首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
ABSTRACT

The aim of this study was to examine the usefulness of physical and chemical fractionation in quantifying soil organic matter (SOM) in different stabilized fraction pools. Soil samples from three land use types in Lorestan province, Southwest Iran were examined to account for the amount of organic carbon and nitrogen in different SOM fractions. Size/density separation and chemical oxidation methods were applied to separate the SOM fractions including particulate organic matter (POM), Si + C (silt and clay), DOC (dissolved organic C), rSOM (oxidation-resistant organic carbon and nitrogen) and S + SA (sand and stable aggregates). The values obtained for TOC, TN, and HWC were highest in forest lands followed by the range and agricultural lands. Among the SOM fractions, S + SA showed the highest values (5.75, 5.77 and 20.6 g kg?1 for agriculture, range and forest lands respectively) followed by POM, Si + C, rSOM, and DOC. The concentrations of C and N in the labile fractions obtained the higher values than in the stabilized fractions. Forest lands had the highest amounts of organic C and N among all fractions whereas agricultural lands showed highest values for inorganic C content of soils in different fractions.  相似文献   

2.
《Geoderma》2005,124(1-2):143-155
With respect to carbon sequestration in soil, attempts have been made to identify soil organic matter (SOM) fractions that respond more rapidly to changes in land-use than bulk SOM, which could thus serve as early indicators for the overall stock change. We used a combination of physical fractionation (size and density separation) and chemical characterisation (C-to-N ratios, CuO lignin signature, 13C NMR spectroscopy) to identify sensitive SOM fractions in an agricultural system with sandy dystric cambisols in Bavaria, Germany, 7 years after a land-use change. Land-use types included long-term arable land and grassland, and conversion from one system to the other. Soil carbon and nitrogen contents in 0–3 cm increased from 14 to 39 mg organic carbon g−1 soil, and from 1.7 to 3.9 mg nitrogen g−1 soil in the following order: permanent arable, conversion grassland to arable, conversion arable to grassland, and permanent grassland. Wet sieving and ultrasonic dispersion with 22 J ml−1 released <5% and 60% to 80%, respectively, of the amount of particles >20 μm relative to complete dispersion. The most sensitive fraction, with respect to land-use, was SOM in the fraction >20 μm not released after sequential wet sieving and ultrasonic dispersion. In contrast, the proportion of free light (wet sieving, density <1.8 g cm−3) and occluded light (ultrasonic dispersion with 22 J ml−1, <1.8 g cm−3) particulate organic matter (POM) showed no clear response to land-use. The structural composition of POM indicated its vegetation origin with a selective enrichment of lignin and a loss of O-alkyl C relative to its plant precursors. Decomposition of the occluded light POM was only slightly advanced relative to the free light POM. In mineral fractions <20 μm, SOM was significantly more transformed than in the coarse fractions, as shown by NMR spectroscopy; however, it revealed no specific land-use pattern. An exception to this was the proportion of O-alkyl C in the clay fraction, which increased with SOC content. Ratios of alkyl to O-alkyl C in mineral fractions <20 μm differentiated samples gave a better differentiation of samples than the C-to-N ratios. We conclude that neither free nor occluded light POM are appropriate early indicators for changes in land-use at the investigated sites; however, total SOM, its distribution with depth, and SOM allocated in stable aggregates >20 μm were more sensitive.  相似文献   

3.
Owing to the continuously increasing concentration of atmospheric CO2, it has become a priority to understand if soil organic matter (SOM) will behave as a sink or a source of CO2 under future environmental changes. Although many studies have addressed this question, a clear understanding is still missing, particularly with respect to long-term responses. In this study, we quantified soil C stores and dynamics in relationship to soil aggregation and pool composition in a Californian chaparral ecosystem exposed for 6 years to a gradient of atmospheric CO2 concentrations, ranging from pre-industrial levels 250 to 750 μl l−1 CO2. Fossil fuel-derived CO2 depleted in 13C was used for the fumigation, thus providing a tracer of C input from the vegetation to the soil.Long-term CO2 exposure invariably affected soil aggregation, with a significant decrease in the macroaggregate fraction at highest CO2 levels relative to the other two size fractions (i.e. microaggregates and silt and clay). This soil structural change most likely reduced the stability and protection of SOM, and C content generally decreased in most fractions over the CO2 treatments, and induced faster turnover of recently fixed C at high CO2 levels. The strongest response was found in the C content of the microaggregates, which decreased significantly (P<0.05) with rising levels of CO2. We conclude that increasing atmospheric CO2 concentrations will decrease soil C in chaparral ecosystems, and that the microaggregate fraction is the most responsive to increasing concentrations of atmospheric CO2.  相似文献   

4.
Although acid soils are common in forest ecosystems, and there is documented evidence of pH influencing transformations of organic matter in soil, there are surprisingly few studies on the influence of soil pH on the chemical structure of physically fractionated soil organic matter (SOM). The aim of this study was to characterize the influence of pH on the chemical and physical processes involved in SOM stabilization. Forest soils of different pH (4.4 and 7.8) sampled from two long‐term experiments at Rothamsted Research (UK) were physically fractionated. The free light fraction (FLF), the intra‐aggregate light fraction and the fine silt and clay (S + C, <25 µm) were characterized using elemental, isotopic (δ13C), thermogravimetric, differential thermal, diffuse reflectance infrared Fourier transform spectroscopy and high‐resolution magic angle spinning 1H nuclear magnetic resonance analyses. The quantitative distribution of carbon (C) between SOM fractions differed between the two soils. Carbon contents in the light fractions from the acid soil were significantly greater than in those of the alkaline soil. In contrast, in S + C fractions, C content was greater in the alkaline soil. FLF from the acid soil was characterized by a greater C:N ratio, smaller δ13C and greater content of thermo‐labile compounds compared with FLF from the alkaline soil. In contrast, there was only a weak effect of soil pH on the chemical composition of the organic matter in S + C fractions. Irrespective of soil pH, these latter fractions contained mainly aliphatic compounds such as carbohydrates, carboxylic acid, amide and peptide derivates. This suggested that physical mechanisms, involving the interactions between SOM and mineral surfaces, are of greater importance than the presence of chemically recalcitrant species in protecting SOM associated with the finest soil fractions.  相似文献   

5.
Abstract

Many of the cultivated soils of sub‐Saharan Africa typically have a surface horizon low in clay and with a low cation exchange capacity (CEC). In these soils, CEC is largely due to the soil organic matter (SOM). Measurements made on long‐term trials show that changes in CEC and SOM are positively correlated to one another, but not of same magnitude, suggesting that not all of the SOM plays an equal role as regards the soil CEC. To study the influence of the different SOM size fractions on the CEC, soils with or without application of manure or compost coming from trials in Chad and Côte d'Ivoire were separated without destruction of the SOM into five organo‐mineral fractions: “coarse sand”;, “fine sand”;, “coarse silt”;, “fine silt”;, and “clay”; made up of particles of sizes between 2,000 and 200, 200 and 50, 50 and 20, 20 and 2, and 2 and 0 μm, respectively. Fractionation was carried out by mechanical dispersion of the soil, wet sieving of the fractions larger than 20 μm, and decanting of the “clay”; and “fine silt”; fractions. The CEC of these fractions increases inversely with their size. The “clay”; fraction which contains half of the SOM contributes about 80% of the CEC of the soils. The CEC of the fractions is largely a function of their carbon (C) content, but the organic CEC per unit C of the “clay”; fraction appears to be four times greater than that of the other fractions (1,000 as against 270 cmolc kg‐1). Applications of manure or compost increase the CEC of the soils by increasing the soil C only when this C increase concerns the fine fractions of the SOM.  相似文献   

6.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

7.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

8.
The location of soil organic matter (SOM) within the soil matrix is considered a major factor determining its turnover, but quantitative information about the effects of land cover and land use on the distribution of SOM at the soil aggregate level is rare. We analyzed the effect of land cover/land use (spruce forest, grassland, wheat and maize) on the distribution of free particulate organic matter (POM) with a density <1.6 g cm−3 (free POM<1.6), occluded particulate organic matter with densities <1.6 g cm−3 (occluded POM<1.6) and 1.6-2.0 g cm−3 (occluded POM1.6-2.0) and mineral-associated SOM (>2.0 g cm−3) in size classes of slaking-resistant aggregates (53-250, 250-1000, 1000-2000, >2000 μm) and in the sieve fraction <53 μm from silty soils by applying a combined aggregate size and density fractionation procedure. We also determined the turnover time of soil organic carbon (SOC) fractions at the aggregate level in the soil of the maize site using the 13C/12C isotope ratio. SOM contents were higher in the grassland soil aggregates than in those of the arable soils mainly because of greater contents of mineral-associated SOM. The contribution of occluded POM to total SOC in the A horizon aggregates was greater in the spruce soil (23-44%) than in the grassland (11%) and arable soils (19%). The mass and carbon content of both the free and occluded POM fractions were greater in the forest soil than in the grassland and arable soils. In all soils, the C/N ratios of soil fractions within each aggregate size class decreased in the following order: free POM<1.6>occluded POM<1.6-2.0>mineral-associated SOM. The mean age of SOC associated with the <53 μm mineral fraction of water-stable aggregates in the Ap horizon of the maize site varied between 63 and 69 yr in aggregates >250 μm, 76 yr in the 53-250 μm aggregate class, and 102 yr in the sieve fraction <53 μm. The mean age of SOC in the occluded POM increased with decreasing aggregate size from 20 to 30 yr in aggregates >1000 μm to 66 yr in aggregates <53 μm. Free POM had the most rapid rates of C-turnover, with residence times ranging from 10 yr in the fraction >2000 μm to 42 yr in the fraction 53-250 μm. Results indicated that SOM in slaking-resistant aggregates was not a homogeneous pool, but consisted of size/density fractions exhibiting different composition and stability. The properties of these fractions were influenced by the aggregate size. Land cover/land use were important factors controlling the amount and composition of SOM fractions at the aggregate level.  相似文献   

9.
Dolomite (CaMg(CO3)2) constitutes half of the global carbonates. Thus, many calcareous soils have been developing rather from dolomitic rocks than from calcite (CaCO3)‐dominated limestone. We developed a physical fractionation procedure based on three fractionation steps, using sonication with subsequent density fractionation to separate soil organic matter (SOM) from dolomite‐derived soil constituents. The method avoids acidic pretreatment for destruction of carbonates but aims at separating out carbonate minerals according to density. The fractionation was tested on three soils developed on dolostone parent material (alluvial gravel and solid rock), differing in organic‐C (OC) and inorganic‐C (IC) concentrations and degree of carbonate weathering. Soil samples were suspended and centrifuged in Na‐polytungstate (SPT) solutions of increasing density, resulting in five different fractions: two light fractions < 1.8 g cm–3 (> 20 μm and < 20 μm), rich in OC and free of carbonate, and two organomineral fractions (1.8–2.4 g cm–3 and 2.4–2.6 g cm–3), containing 66–145 mg g–1 and 16–29 mg g–1 OC. The organomineral fractions consist of residual clay from carbonate weathering such as clay minerals and iron oxides associated with SOM. The fifth fraction (> 2.6 g cm–3) was dominated by dolomite (85%–95%). The density separation yielded fractions differing in mineral compositions, as well as in SOM, indicated by soil‐type‐specific OC distributions and decreasing OC : N ratios with increasing density of fractions. The presented method is applicable to a wide range of dolomitic and most likely to all other calcareous soils.  相似文献   

10.
The formation of soil organic matter (SOM) very much depends on microbial activity. Even more, latest studies identified microbial necromass itself being a significant source of SOM and found microbial products to initiate and enhance the formation of long-term stabilized SOM. The objectives of this study were to investigate the microbial contribution to SOM in pools of different stability and its impact on SOM quality. Hence, four arable soils of widely differing properties were density-fractionated into free and occluded particulate organic matter (fPOM, oPOM < 1.6 g cm−3 and oPOM < 2.0 g cm−3) and mineral associated organic matter (MOM > 2.0 g cm−3) by using sodium polytungstate. These fractions were characterized by in-source pyrolysis-field ionization mass spectrometry (Py-FIMS). Main SOM compound classes of the fractions were determined and further SOM properties were derived (polydispersity, thermostability). The contribution of microbial derived input to arable soil OM was estimated from the hexose to pentose ratio of the carbohydrates and the ratio of C4–C26 to C26–C36 fatty acids. Additionally, selected samples were investigated by scanning electron microscopy (SEM) for visualizing structures as indicators for the origin of OM. Results showed that, although the samples differed significantly regarding soil properties, SOM composition was comparable and almost 50% of identifiable SOM compounds of all soils types and all density fractions were assigned to phenols, lignin monomers and alkylaromatics. Most distinguishing were the high contents of carbohydrates for the MOM and of lipids for the POM fractions. Qualitative features such as polydispersity or thermostability were not in general assignable to specific compounds, density fractions or different mean residence times. Only the microbial derived part of the soil carbohydrates could be shown to be correlated with high SOM thermostability (r2 = 0.63**, n = 39). Microbial derived carbohydrates and fatty acids were both enriched in the MOM, showing that the relative contribution of microbial versus plant-derived input to arable SOM increased with density and therefore especially increased MOM thermostability. Nevertheless, the general microbial contribution to arable SOM is suggested to be high for all density fractions; a mean proportion of about 1:1 was estimated for carbohydrates. Despite biomolecules released from living microorganisms, SEM revealed that microbial mass (biomass and necromass) is a considerable source for stable SOM which is also increasing with density.  相似文献   

11.
Soil physical fractionation techniques may provide indicators of changing soil organic carbon (SOC) content; however, they have not been widely tested on volcanic soils (Andisols). In this study, we assessed two fractions as potential indicators in volcanic soils, using two sites in Chile converted from natural grassland to arable and mixed crop rotations, 8 and 16 yr previously. In the 8‐yr experiment, SOC had declined under all rotations, with smaller changes where the rotation included 3 or 5 yr of perennial pasture. Whereas the average SOC was only 76% of the level in the preceding natural grassland, the corresponding value after 16 yr for the second site was 98% (and 93% under continuous arable), probably reflecting its high allophane clay content. The fractionation procedure tested proved applicable to both Andisols, but the intra‐aggregate light fraction (IA‐SOM, isolated in sodium iodide solution at 1.80 g/cm3 after ultrasonic dispersion) accounted for a very small proportion of total SOC (<1%). We suggest that in Andisols, the free light fraction (FR‐SOM, isolated in sodium iodide at solution of the same density, but prior to ultrasonic dispersion) is stabilised to a greater extent than in nonvolcanic soils, and the intra‐aggregate fraction plays a more minor role as a pool of intermediate turnover. The relative value of each fraction needs to be confirmed through dynamic experiments, using more sites, and including situations where SOC content is initially low.  相似文献   

12.
Soil organic matter dynamics after the conversion of arable land to pasture   总被引:4,自引:0,他引:4  
 Conversion of arable land (maize) to pasture will affect the soil organic matter (SOM) content. Changes in the SOM content were studied using a size- and density-fractionation method and 13C analysis. Twenty-six years of maize cropping had resulted in a depletion of carbon stored in the macro-organic fractions (>150 μm) and an increase in the <20 μm fraction. Maize-derived carbon in the upper 20 cm increased from 10% in the finest fraction (<20 μm) to 91% in the coarse (>250 μm), light (b.d. <1.13 g cm–3) fractions. Pasture installation resulted in a rapid recovery of the total SOM content. Up to 90% of the pasture-derived carbon that was mineralized during maize cropping was replaced within 9 years. Especially the medium and coarse size (>150 μm) and light (b.d. <1.13 g cm–3) fractions were almost completely regenerated by input of root-derived SOM. The amount of medium-weight and heavy macro-organic fractions (>150 μm; b.d. >1.13 g cm–3) in the 0- to 20-cm layer was still 40–50% lower than in the continuous pasture plots. Average half-life times calculated from 13C analyses ranged from 7 years in the light fractions to 56 years in heavy fractions. Fractionation results and 13C data indicated that mechanical disturbance (plowing) during maize cropping had resulted in vertical displacement of dispersed soil carbon from the 0- to 20-cm layer down to 60–80 cm. Conversion of arable land to pasture, therefore, not only causes a regeneration of the soil carbon content, it also reduces the risk of contaminant transport by dispersed soil carbon. Received: 10 March 1998  相似文献   

13.
长期施肥对水稻土不同功能有机质库碳氮分布的影响   总被引:3,自引:1,他引:3  
土壤有机质(SOM)对于维持农业生产力、提高土壤质量和增加土壤固碳均具有非常重要的意义。以红壤水稻土35年的长期定位试验为依托,借助近期发展的物理―化学联合分组方法,探讨了长期施肥对水稻土不同功能SOM库含量、SOM库碳氮含量变化和分配比例的影响。结果表明,长期施肥尤其是有机无机配施处理显著增加了未保护游离SOM库(c POM和f POM)和纯物理保护SOM库(i POM)在土壤中的含量以及它们的土壤有机碳(SOC)和全氮(TN)含量。未保护游离SOM库的SOC和TN含量占总有机碳和全氮比例在有机无机配施处理下最高,分别达35.9%和33%。与CK相比,有机无机配施使生物化学保护库非水解游离粉粒组(NH-d Slit)和非水解游离黏粒组(NH-d Clay)含量分别降低了15%和9.5%(p0.05)。物理―化学保护SOM库、物理―生物化学保护SOM库以及化学保护SOM库含量受长期施肥影响不显著。综上,研究表明土壤不同功能SOM库对长期施肥的响应不同。有机无机配施是提升红壤水稻土SOM数量和质量的最佳培肥措施。  相似文献   

14.
Occluded, or intra-aggregate, soil organic matter (SOM) comprises a significant portion of the total C pool in forest soils and often has very long mean residence times (MRTs). However, occluded C characteristics vary widely among soils and the genesis and composition of the occluded organic matter pool are not well understood. This work sought to define the major controls on the composition and MRT of occluded SOM in western U.S. conifer forest soils with specific focus on the influence of soil mineral assemblage and aggregate stability. We sampled soils from a lithosequence of four parent materials (rhyolite, granite, basalt, and dolostone) under Pinus ponderosa. Three pedons were excavated to the depth of refusal at each site and sampled by genetic horizon. After density separation at 1.8 g cm−3 into free/light, occluded and mineral fractions, the chemical nature and mean residence time of organics in each fraction were compared. SOM chemistry was explored through the use of stable isotope analyses, 13C NMR, and pyrolysis GC/MS. Soil charcoal content estimates were based on 13C NMR analyses. Estimates of SOM MRT were based on steady-state modeling of SOM radiocarbon abundance measurements. Across all soils, the occluded fraction was 0.5–5 times enriched in charcoal in comparison to the bulk soil and had a substantially longer MRT than either the mineral fraction or the free/light fraction. These results suggest that charcoal from periodic burning is the primary source of occluded organics in these soils, and that the structural properties of charcoal promote its aggregation and long-term preservation. Surprisingly, aggregate stability, as measured through ultrasonic dispersion, was not correlated with occluded SOM abundance or MRT, perhaps raising questions of how well laboratory measurements of aggregate stability capture the dynamics of aggregate turnover under field conditions. Examination of the molecular characteristics of the occluded fraction was more conclusive. Occluded fraction composition did not change substantially with soil mineral assemblage, but was increasingly enriched in charcoal with depth relative to bulk SOM. Enrichment levels of 13C and 15N suggested a similar degree of microbial processing for the free/light and occluded fractions, and molecular structure of occluded and free/light fractions were also similar aside from charcoal enrichment in the occluded fraction. Results highlight the importance of both fire and aggregate formation to the long-term preservation of organics in western U.S. conifer forests which experience periodic burning, and suggest that the composition of occluded SOM in these soils is dependent on fire and the selective occlusion of charcoal.  相似文献   

15.
《Geoderma》2001,99(1-2):27-49
In the global carbon cycle, soil organic matter (SOM) is a major source/sink of atmospheric carbon. Clay minerals stabilize part of the SOM through mineral–organic matter binding. Stabilization of organic matter is essential for tropical soils. Since the climatic conditions of the tropics favor decomposition of organic matter, tropical soils would be very poor in organic matter without this stabilization process. This research aims at determining the effect of clay mineralogy on the amount and composition of organic matter that is bound to the mineral surface. We focused on organic matter that is associated with kaolinite and smectite. We characterized kaolinite- and smectite-associated SOM in soils from seven countries, employing 13C NMR spectroscopy and Py-GC/MS. The content of carbon in the total clay-size fraction showed no significant difference between kaolinitic and smectitic soils. This suggests that the total amount of organic carbon in the clay-size fraction is independent of the clay mineralogy. We first extracted the clay fraction with NaOH and thereafter with Na4P2O7. About half of the kaolinite-associated SOM was extractable by NaOH. In the smectitic soils, pyrophosphate extracted more organic carbon than did NaOH. The Py-GC/MS and NMR results indicate that kaolinite-associated SOM is enriched in polysaccharide products, while smectite-associated organic matter contains many aromatic compounds. We suggest that different clay minerals use different binding mechanisms to complex SOM. As a result, the composition of clay-associated organic matter would be influenced by the type of clay that is dominantly present in the soil.  相似文献   

16.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   

17.
《Applied soil ecology》1999,11(2-3):271-275
Identifying amino sugar pools from different land-use systems may advance our knowledge of land-use effects on the fate of microbially-derived substances. Surface soils (0–10 cm) from (1) native pasture, (2) a >80-years-arable site, and (3) a >80-years-afforested site were fractionated into clay, silt, fine-, and coarse-sand fractions. Then, soil organic carbon, N, glucosamine, galactosamine, mannosamine, and muramic acid were analyzed.Afforestation did not influence the amino sugar content in bulk soil, whereas cultivation reduced the content by 54%. The concentrations of amino sugars in g kg−1 SOM declined after both long-term cropping and afforestation by 6% and 13%, respectively, relative to that in the grassland. The amino sugar depletion at the forest site occurred mainly from the silt fraction (by 25%), while that in the cultivated site was mainly due to preferential loss of amino sugars from clay (by 19% compared with the grassland). Both ratios of glucosamine to galactosamine and glucosamine to muramic acid increased when the prairie was converted to forest or cultivated land, suggesting that bacterial N especially is better preserved than fungal N under prairie conditions.  相似文献   

18.
鼎湖山土壤有机质深度分布的剖面演化机制   总被引:20,自引:5,他引:20       下载免费PDF全文
根据鼎湖山森林植被带(SL)、灌丛—草甸过渡带土壤剖面(GC)有机质含量,有机质Δ14C、δ13C值,土壤粘粒含量及孢粉分析结果,研究华南亚热带山地土壤有机质深度分布特征的成因机制。结果表明土壤有机质的深度分布特征与土壤剖面的发育过程密切相关,随深度增大,有机质的来源数量不断减少,而成土时间增加,分解作用导致的有机质含量降低幅度增大,有机质含量不断减少。土壤有机质14C表观年龄随深度增加,土壤有机质δ13C值与有机质含量的深度变化具有明显对应关系,这些都是土壤剖面发育过程中有机质不同更新周期组分呈规律性分解的结果。粘粒的深度分布反映土壤剖面淋滤淀积的特点,表明土壤剖面经受了长期成土风化。土壤剖面的上述特征均为剖面发育过程中不断沉积、不断成土的结果,表明土壤剖面成土演化对于有机质深度分布具有显著制约。  相似文献   

19.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

20.
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt‐ and clay‐sized soil fractions. Microaggegrate‐derived and easily dispersed silt‐ and clay‐sized fractions were isolated from surface soil samples collected from six long‐term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non‐hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no‐till > conventional‐till at all sites. Concentrations of non‐hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt‐sized fractions compared with the clay‐sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号