首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Nitrogen (N) loss is one of the key problems faced by rice farmers, and Nitrogen-use efficiency in rice is often poor as a result of high N loss through volatilization, leaching, and denitrification. One of the ways to improve N efficiency is by using controlled-release urea (CRU). The CRU generally outperformed granular urea fertilizer in reducing N losses, stimulating plant growth, and increasing N concentrations. A field experiment with the flooded rice variety MR220 was conducted to compare the effect of six different types of CRU fertilizers on yield and N nutrition of a flooded rice cultivar. Bakau series soil (Typic Tropaquept) was used in this study. Rice plants were grown in a cylindrical culvert measuring 90 cm in diameter by 60 cm in height, and all culverts were filled with soil (approx. 210 kg). The soil was flooded and preincubated for 3 weeks to stabilize physiochemical properties before sowing. The experiment was carried out over two planting seasons on the same plot using a completely randomized design (CRD) and was replicated three times. The CRUs evaluated were CDU Uber-10, Meister-20, Meister-27, humate-coated urea, Duration type V, and sulfur-coated urea (gold–N). Fertilizer was applied once throughout the study. For both seasons, CRU-treated plants had significantly greater rice yields [6 t ha?1 (first planting harvest) and 6.2 t ha?1 (second planting harvest)] than urea-treated plants [3.7 t ha?1 (first planting harvest) and 2.2 t ha?1 (second planting harvest)], respectively. The N accumulations in rice straw and rice grains of the CRU-treated plot were significantly greater than in the control. It can be inferred that CRU performs significantly better than granular urea. This finding is important, considering the usually high N losses in rice-growing areas.  相似文献   

2.
Abstract

Enhancing rice yield is a great challenge for rice growers in the tidal flooded ecosystem, where poor agronomic management is one of the major constrains. Improve management practice (IMP) was compared with traditional farmers’ practice (TFP) in evaluating rice productivity, nutrient uptake, translocation and farm income in tidal flooded ecosystem. Results revealed that, IMP significantly produced higher number of panicles m?2, more grain panicle?1 and better grain filling. The rice cultivars produced 2.0 to 2.5 t grain ha?1 with TFP, while 3.0 to 4.0 t ha?1 with IMP. In different rice cultivars, the grain yield in IMP increased 12 to 60% over TFP. Similarly, the grains in IMP treatment absorbed 21.41 to 57.03?kg N ha?1 whereas only 15.85 to 46.94?kg N ha?1 in TFP plot. However, higher nitrogen (N) transfer from shoot to grain in IMP also suggests that the amount of N in soil was too low to meet the plant demand in TFP. Although, the IMP involved additional cost, but it gave significantly higher gross return (438 to 954?US$ha?1) and margin (397 to 913?US$ha?1) which added farm income upto 225?US$ha?1 over TFP. Hence, it could be concluded that IMP is a potential option for increasing grain yield and farm income during aman season in the tidal flooded ecosystem.  相似文献   

3.
The continuous growing of rice has led to a deterioration in soil quality, resulting in a serious threat to agricultural sustainability in the high rainfall zone of south Gujarat, India. Therefore, crop diversification with a wider choice in the production of crop varieties is being promoted to restore the soil quality. A field experiment was conducted in Navsari, India during 2003–2007 on a Vertisol to evaluate the productivity, sustainability, resource-use efficiency and economics of 10 rice-based cropping systems. The results showed that system productivity for rice–fenugreek (Trigonella foenum-graecum)–okra (Abelmoschus esculentus) was highest (25.73 t ha?1), followed by rice–onion (Allium cepa)–cowpea (Vigna sinensis L.) (24.15 t ha?1); and the lowest system productivity was observed with the rice–wheat (Triticum aestivum)–fallow system (7.85 t ha?1). The sustainable yield index (0.97), production efficiency (102.94 kg ha?1 day?1) and field water use efficiency (15.98 kg ha?1 mm?1) were maximum with the rice–fenugreek–okra system. Similarly, net return (96,286 Rs ha?1), net return per rupee invested (2.83 Rs), monetary production efficiency (385.14 Rs ha?1 day?1) and water use efficiency (59.80 Rs ha?1 mm?1) were maximum with the rice–fenugreek–okra cropping sequence. There were significant effects of various cropping sequences on available nitrogen, phosphorus, potassium and organic carbon content in the soil. Overall, the rice–fenugreek–okra system was found to be the most productive, sustainable, resource-use efficient and remunerative cropping system, followed by the rice–onion–cowpea system.  相似文献   

4.
Root traits of six different crops grown on residual soil moisture in the post–rainy season in the High Barind Tract (HBT) of Bangladesh were investigated to better understand their adaptation to this moisture‐limited environment. Deep‐rooting chickpea is the currently favored rainfed crop grown after rainy‐season rice in the HBT, but it is necessary to identify alternative crops to chickpea in order to avoid buildup of pests and diseases. Averaged over 2 y, barley (1.72 Mg ha–1) produced significantly more grain than chickpea (1.4 Mg ha–1) which, in turn, yielded better than linseed (1.0 Mg ha–1), wheat (0.93 Mg ha–1), and mustard (0.77 Mg ha–1). Lentil did not produce any grain at all. Grain yield for all crops increased as total root length increased above a threshold value of 0.05 to 0.1 km m–2. In general, grain yield increased as the proportion of total root produced below 60 cm depth increased, although barley also had thin roots that could more effectively extract soil moisture. Expression of root traits varied considerably between seasons, which was attributable to the different rainfall patterns and bulk‐density characteristics of the soil profile in the 2 years of the study. Although favorable root traits, particularly rooting ability below 60 cm, are a prerequisite for acceptable yield levels of crops grown on residual soil moisture in the HBT, it is recognized that farmers' choice of a post‐rice crop will depend on its economic return or food‐security value.  相似文献   

5.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

6.
Field experiments during two successive rainy seasons were conducted in southern Vietnam to evaluate the effects of a commercial inoculant biofertilizer (‘BioGro’) and fused magnesium phosphate (FMP) fertilizer on yield and nitrogen (N) and phosphorus (P) nutrition of rice. Inoculation with BioGro containing a pseudomonad, two bacilli and a soil yeast significantly increased grain yield in the second season and straw yield in both seasons by 3–5%. The FMP fertilizer significantly increased grain yield from 1.72–2.33 t ha?1 to 2.99–3.58 t ha?1 along with total N and P accumulation at all rates in both cropping seasons. In the first season the difference in grain yield between BioGro treated and untreated plots was marginal but in the second season BioGro out-yielded the control at all the rates of added P. Overall, BioGro application did not compensate for low P fertilizer application to the same extent previously demonstrated for low N fertilizer applications.  相似文献   

7.
The nitrogen (N) fertilizer-use efficiency (20–50%) is low in rice fields in India. The neem-oil coated urea can increase N-use efficiency in lowland rice, but the desirable thickness of neem-oil coating onto urea is not known yet. Therefore, field experiments were conducted during kharif (rainy) season years 2004 and 2005 at the Research Farm of Indian Agricultural Research Institute, New Delhi to know the suitable thickness of neem-oil coating on prilled urea (PU) for increased N-use efficiency and yield. The treatments comprised of twelve combinations of four N sources (PU coated with neem-oil thickness of 0, 500, 1000 and 2000 mg kg?1 PU) and three N levels (50, 100, and 150 kg N ha?1) plus a no-N control. Prilled urea (PU) refers to the common urea available commercially in prills, which is different from urea super granules. Application of urea coated with neem-oil thickness of 1000 mg kg?1 PU resulted in significantly higher growth, yield parameters, grain yield, N uptake, and efficiency of aromatic rice (Oryza sativa L.) over uncoated PU. Nitrogen application at 122 kg ha?1 was optimum for increased yield of rice. Nitrogen-use efficiency decreased significantly and substantially with each successive increase in levels of N from 50 to 150 kg ha?1.  相似文献   

8.
Effect of potassium (K) fertilization (0, 20, 40, 60, 80 and 100 kg K ha?1) on yield, nitrogen (N) and K nutrition of Boro (dry season) rice and apparent soil K balance was studied. Experiment was conducted at Bangladesh Rice Research Institute (BRRI) regional station farm, Habiganj, Bangladesh during 2007–2008 to 2009–2010 in a wetland rice ecosystem under haor area. Cropping pattern was Boro–Fallow–Fallow. A popular rice variety BRRI dhan29 was tested in a randomized complete block design with three replications. Results indicated that BRRI dhan29 maintained an average grain yield of 5.19 t ha?1 year?1 without K fertilization. Potassium fertilization significantly increased the grain yield to 6.86 t ha?1 year?1. Quadratic equations best explained the progressive increase of rice yield with increasing K rates. Optimum dose of K in 3 years ranged from 78 to 93 kg ha?1. Internal N use efficiency of rice decreased with increasing K rates. However, K use efficiency was inconsistent. Apparent K balance study revealed that application of 100 kg K ha?1 was not able to maintain a positive K balance in soil under wetland ecosystem with Boro–Fallow–Fallow cropping system. However, K fertilization decreased the negativity of K balance in soil.  相似文献   

9.
Nutrient deficiency, high rate of evapotranspiration, and insufficient and erratic rainfall are the critical challenges for crop production in the dryland areas (DLAs) of Sub-Saharan Africa, including Tanzania, where 61% of arable land is prone to drought. In addressing these challenges, field trials were conducted in central Tanzania to evaluate the interactive effects of ripping and tie-ridges with organic (FYM) and inorganic fertilizers (N) on the mitigation of the critical period of soil moisture stress (CPSMS) for sorghum yield performance. Both in situ rainwater harvesting techniques (IRWHT) and flat-cultivated land were integrated with 8 Mg FYM ha–1, 70 Kg N ha–1, and a combination of 35 Kg N ha–1 and 4 Mg FYM ha–1 (N+ FYM). Among the IRWHT, tie-ridges stored a significant water volume of 577 and 457 m3 ha–1, which mitigated the CPSMS by the maximum of 95% and 37% for the above-average rainfall and below-average rainfall season, respectively. However, it only registered the highest grain yield (2.02 Mg ha–1) and biomass (3.46 Mg ha–1) in a below-average rainfall season. The highest overall grain yield (5.73 Mg ha) and biomass (12.09 Mg ha–1) were harvested in ripping with combined fertilizer treatments in an above-average rainfall season, while the lowest grain yield (0.5 Mg ha–1) and biomass (1.2 Mg ha–1) were registered in the flat-cultivation control in the below-average rainfall season. In the latter season, IRWHT increased the mitigation potential in the order; flat cultivation < ripping < tie-ridges; and sorghum yield, highly correlated with drought mitigation index. The results showed that sorghum grain yield and final biomass performance depend on the influence of IRWHT applied, rainfall amount, soil moisture level, integrated fertilizer, and length of the CPSMS. In the above-average rainfall seasons, fertilizers mask the influence of the IRWHT. The opposite is true in the below-average rainfall season. Although ripping N+ FYM resulted in the highest overall yield, the study recommends practicing tie-ridges integrated with N+ FYM due to regular occurrences of low and unreliable rainfall in the dryland areas.  相似文献   

10.
Field experiments were conducted during successive rainy seasons in 2006 in the Chau Thanh district of southern Vietnam to evaluate the effects of an inoculant plant growth promoter product called “BioGro” and N fertiliser rates on yield and N and P nutrition of rice. The results indicated that inoculation with BioGro, containing a pseudomonad, two bacilli and a soil yeast, significantly increased grain and straw yields and total N uptake in both seasons, as well as grain quality in terms of percentage N. Nitrogen fertilisation increased grain and straw yields as well as total N and P uptakes significantly in both cropping seasons. The estimated grain yield response to added N was quadratic in nature with and without added BioGro. In the first crop, BioGro out-yielded the control up to 90 kg urea N ha?1 whilst in the second season the beneficial effect of BioGro was observed up to 120 kg urea N ha?1, indicating either an interaction of the inoculant with higher yielding seasonal conditions or a cumulative effect of BioGro application. In the first season, the estimated N rate for maximum grain yield was 103 kg N ha?1 with BioGro while it was 143 kg N ha?1 without BioGro. The maximum estimated grain yields were 3.21 and 3.18 t ha?1 with and without BioGro, respectively. This information indicates that BioGro was able to save 40 kg N ha?1 with an additional rice yield of 30 kg ha?1 in the season. In the second rainy season, the estimated N rates for maximum grain yields were 94 and 97 kg N ha?1 with and without BioGro, respectively. The estimated maximum grain yields were 3.49 and 3.25 t ha?1 with and without BioGro, respectively. The two seasons’ combined results indicate that application of BioGro improved the efficiency of N use by rice significantly, saving 43 kg N ha?1 with an additional rice yield of 270 kg ha?1 in two consecutive seasons at the experimental site. The extra efficiency was shown by the fact that the same yield of rice was obtained with about 40 and 60 kg less fertiliser-N that the maximum yields with urea alone in the two successive harvests on the same plots.  相似文献   

11.
With increasing water shortages in China, rice (Oryza sativa L.) cultivation is gradually shifting away from continuously flooded conditions to partly or even completely aerobic conditions. The effects of this shift on the growth and iron (Fe) nutrition of different aerobic and lowland rice genotypes are poorly understood. A field experiment was conducted to determine the effects of cultivation system (aerobic vs. flooded), genotype (five aerobic rice varieties and one lowland rice variety), and Fe fertilization [no Fe and 30 kg ha?1 ferrous sulfate (FeSO4·7H2O] on rice grain yield and Fe nutrition. Plants were sampled at tillering and physiological maturity. In both aerobic and flooded plots, Fe application significantly increased shoot dry weight, shoot Fe concentration, and shoot Fe content at tillering but not physiological maturity. At physiological maturity, grain yield and Fe and grain harvest indices were significantly lower in aerobic than in flooded plots. Shoot dry weight and shoot Fe content differed among genotypes at tillering and at physiological maturity. The grain harvest index of aerobic rice genotype 89B-271-17(hun) was significantly greater than that of the other five genotypes when no Fe was applied. Because soil Fe fertilization did not improve the Fe nutrition of rice in aerobic plots, the results indicate that the shift from flooded to aerobic cultivation will increase Fe deficiency in rice and will increase the problem of Fe deficiency in humans who depend on rice for nutrition.  相似文献   

12.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

13.
Abstract. Nitrogen (N) loss by leaching poses great challenges for N availability to crops as well as nitrate pollution of groundwater. Few studies address this issue with respect to the role of the subsoil in the deep and highly weathered savanna soils of the tropics, which exhibit different adsorption and drainage patterns to soils in temperate environments. In an Anionic Acrustox of the Brazilian savanna, the Cerrado, dynamics and budgets of applied N were studied in organic and inorganic soil pools of two maize (Zea mays L.) – soybean (Glycine max (L.) Merr.) rotations using 15N tracing. Labelled ammonium sulphate was applied at 10 kg N ha?1 (with 10 atom%15N excess) to both maize and soybean at the beginning of the cropping season. Amounts and isotopic composition of N were determined in above‐ground biomass, soil, adsorbed mineral N, and in soil solution at 0.15, 0.3, 0.8, 1.2 and 2 m depths using suction lysimeters throughout one cropping season. The applied ammonium was rapidly nitrified or immobilized in soil organic matter, and recovery of applied ammonium in soil 2 weeks after application was negligible. Large amounts of nitrate were adsorbed in the subsoil (150–300 kg NO3?‐N ha?1 per 2 m) matching total N uptake by the crops (130–400 kg N ha?1). Throughout one cropping season, more applied N (49–77%; determined by 15N tracers) was immobilized in soil organic matter than was present as adsorbed nitrate (2–3%). Most of the applied N (71–96% of 15N recovery) was found in the subsoil at 0.15–2 m depth. This coincided with an increase with depth of dissolved organic N as a proportion of total dissolved N (39–63%). Hydrophilic organic N was the dominant fraction of dissolved organic N and was, together with nitrate, the most important carrier for applied N. Most of this N (>80%) was leached from the topsoil (0–0.15 m) during the first 30 days after application. Subsoil N retention as both adsorbed inorganic N, and especially soil organic N, was found to be of great importance in determining N losses, soil N depletion and the potential of nitrate contamination of groundwater.  相似文献   

14.
ABSTRACT

Plant density and nitrogen (N) input level have notable effects on root development, distribution in the soil profile, and in turn, N-uptake of winter wheat. Our study objectives were to identify whether a high yield can be maintained with a reduced N input by increasing plant density. Field studies were conducted during four successive seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) using a widely planted cultivar, Tainong18. Two regimes of N fertilization (180 kg ha?1 and 240 kg ha?1) and three planting densities (135, 270, and 405 plants per m2) were used. Higher plant density led to increased root length density (RLD) and enhanced N uptake from the whole soil profile. The RLD in the soil profile at 0–1.2 m, 0–0.4 m, and 0.4–0.8 m decreased while in the 0.8–1.2 m layer it increased in response to reduced N input. The combined effects of higher plant density and lower N input resulted in reduced N uptake, a lower nitrogen nutrition index (NNI), unchanged grain yield, and improved N use efficiency. In conclusion, it is possible and sustainable to maintain a high wheat yield with reduced N input by increasing plant density.  相似文献   

15.
The continuous airflow enclosures with an acid trap method was widely used to investigate ammonia (NH3) volatilization in field; however, it could be time-consuming for the estimation of NH3 volatilization in field with the application of controlled-release urea (CRU) because NH3 volatilization with CRU application could occur during the entire crop growth period. An NH3 volatilization estimation method based on the modified Jayaweera–Mikkelsen (J-M) model combined with the Sherlock–Goh model was used to simulate NH3 volatilization in a paddy field after 255 kg N ha?1 as CRU (polymer-coated urea with the concentration of 43% nitrogen, 100% for basal) and urea (70% for basal, 30% for topdressing) during the rice growth period including flooded and non-flooded periods in Wuxi, China. Results indicated that NH3 volatilization can be modeled with the proposed measure because no significant difference (P< 0.001) was observed between the simulated values and the observed values; the correlation coefficient (r2) was 0.615 for CRU and 0.840 for urea during the flooded period, and 0.991 for CRU and 0.946 for urea during the non-flooded period. Compared with urea, NH3 volatilization was minimized by 43.2% with the application of CRU based on simulated value within the rice growth period, which was 40.40 kg N ha?1 for CRU and 78.62 kg N ha?1 for urea during the flooded period, and 5.52 kg N ha?1 for CRU and 2.33 kg N ha?1 for urea during the non-flooded period. Therefore, CRU could be a promising nitrogen fertilizer to prevent NH3 losses in the rice paddies at the investigated area.  相似文献   

16.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

17.
Abstract

Soil organic carbon (SOC) and nutrient stocks in the soil profile (0–80 cm) in four dominant land uses [forest, upland maize and millet (Bari), irrigated rice (Khet), and grazed systems)] and 0–15 cm depth along elevation gradient 1000 to 3000 m, and aspects in the Mardi watershed were measured. Soil properties at 0–15 cm depth were also measured in undisturbed forest, forest with free grazed system, managed forest, and grassland to compare the soil quality index (SQI) of topsoils. The SOC and nutrient concentration decreased with increasing profile depth. The SOC and N contents in the 0–15 cm depth of forest soils were significantly greater than the corresponding depth in upland maize and millet, irrigated rice, and grazed systems. On the other hand, available P and K concentrations at the same depth were significantly greater in upland maize and millet compared to irrigated rice, grazed system, and forest land uses. The SOC and N stocks (0–15 cm) increased from agricultural land at the valley bottom at about 1000 m above mean sea level (a.s.l.) (24 and 3 Mg ha?1) compared to undisturbed forest (74 and 5.9 Mg ha?1) at 2600 m a.s.l, demonstrating the effects of cover and elevation. Both SOC and N stocks decreased sharply in grassland (54 and 4.5 Mg ha?1) at elevations of 2600 to 2800 m a.s.l. compared with undisturbed forest. Above 2800 m a.s.l. the cover type changed from grass to coniferous forest, and the SOC and N stocks steadily increased at the summit level (3200 m a.s.l.) to 65 and 6.9 Mg ha?1, respectively. Slope and aspect significantly affected SOC with the northwest aspect having significantly higher concentrations (46 g kg?1) than other aspects. Similarly, SOC concentration at the lowest slope position (39 g kg?1) was significantly higher than the middle or upper positions (25 and 13 g kg?1). Integrated soil quality index (SQI) values varied from 0.17 to 0.69 for different land uses, being highest for undisturbed forest and lowest for irrigated rice. The SQI demonstrated the degradation status of land uses in the following ascending order: irrigated rice?>?grazed system?>?forest with free grazing?>?upland maize and millet?>?managed forest?>?grass land?>?undisturbed forest. The irrigated rice, grazed system, upland maize and millet, and freely grazed forestlands need immediate attention to minimize further deterioration of soil quality in these land uses.  相似文献   

18.
Abstract. A lysimeter study from April 1993 to June 1997 assessed the effects of winter cover crops and unfertilized grass on both the volume of water draining over winter and the amounts of nitrate leached. There were three to five replicates of each treatment in a fully randomized design. The lysimeters were undisturbed monoliths of loamy medium sand, 1.2 m deep and 0.8 m diameter. There were six treatments: sown cover before spring-sown crops (SC), natural regeneration (‘tumbledown’) before spring-sown crops (T), unfertilized grass (UG), bare soil permanent fallow, (PF), winter barley (WB) and conventional overwinter fallow before spring-sown crops (WF). Sugarbeet replaced cereals in 1996 as a disease break, and in consequence no cover was established in SC and T in autumn 1996. Of the four years of the study, two were above-average rainfall, while two were of less than average rainfall. Results are only quoted if statistically significantly different from WB (P=0.10). Over the first winter, NO3―N losses were similar under UG (26 kg ha?1) and PF (29 kg ha?1), due to the slow establishment and growth of the grass. In the following three winters NO3―N losses under UG were small (c. 6 kg ha?1), giving an overall mean of c. 11 kg ha?1. Sown cover crops and T gave means of c. 16 and 22 kg ha?1 respectively, compared with c. 27–31 kg ha?1 under PF, WB and WF. Mean NO3―N concentrations were smallest under UG (4.4 mg l?1) and SC (10.6 mg l?1), although both T (13.7 mg l?1) and PF (12.4 mg l?1) were less than under WB and WF (15.8–18.7 mg l?1). Overwinter drainage was greatest from UG and PF, at 239 and 247 mm respectively. In the three winters that cover crops were grown, drainage was decreased by, on average, 30 mm year?1 compared with WF. However, there were large differences in effects between years, with significant decreases in only one year. We conclude that the widespread adoption of cover crops before spring-sown crops will reduce overwinter drainage in UK Nitrate Vulnerable Zones by no more than c. 2%, compared with no cover before spring-sown crops.  相似文献   

19.
Alligator weed (Alternanthera philoxeroides) is the most troublesome invasive weed in transplanted rice ecosystems worldwide. A two-year field study was conducted to estimate economic threshold levels and the season long competitive effect of six alligator weed densities (0, 2, 4, 8, 16, and 32 plants m?2) on yield and quality traits of transplanted rice. A gradual linear incline in dry weight of alligator weed was observed with an increase in its density from 2 to 32 plants m?2. Maximum N (15.93–18.26 kg ha?1), P (15.10–16.46 kg ha?1) and K (16.34–17.81 kg ha?1) uptake by alligator weed was recorded at its density of 32 plants m?2. More micronutrient loss to the tune of 6.53, 47.92, 19.99, and 38.42 mg kg?1 for Cu, Fe, Zn, and Mn, respectively was observed at the same density. Increasing density of alligator weed caused more losses in paddy yield (up to 21.37–23.78%), amylose and rice grain protein contents. According to a nonlinear hyperbolic regression model, maximum paddy yield loss of rice at asymptotic value of alligator weed density was 38.8% during 2011 and 42.4% during 2012. Economic threshold value of alligator weed was estimated 1.5 and 1.3 plants per m2 during 2011 and 2012, respectively.  相似文献   

20.
Field experiments were carried out during rainy (kharif) and winter (rabi) seasons (June–April) of 2008–2010 at Indian Agricultural Research Institute (IARI), New Delhi, to study the productivity, nutrients uptake, iron (Fe) use-efficiency and economics of aerobic rice-wheat cropping system as influenced by mulching and Fe nutrition. The highest yield attributes, grain and straw yields (5.41 tonnes ha?1 and 6.56 tonnes ha?1, respectively) and nutrient uptake in rice was recorded with transplanted and puddled rice (TPR) followed by aerobic rice with Sesbania aculeata mulch. However, residual effect of aerobic rice with wheat straw mulch was more pronounced on yield attributes, grain and straw yields (4.20 and 6.70 tonnes ha?1, respectively) and nutrient uptake in succeeding wheat and remained at par with aerobic rice with Sesbania mulch. Application of iron sulfate (FeSO4) at 50 kg ha?1 + 2 foliar sprays of 2% FeSO4 was found to be the best in terms of all the yield attributes, grain and straw yield (5.09 and 6.17 tonnes ha?1, respectively) and nutrient uptake and remained at par with 3 foliar sprays of 2% FeSO4. Although residual effect of iron application failed to increase the yield attributes, yield and nutrient uptake nitrogen, phosphorus and potassium (N, P, K) except Fe. The highest system productivity, nutrient uptake, gross returns, net returns, B: C ratio and lowest cost of cultivation were recorded with aerobic rice with wheat straw and Sesbania aculeata mulch. Application of FeSO4 at 50 kg ha?1 + two foliar sprays of 2% FeSO4 was found better in respect of system productivity, nutrient uptake, gross returns, net returns, B:C ratio and cost of cultivation in aerobic rice-wheat cropping system. The Fe use efficiency values viz. partial factor productivity (kg grain kg?1 Fe), agronomic efficiency (kg grain increased kg?1 Fe applied), agrophysiological efficiency (kg grain kg?1 Fe uptake), physiological efficiency (kg biomass kg?1 Fe uptake), apparent recovery (%) utilization efficiency and harvest index (%) of applied Fe were significantly affected due to methods of rice production and various Fe nutrition treatments in aerobic rice and aerobic rice-wheat cropping system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号