM was tested in two adjacent fields under two different rotation cropping systems (low-intensity tillage and high-intensity tillage), and the effect of a further cultivation of legume in both fields was evaluated using 13carbon (C)-nuclear magnetic resonance (NMR) and elemental analysis of samples isolated through combined aggregate size and density fractionation. The two adjacent fields had been managed using the following organic farming methods for 13 seasons since 1998: i) alfalfa-based, with nitrogen (N) enrichment and low-frequency tillage with alfalfa (Medicago sativa) (9 seasons), winter wheat (Triticum durum) (3 seasons), and broad bean (Vicia faba) (1 season) and ii) cereal-based, with N depletion and annual tillage with barley (Hordeum vulgare) (7 seasons), sunflower (Helianthus annuus) (2 seasons), broad bean (Vicia faba) (3 seasons), and bare fallow (1 season). Soil sampling was carried out at the end of the 13-year rotation (T0, November 2011) and after winter wheat and chickpea cultivation in both fields over two subsequent years (T1, July 2013). Bulk organic C was significantly higher in the alfalfa-based system than in the cereal-based system at both T0 and T1, with SOM occluded in soil aggregates and associated with mineral particles. In terms of the macroaggregates heavy fraction at T0, the alfalfa-based field contained twice the organic C of that in the cereal-based field, as well as three times the organic C in the occluded particulate organic matter (POM). The occluded POM (oPOM) had a lower aryl/O-alkyl C ratio in the alfalfa-based system than in the cereal-based system, suggesting that oPOM undergoes a lower degree of decomposition during low-intensity management. The aryl/O-alkyl C ratios of the macro-and microaggregate oPOM decreased from T0 to T1 in the cereal-based system, suggesting increased protection of these fractions by soil aggregates. Thus, including legumes in crop rotation appears to positively affect the accumulation of SOM associated with mineral particles and within soil aggregates.  相似文献   

14.
黄土丘陵区不同植被下土壤可溶性有机物的荧光特征研究   总被引:4,自引:0,他引:4  
【目的】土壤水溶性有机质的组成和结构是土壤质量的重要判别指标,具有重要的生态意义。研究黄土丘陵地区不同植被下土壤水溶性有机物的数量和荧光结构特征,可以为该地的植被修复及土壤质量评价提供科学依据。【方法】利用传统荧光和三维荧光技术,选取激发发射荧光光谱、 同步荧光光谱得到的腐殖化指标对土壤水溶性有机物的来源和结构进行评估,通过三维荧光技术探究不同植被下土壤水溶性有机物之间组分的差异。【结果】辽东栎(Quercus liaotungensis)和油松林(Pinus tabulaeformia)地具有较高的水溶性有机物含量,含量均为0.16 mg/g; 而荒坡地和农地的水溶性有机物较低,分别为0.04和0.05 mg/g,灌木荆条(Vitex negundo var. heterophylla )和狼牙刺(Sophora viciifolia)林地的含量介于两者之间。发射激发荧光光谱、 同步荧光光谱以及三维荧光光谱表明土壤水溶性有机物大多来源于植物和微生物的混合作用; 油松林地的水溶性有机物结构较简单、 腐殖化程度较低; 而灌木林地的水溶性有机物结构较为复杂、 腐殖化程度较高。从不同植被下土壤水溶性有机物的组成来看,蛋白类的物质差异不明显; 油松和辽东栎林地土壤水溶性有机物的类酪氨酸蛋白质、 类色氨酸蛋白质、 类溶解性微生物代谢产物含量较高,灌木林地较低。最主要的差异是富里酸类和胡敏酸类物质,油松林地的水溶性小分子量的富里酸类物质占主导地位,而灌木林地的水溶性有机物芳香化程度较高,农地和抛荒地类富里酸物质和类胡敏酸类物质含量的比值最低,其水溶性腐殖质的缩聚度高。油松、 辽东栎林地水溶性有机物由于植物残体分解形成的富里酸较易被氧化,同时阴坡林地较高的含水量使得这些产物较难缩合; 而灌木林地和农田及荒地较为干旱,枯枝落叶少,腐殖酸有充分时间进行缩合,导致了水溶性有机物的高芳香化和腐殖化。【结论】不同植被下的土壤水溶性有机物的组成和结构是存在差异的,同时说明荧光技术可用于揭示水溶性有机物的组成和缩合特性研究。  相似文献   

15.
可溶性有机物对土壤中绿麦隆吸附与解吸的影响   总被引:7,自引:0,他引:7  
A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.  相似文献   

16.
Long-term changes in soil organic carbon (SOC) resulting from management change are documented for many experimental situations, and corresponding trends in the field have been observed by national survey. Since these changes are relevant to atmospheric carbon balance a practical measure to confirm the impact of recent management decisions at any location, without resorting to repeated sampling, is highly attractive but none has previously been tested. This study assessed intra-aggregate C to fulfil the role, based on a temporary deviation from its predictable contribution to total SOC under stable management. A total of 166 surface soil samples (0–15 cm) were analyzed for intra-aggregate C using an established physical fractionation protocol or compatible scaled-up procedure. Soils were arable (or ley-arable) managed by conventional or minimum-tillage, or permanent grassland, and assigned ‘stable’ or ‘changing’ status on the basis of a verbal account of management history. Log-normal populations of intra-aggregate C were compared for soils of stable and changing status using F-tests. Intra-aggregate C shows promise as an indicator of changing SOC in arable soils up to 30% clay content, particularly soils <20% clay. A larger dataset is required to establish its utility in grassland soils. It is not certain that intra-aggregate C is capable of confirming direction of change or trajectory (endpoint), and functions to indicate change, rather than confirm stable status. Supplementary information on the history of soil use and management is therefore essential in the interpretation of such measurements.  相似文献   

17.
In vineyards in Spain, tillage and semiarid Mediterranean climatic conditions accelerate organic matter loss from the soil. Cover crops are a conservation management practice that can provoke changes in soil quality which requires evaluation. Stratification ratios of soil properties such as soil organic C and labile C fractions have been proposed for the assessment of soil quality under different soil management systems. Our objective was to study the effect of different cover crop management on various soil parameters and their stratification ratios. We evaluated three different soil managements in a Typic Haploxerept from NE Spain: conventional tillage (CT); 5‐y continuous cover crop of resident vegetation (RV); and 4‐y continuous cover crop of Festuca longifolia Thuill., followed by 1‐y Bromus catharticus L. after resowing (BV). We monitored soil organic C, particulate organic C, water soluble C, potentially mineralizable N, microbial biomass C, β‐glucosidase and urease enzymatic activities, and water stable aggregates at 0–2.5, 2.5–5, 5–15, 15–25, and 25–45 cm soil depths. We calculated soil depth stratification ratios of those soil properties. Resident cover crop increased microbiological properties, labile C fractions, and aggregation with respect to conventional tillage at 0–2.5 and 2.5–5 cm soil depths. However, for Bromus cover crop the same soil properties were lower than for the resident cover crop at 0–2.5 cm depth. Stratification ratios of β‐glucosidase and urease enzymatic activities, and particulate organic C showed a higher sensitivity than other soil properties; therefore, they would be the best indicators for soil quality assessment in semiarid Mediterranean vineyards.  相似文献   

18.
Cation exchange capacity (CEC) is an important soil property that is used as an input data in soil and environmental models. Although CEC can be measured directly, its measurement is expensive and time-consuming, therefore pedotransfer functions can be used for estimating it from more readily available soil data. As CEC is highly dependent on soil texture, it may be successfully estimated from the soil textural data. In this study, 20 soils were selected from Fars province, in the south of Iran, and the values of CEC, soil organic matter content, and soil particle size distribution curve of each soil were measured and the geometric mean particle-size diameter (d g ), and the summation of the number of spherical particles for whole parts of the soil particle-size distribution (N) were determined for each soil. Then, five multiple linear regressions were derived between CEC and mentioned soil properties. The results showed that more applicable equation for the study area was based on the percentages of clay, sand and soil organic matter content.  相似文献   

19.
A comparative study of organic, low input, conventional vegetable greenhouse systems was conducted to assess the effect of management practices on the soil nematode community. Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over 80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores, and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. We inferred that the bottom-up effect resulting from organic input in the soil food web may play a more important role than the disruption effects under our high input greenhouse conditions. The Shannon index (H′) and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists. We concluded that management practices under greenhouse conditions were more influential on nematode biomass (including trophic groups) than community structure.  相似文献   

20.
Abstract. This paper reviews current understanding of soil structure, the role of soil organic matter (SOM) in soil structure and evidence for or against better soil physical condition under organic farming. It also includes new data from farm case studies in the UK. Young SOM is especially important for soil structural development, improving ephemeral stability through fungal hyphae, extracellular polysaccharides, etc. Thus, to achieve aggregate stability and the advantages that this conveys, frequent input of fresh organic matter is required. Practices that add organic material are routinely a feature of organically farmed soils and the literature generally shows that, comparing like with like, organic farms had at least as good and sometimes better soil structure than conventionally managed farms. Our case studies confirmed this. In the reviewed papers, SOM was generally larger on the biodynamic/organic farms because of the organic additions and/or leys in the rotation. We can therefore hypothesize that, because it is especially the light fraction of SOM that is involved in soil structural development, soil structure will improve in a soil to which fresh organic residues are added regularly. Thus, we argue it is not the farming system per se that is important in promoting better physical condition, but the amount and quality of organic matter returned to a soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号