首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six potato cultivars grown in Turkey in boron-prone areas and differing in their tolerance towards high boron were studied to reveal whether boron causes oxidative stress. To assess stress level, chlorophyll fluorescence and growth parameters were measured. Oxidative damage was assessed as malondialdehyde level, and antioxidant protection was evaluated as ascorbate (AA), dehydroascorbate, reduced glutathione (GSH) and oxidized glutathione amounts and superoxide dismutase, catalase, ascorbate peroxidase (APX) and glutathione reductase (GR) activities. High boron stress affected photosynthesis negatively in a threshold-dependent manner and inhibited growth. No pronounced changes in oxidation of lipids occurred in any cultivar. Activation of APX suggested the involvement of an ascorbic acid–reduced glutathione cycle in the protection against oxidative stress caused by high boron. Efficient work of this antioxidant system was probably hindered by boron complexation with NAD(P)+/NAD(P)H and resulted in the inhibition of GR and a decrease in AA and GSH. Hence, oxidative stress associated with high boron is a secondary component of boron toxicity which arises from metabolic changes caused by boron interference with major metabolites. Potato cultivars tolerate excess boron stress well and show damage only in very high boron concentrations. The potato cvs best suited for high boron soils/breeding purposes are cvs Van Gogh and Agria.

Abbreviations: AA: ascorbic acid; APX: ascorbate peroxidase; CAT: catalase; DHA: dehydroascorbic acid; DHAR: dehydroascorbate reductase; DTNB: 5; 5′-dithiobis-2-nitrobenzoic acid; DTT: dithiotreitol; Fv/Fm: photosynthetic efficiency at the dark-adapted state; GR: glutathione reductase; GSH: reduced glutathione; GSSG: oxidized glutathione; MDA: malondialdehyde; ROS: reactive oxygen species; SOD: superoxide dismutase; TCA: trichloroacetic acid  相似文献   


2.
Mungbean is an important food grain legume with high economic status. It has an excellent source of dietary protein and nutritional health benefits, particularly for the vegetarians. It increases soil fertility and also plays an imperative role in major cropping systems due to its short life span. Production of mungbean is still decreasing due to its susceptibility towards various environmental stress factors. Salt stress is one of the most prevailing abiotic stress imposing threats for agriculture food crops along with increasing world population and limited natural resources. Fewer efforts have been made to develop an improved variety of mungbean. The present review summarizes the adverse effects of salt stress and mungbean response at the physiological and molecular level. It covers recent studies on introgression of useful traits in mungbean for its better adaptability and survival under stressed conditions. Modern biotechnological approaches and traditional breeding methods may assist the development of salt-tolerant cultivars of mungbean for salinity-affected area in arid and semi-arid regions. Researchers involved in this area should keep this goal on priority for sustainable mungbean production. Availability of protein-rich food may help to reduce the problem of malnutrition in poor families and national food security issue for a continuous rising population.  相似文献   

3.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice.  相似文献   

4.
Two cultivars of wheat (Triticum aestivum L.) with differential salinity tolerance were compared by evaluating the growth attributes, pigment composition and accumulation of Na+, K+, Zn2+, Fe 2+, Mn 2+ and proline. Wheat cultivars Al-Moiaya (AM) (salt tolerant) and Habbe-Druma (HD) (salt sensitive) were subjected to four levels of salinity (1.21 dS m?1, 4.4 dS m?1, 8.8 dS m?1 and 13.2 dS m?1) in factorial combinations with three drought stress (FC 30%, FC 60% and FC 90%) treatments in a randomized complete block design. Plant dry weight, leaf area ratio (LAR), soluble protein and total chlorophyll (Chl) content were higher in AM than HD. Salt-tolerant AM maintains a higher K+/ Na+ ratio and thereby is able to grow better than the salt-sensitive HD under both the stresses. The lower foliar Na+ in AM resulted in retention of higher Chl content, reflected in the strong positive correlations between plant ion status and Chl contents (Na+-Chl r2 = 0.83; Chl- Fe2+ r2 = 0.76; Zn2+ r2 = 0.93 and Mn2+ r2 = 0.88). In conclusion, our results suggested that the K+/Na+ ratio, exclusion of Na+ and ion homeostasis play much more important roles in the tolerance to salinity and drought stress than the compatible osmolyte, proline.  相似文献   

5.
Sodic‐alkalinity may be more deleterious to plant growth than salinity. The objectives of this study were to determine whether 5‐aminolevulinic acid (ALA: an essential precursor for chlorophyll biosynthesis) foliar application could improve the sodic‐alkaline resistance of Swiss chard (Beta vulgaris L. subsp. cicla ) by regulating water uptake, ionic homeostasis, photosynthetic capacity, and antioxidant metabolism. Eight‐week‐old uniform plants were grown in nutrient medium without and with a sodic‐alkaline regime generated by a mixture of NaHCO3 and Na2CO3 (NaHCO3 : Na2CO3 = 9:1 molar ratio) for 12 d, and leaves were sprayed daily with water or ALA. The Na+ and ALA concentrations were gradually increased to 60 mM and 120 μM, respectively. ALA foliar application alleviated the physiological damage from sodic‐alkalinity, as reflected by the increases in plant dry weight, relative growth rate, chlorophyll, Mg2+ concentration, and the decrease in Na+ concentration. However, ALA foliar application did not change the water uptake capacity or the concentration of K+, Fe3+, and endogenous ALA in leaf tissues under sodic‐alkaline conditions. ALA foliar application effectively mitigated damage from sodic‐alkalinity because of the increased activity of antioxidant enzymes (catalase and guaiacol peroxidase), particularly superoxide dismutase activity, which was maintained at the same level as for control plants. These results suggest that ALA foliar application alleviated sodic‐alkaline stress mainly owing to its antioxidant capacity, and superoxide dismutase has the main responsibility for reducing oxidative stress in Swiss chard.  相似文献   

6.
The effects of salt stress on plant growth parameters, lipid peroxidation and some antioxidant enzyme activities [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR; EC EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activity] were studied in the leaves of mustard. Plants were exposed to two different concentrations of NaCl stress (100 and 150 mM) for 45 days and were sprayed with GA3 (75 ml pot?1, conc. 75 mg l?1) once a week. Salt stress resulted in decrease in the growth and biomass yield of mustard but the exogenous application of GA3 enhanced these parameters significantly. Application of GA3 counteracted the adverse effects of NaCl salinity on relative water content, electrolyte leakage and chlorophyll (Chl) content. GA3 was sufficient to attenuate partially the stimulatory effect of NaCl supply on proline and glycinebetaine biosynthesis. GA3 reduced lipid peroxidation in the leaves, which was increased during salt stress. The activity of all the antioxidant enzymes was increased significantly during salt stress in mustard. The exogenous application of GA3 decreased the enzyme activity. The results of the present study indicate that usage of GA3 reduces the harmful effects of salinity and increases resistance to salinity in mustard plant.  相似文献   

7.
Mineral regulation of two soybean varieties Jackson and Lee was investigated in long term water culture experiments using saline solutions. The effects of extreme K:Na ratios using chloride and sulfate as counterions were studied in the early stages of salinity.

The growth rates of both varieties were not affected by salinization. A K+ stimulated, intensive acropetal Cl translocation was observed in the salt sensitive variety Jackson. The varieties did not differ in Na+ translocation and in the suppression of Ca2+ and Mg2+ in the leaves. But the effect of the nature of salinization indicates already differences in Na uptake and translocation of the cultivars.

The avoidance of Cl, but also of Ha+, in connection with influences of the resulting ionic imbalance on metabolic pathways are probably the most causative factors for the different tolerance to salinity of the two soybean varieties.  相似文献   

8.
The relation between activity of soluble acid invertase and sucrose content in leaves of young bushbeans (salt sensitive) and sugarbeets (salt tolerant) and ion‐specific effects of salinity environment were investigated. For comparison the response of isolated invertase from both plant species to ion combination and ion concentration was investigated. The plants were grown in water culture under controlled conditions.

In busbean leaves invertase activity decreased while sucrose increased. K+ with Cl as counterion was most effective “in vivo”;. However, there was little change in invertase activity or sucrose content in sugarbeet leaves. Independent of the origin of the enzyme, invertase activity was not affected by either ion concentration or ion combination “in vitro”;. Acid invertase might be a key enzyme in the utilization of carbohydrates. The ionic effect on acid invertase activity and carbohydrate content in intact plant tissue could be a possible indicator of salt tolerance of crops.  相似文献   


9.
The pollution of agricultural soils by metals is of growing concern worldwide, and is increasingly subject to regulatory limits. However, the effect of metal pollutants on the responses of plants can vary with soil types. In this study, we examined the growth and antioxidant responses of soybean plants exposed to contrasting soils (Oxisol and Entisol), which were artificially contaminated with cadmium (Cd) or barium (Ba). Cadmium reduced plant growth at concentrations higher than 5.2 mg (kg soil)–1, while Ba only affected plant growth at 600 mg kg–1. Such levels are higher than the limits imposed by the Brazilian environmental legislation. Lipid peroxidation was increased only at a Cd concentration of 10.4 mg kg–1 in the Oxisol, after 30 d of exposure. Twelve superoxide dismutase (SOD; EC 1.15.1.1) isoenzymes were evaluated, most of which were classified as Cu/Zn forms. The SOD activity in the leaves of plants grown in the Oxisol decreased over time, whilst remaining high in the Entisol. Catalase (CAT; EC 1.11.1.6) activity in the leaves exhibited little response to Cd or Ba, but increased over time. Glutathione reductase (GR; EC 1.6.4.2) activity was reduced over time when exposed to the higher Cd concentrations, but increased following Ba exposure in the Oxisol. The enzyme‐activity changes were mainly dependent on soil type, time of exposure and, to a lesser extent, the metal concentration of the soil. Soybean plants grown in a sandy soil with a low buffering capacity, such as Entisol, suffer greater oxidative stress than those grown in a clay soil, such as Oxisol.  相似文献   

10.
In order to determine the best iron (Fe) sources under alkaline conditions, an factorial experiment was conducted based on a completely randomized design with two factors of Fe fertilizer at four forms [iron sulfate (FeSO4), Fe- ethylenediaminetetraacetic acid (EDTA), Fe- diethylenetriaminepentaacetic acid (DTPA) and Fe- ethylenediamine-N,N’-bis (EDDHA), and sodium bicarbonate (NaHCO3)] at three levels (0, 10 and 15 mM) with three replications. Results showed that the highest loss of vegetative growth (stem length, leaf number, leaf area, stem diameter, and leaf, stem and root dry weight) and ecophysiological parameters (Fv/Fm, SPAD and RWC) was observed in plants treated with FeSO4. Alkalinity stress increased proline concentration especially in FeSO4 treatment. Bicarbonate treatments decreased Fe concentration in plant tissues. Fe-EDTA and Fe-DTPA fertilizer sources acted similar or even better than EDDHA at 10 mM NaHCO3 concentration, but the best Fe fertilizer source was Fe-EDDHA at 15 mM NaHCO3 concentration.  相似文献   

11.
K+/Na+ and Cl effects on activity of amylases as well as on their isoenzyme pattern in leaves of bushbeans and sugarbeets at the beginning of salinity stress were investigated, in plants grown in water culture under controlled environmental conditions. Alpha‐ and beta‐amylase activity in beans increased, particularly due to K+ and Cl supplied. In sugarbeets amylase activity remained unchanged as a result of K/Na treatment in combination with Cl and decreased using SO4 2‐ as counterion. A direct correlation of amylase activity to the starch content of both species was not detctable. Particularly α‐but also ß‐amylase was most strongly inhibited by KCl “in vitro”. Independent on their origin, amylases from bushbeans and sugarbeets did not show any differences in ionic inhibition “in vitro”. The isoenzyme pattern of the species was different, but no clear ionic effect was detectable. Amylolytic activity is evidently not a causative factor for restricted starch mobilization in leaves under an early salinity stress. It is suggested that amylases are indirectly involved in starch formation via degradation due to a lack of a carbohydrate sink under salinity stress. Differences in salt tolerance of the investigated crops are obviously not related to different “in vitro” properties of amylases.  相似文献   

12.
Abstract

Growth response of a halophyte species, Suaeda salsa (L.) Pall, to graded NaCl concentrations was examined under water culture conditions. Growth increased with increasing NaCl concentration from 2 to 200 mol m?3, but decreased at NaCl concentrations above 200 mol m?3. Maximum growth was attained at 50 to 200 mol m?3. The role of Na and Cl in the growth stimulation by NaCl was examined by growing S. salsa in nutrient solutions with or without Na and Cl separately at 5 and 50 mol m?3. The growth stimulation induced by Cl was greater than that induced by Na, and Na did not significantly induce growth stimulation. The effect of Na or Cl on O2 evolution from leaves was examined under 5 and 50 mol m?3 concentrations using an oxygen electrode. Oxygen evolution from leaves in –Cl treatments was smaller than that in +Cl treatments both at 5 and 50 mol m?3. The O2 evolution in Na treatments with Cl was similar to that at NaCl. These results indicated that the mechanism of growth stimulation induced by Cl was mainly an increased photosystem II of photosynthesis in leaves. The contribution of Na on the growth stimulation of S. salsa by NaCl was smaller than Cl.  相似文献   

13.
H2 uptake activity was well distributed in Rhizobium sp. strains isolated from nodules of mung-bean (Vigna radiata L.). Two effective strains, RMP1 und RMP2, exhibiting significantly higher H2 uptake activity were subjected to mutagenesis with nitrosoguanidine. The respective mutation frequencies were 0.18 and 0.19%. Three Hup- mutants each of RMP1 und RMP2 were compared with the wild-type parent strains under pot culture experiments to evaluate the significance of the H2 uptake system in biological N2 fixation. Nodulation capabilities, plant growth characteristics, and the chlorophyll content of the leaves were significantly reduced in the plants treated with Hup- mutants. Nitrogenase activity in Hup- nodules was reduced by 8–41%. Similarly, N accumulation was also reduced singificantly.  相似文献   

14.
Summary The efficiency of different phosphatase-producing fungi in arid soils was studied in pot experiments in order to evaluate the effect of these organisms on the enhancement of rhizosphere enzyme activities, the uptake of different nutrients, dry matter production, and grain yields of the mung bean. A significant increase in phosphatase (acid and alkaline), nitrogenase, and dehydrogenase activities was observed upon inoculation. Inoculation with phosphatase-producing fungi significantly increased dry matter production and grain yields compared with uninoculated controls. In general, there was a significant improvement in the uptake of N, P, K, Ca, Mg, Fe, and Zn while no effect on Na, Mn, and Cu was recorded. A significant positive correlation was observed between the activities of various enzymes in the rhizosphere on the one hand and N and P uptake, dry matter production, and grain yields of the mung bean on the other. Aspergillus rugulosus was the best of the phosphatase-producing fungi that were tested, followed by A. terreus. The experiment confirmed that phosphatase-producing fungi have a significant effect on growth and nutrient uptake in the mung bean and indicated that these fungi are particularly important in arid soils.  相似文献   

15.
It has been hypothesized that the uptake of organic as opposed to inorganic nitrogen compounds found in wastewater can be properly substituted for plant nutrients. The objective of this study was to compare effects of applying monosodium glutamate wastewater (MGW) and ammonium nitrate (NH4NO3) (AN) on nitrogen metabolism and growth of lettuce. The results showed that while NH4NO3 (AN), NO3-, nitrite content and NR activity increased the protein content of lettuce. Applying MGW with a high concentration of 17 amino acids and macro- and microelements improved the fresh weights of shoot and root as well as the protein content of lettuce. Antioxidant activities were not affected by AN and MGW, and their interaction effects only increased POD after 8 weeks. In conclusion, substituting a portion of the chemical fertilizers with MGW improved lettuce growth, but did not increase NO3- accumulation in leaves.  相似文献   

16.
基于过氧化氢(H2O2)的芬顿或类芬顿试剂被广泛应用于有机污染土壤的修复,但其对土壤基本性质及微生物群落的影响研究较少。本文以H2O2和不同的芬顿体系为研究对象,系统考察了H2O2、V2O3/H2O2、柠檬酸铁/H2O2体系对土壤有机质、铵态氮、硝态氮及微生物的影响。结果表明:H2O2在土壤中快速被分解,同时伴随着土壤有机质含量的显著下降和铵态氮含量的显著升高,土壤硝态氮含量变化不明显。高通量测序分析发现,H2O2和芬顿试剂显著降低了土壤微生物的多样性。  相似文献   

17.
The effect of the micronutrient manganese (Mn) on the physiological performance of green gram [Vigna radiata (L.) R. Wilczek] under saline condition was studied in the present work. Green gram was grown under controlled conditions and treated with different concentrations of sodium chloride (NaCl): 100, 200, and 300 mM. The plant samples were analyzed from 25 to 65 days of plant growth at every 10-day interval. Significant difference was observed in leaf area index, membrane stability index, nitrate reductase enzyme activity, total chlorophyll, and carotenoid content in treated plants. A drastic reduction was recorded at 200 and 300 mM NaCl treated plants in the parameters. The concentration 100 mM resulted in a slight increase of the parameters. Foliar application of Mn as manganese chloride (MnCl2) was found to improve the physiological parameters in green gram at 200 and 300 mM salinity level and was useful in alleviating the detrimental effects of NaCl.  相似文献   

18.
以低硝酸盐积累基因型(东妃)和高硝酸盐积累基因型(高雄甜脆)两种小白菜为材料,采用溶液培养法研究了增施CO2降低蔬菜硝酸盐积累的生理机制。结果表明,CO2浓度升高能显著提高2种基因型小白菜的生物量和硝酸还原酶活性,并降低根、茎叶各部位的硝酸盐含量。CO2浓度升高不仅促进了植株对硝态氮的吸收,而且植株吸收硝酸盐的累积量增幅均高于鲜重的增幅。由此可见,除了鲜重增加的稀释作用,处理后生理机制的变化也可能是CO2浓度升高引起硝酸盐含量降低的重要原因。研究还表明,增施CO2后“东妃”的硝酸盐含量降低百分率与硝酸还原酶活性的增加百分率呈极显著相关,而“高雄甜脆”的硝酸盐含量降低百分率则与鲜重的增加百分率的相关性达极显著水平。说明增施CO2后植株各部位硝酸还原酶活性提高及鲜重的增加均为引起硝酸盐含量降低的重要原因,但贡献率具有明显的基因型差异。  相似文献   

19.
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules.  相似文献   

20.
Abstract

Critical values of boron (B) for wheat nutrition in soil and plant were determined through a pot experiment with twenty-one surface soils of Alluvial flood plain and Red-latertic belt comprising three major soil orders (Entisols, Alfisols, Inceptisols) with four levels of boron. Application of boron significantly increased the dry matter yield as well as uptake of B by plants. Critical concentration of hot calcium chloride (CaCl2) extractable B in soil for wheat was found to be 0.53?mg?kg?1. The critical plant B concentration varied with growth stages and values were 7.4?mg?kg?1 at panicle initiation and 4.18?mg?kg?1 at maturity, respectively. The findings of this investigation also recommend the application of 2?kg?B?1?ha?1 for ensuring B sufficiency to wheat in Indo-gangetic alluvial and Red-Lateritic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号