首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community.  相似文献   

2.
3.
Biochars are known for their heterogeneity, especially in pore and surface structure associated with pyrolysis processes and sources of feedstocks. The surface area of biochar is likely to be an important determinant of the extent of soil microbial attachment, whereas the porous structure of biochar is expected to provide protection for soil microorganisms. Potential interactions between biochars from different sources and with different particle sizes were investigated in relation to soil microbial properties in a short-term incubation study. Three particle size(sieved) fractions(0.5–1.0, 1.0–2.0 and 2.0–4.0 mm) from three woody biochars produced from jarrah wood,jarrah and wandoo wood and Australian wattle branches, respectively, were incubated in soil at 25?C for 56 d. Observation by scanning electron microscopy(SEM) and characterisation of pore and surface area showed that all three woody biochars provided potential habitats for soil microorganisms due to their high porosity and surface areas. The biochars were structurally heterogeneous,varying in porosity and surface structure both within and between the biochar sources. After the 56-d incubation, hyphal colonisation was observed on biochar surfaces and in larger biochar pores. Soil clumping occurred on biochar particles, cementing and covering exposed biochar pores. This may have altered surface area and pore availability for microbial colonisation. Transient changes in soil microbial biomass, without a consistent trend, were observed among biochars during the 56-d incubation.  相似文献   

4.
Bamboo has been introduced to coastal sandy areas in southeastern China to protect and restore coastal ecosystems. An understanding of the chemistries and enzymatic and microbial activities in the soils of these bamboo forests will aid our understanding of how bamboo plantations can improve soil fertility and will provide scientific evidence for policy makers for encouraging the planting of bamboo in other coastal areas. We investigated the physical and chemical properties of the rhizosphere soil [soil moisture content (SMC), pH, and contents of soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), total potassium (TK) and available potassium (AK)], enzymatic activities (sucrase, protease, urease and catalase) and microbial properties (counts of bacteria, fungi and actinomycetes) in five bamboo forests. The bamboo forests had significantly higher levels of SOM, TN, AN, TP, AP, TK, and AK and lower pH relative to a control soil sample from an area devoid of plants. Soil enzymatic activities and microbial communities were considerably higher in the bamboo forests than in the soil from the barren land. The chemical contents, enzymatic activities and microbial counts of the soil and the litter and root biomasses were higher in forests with the bamboo species Dendrocalamopsis oldhami and Pseudosasa amabilis than in forests with the other three species (Acidosasa edulis, Dendrocalamopsis vario-striata, and Dendrocalamopsis beecheyana var. pubescens), which suggests that these two species could adapt to sandy soil and grow well in a hostile environment. These results indicate that planting bamboo may help to both enrich soil fertility and increase the diversity of tree species in coastal ecosystems. The difference between aboveground and belowground biomass may have been responsible for these changes in soil properties.  相似文献   

5.
Variable results have been reported on the effects of crop residue loads on soil microbial properties. We investigated changes in soil bacterial composition, β-glucosidase enzyme activity and nutrient bioavailability in response to wheat residue loading. The treatments included three levels of above-ground wheat residues (removed, retained or supplemented), with or without fertilizer N. Bacteroidetes, Firmicutes and Verrucomicrobia (the first two are copiotrophs) were less abundant where residues were removed than where residues were retained or supplemented, but the reverse was true for Actinobacteria, Cyanobacteria, Chloroflexi and Nitrospirae (all oligotrophs, although some Actinobacteria can be copiotrophic). Actinobacteria were also less abundant where fertilizer N was applied, and the abundances of their genera (including Arthrobacter and Mycobacterium) increased where residues were removed, confirming that they were oligotrophic in this study. β-diversity showed similar differences in the bacterial community structures because of residue management, but α-diversity was not affected by residue management or N fertilizer. β-glucosidase enzyme activities increased as C inputs increased with residue manipulation and N fertilizer. The enzyme activities increased with increasing residue loading in the 0–15 cm soil depth, but decreased with soil depth. Soil K supply increased with increasing residue loading, but nitrate-N supply was highest with residue retention. These results demonstrate remarkable resilience of soil microbial functioning under a wide range of crop residue inputs, without adverse effects on enzyme activity attributable to inorganic N fertilizer. The increasing β-glucosidase activity with increasing residue loading probably explains why crop residue return does not always increase soil C stocks.  相似文献   

6.
Understanding the influence of long-term crop management practices on the soil microbial community is critical for linking soil microbial flora with ecosystem processes such as those involved in soil carbon cycling. In this study, pyrosequencing and a functional gene array (GeoChip 4.0) were used to investigate the shifts in microbial composition and functional gene structure in a medium clay soil subjected to various cropping regimes. Pyrosequencing analysis showed that the community structure (β-diversity) for bacteria and fungi was significantly impacted among different cropping treatments. Functional gene array-based analysis revealed that crop rotation practices changed the structure and abundance of genes involved in C degradation. Significant correlations were observed between the activities of four enzymes involved in soil C degradation and the abundance of genes responsible for the production of respective enzymes, suggesting that a shift in the microbial community may influence soil C dynamics. We further integrated physical, chemical, and molecular techniques (qPCR) to assess relationships between soil C, microbial derived enzymes and soil bacterial community structure at the soil micro-environmental scale (e.g. within different aggregate-size fractions). We observed a dominance of different bacterial phyla within soil microenvironments which was correlated with the amount of C in the soil aggregates suggesting that each aggregate represents a different ecological niche for microbial colonization. Significant effects of aggregate size were found for the activity of enzymes involved in C degradation suggesting that aggregate size distribution influenced C availability. The influence of cropping regimes on microbial and soil C responses declined with decreasing size of soil aggregates and especially with silt and clay micro-aggregates. Our results suggest that long term crop management practices influence the structural and functional potential of soil microbial communities and the impact of crop rotations on soil C turnover varies between different sized soil aggregates. These findings provide a strong framework to determine the impact of management practices on soil C and soil health.  相似文献   

7.
土壤微生物体氮的季节性变化及其与土壤水分和温度的关系   总被引:34,自引:2,他引:34  
以杨陵土垫旱耕人为土(中等肥力红油土)为供试土壤进行田间试验和室内培养试验,研究土壤微生物体氮的动态变化及其土壤含水量和温度的关系。结果表明,田间土壤微生物体氮的变化有明显的季节性;夏季最高,冬季最低,其它时期居中;且与土壤温度有显著或极显著的正相关性,相关系数在0.855以上;试验期间土壤水分含量在10%以上,基本能满足微生物活动所需,因而微生物体氮的变化与水分关系并不密切。应用培养试验结果进一步证明了田间试验结果,即在4~36℃范围内,微生物体氮与温度呈线性相关,而在土壤含水量为6.75%~23.23%范围内,与水分呈指数相关关系,当土壤水分小于10.87%时,水分对微生物体氮有突出结果,当超过10.87%后,几乎没有影响。频繁的干湿交替会使微生物体氮显著减少,但冻融交替却无明显影响。  相似文献   

8.
水、氮供应和土壤空间所引起的根系生理特性变化   总被引:24,自引:6,他引:24  
在限制根系生长的胁迫条件下.,研究了补充和不补充供应水、氮对玉米根系生理特性及养分吸收的影响。结果表明.,正常生长条件下.,水、氮供应促进了根系生长.,增加了根系吸收总面积、活跃吸收面积和TTC还原量.,促进了根系对养分的吸收.,从而提高了产量.;限制根系生长.,水分的作用与正常条件下相同.,氮素的作用则受控于土壤水分。补充灌水增强了氮肥作用.,供氮促进了根系生长.,改善了根系生理特性.,减少了限制根系生长所引起的不良影响.;不补充灌水限制了氮肥作用的发挥.,供氮导致了根系生物量和生理特性下降.,加重了限制根系生长的不良影响。  相似文献   

9.
低磷条件下植物根系形态反应及其调控机制   总被引:3,自引:0,他引:3  
磷是植物必需营养元素之一,土壤中磷有效性低,限制作物生长发育。磷肥施用量逐年增加,但是磷矿资源面临耗竭。植物根系形态变化对于植物适应低磷胁迫,提高植物对土壤磷的吸收利用具有重要意义。本文从植物根系构型、根冠比、初生根、根毛、侧根等方面综述了植物适应低磷胁迫的根系形态变化特征。低磷条件下,植物根系构型发生改变,普遍抑制主根生长,刺激侧根发育起始与伸长,诱导根毛形成。同时,分析了转录因子、植物激素、蔗糖以及关键基因等对低磷条件下植物根系生长发育的生理与分子调控机制,低磷胁迫下转录因子ZAT6和MYB62参与调控初生根生长,BHLH32和PHR调控根毛形成发育,WRKY75对侧根发育有抑制作用。研究表明,在低磷条件下,赤霉素、细胞分裂素、生长素和乙烯对初生根发育起着调控作用,而根毛的生长发育与赤霉素、生长素和乙烯有关,侧根发育过程中生长素作用明显。一些基因如LPR1、LPR2、LPR3以及PDR2参与调控低磷胁迫下植物初生根的发育。低磷胁迫下光合产物蔗糖对植物根毛和侧根发育有影响。  相似文献   

10.
Mobility, extractability, and disappearance of the herbicides diuron, terbuthylazine, metolachlor, and pendimethalin were examined in incubation experiments with two topsoil samples of different natural microbial activity and after sterilization. Soil moisture was held constant at 10, 40, and 60 % WHC. In other variants, the soil water content was changed during the incubation. The four herbicides reveal a fairly different extent of microbial and chemical degradation and immobilization. The herbicide mobility – expressed by coefficients of partition between adsorbed and dissolved herbicide amounts – decreases at a lower rate and extent, when the microbial activity is low or the soil is sterile. With increasing initial soil moisture, also herbicide mobility and extractability increase; but in the course of time, abiotic immobilization occurs to a higher extent. When soil moisture changes during the incubation, formerly non‐extractable herbicide fractions (up to 40 % of the applied amounts) become extractable. Kinetics of herbicide immobilization follow an empirical sigmoidal function, which describes three periods of immobilization. The three‐period shape of the curve and its possible reasons are discussed for the data of the incubation experiments as well as for the results of a long‐term field trial with diuron.  相似文献   

11.
为进一步明确裸燕麦耗水量及其在不同土壤水分状况下的生理反应,论文在盆栽试验条件下,以负水头持续供水系统为供水装置,比较了裸燕麦、玉米、高粱、大麦和小麦旱地禾本科作物的水分耗散;设置40、60和80cm3个负水头控压高度,测定了"高-中-低"3种土壤湿度下裸燕麦孕穗期叶片光响应曲线及叶片保护酶活力。结果显示:裸燕麦蒸腾系数为455.37,显著(P<0.05)高于其他作物,较高叶片蒸腾速率和较低净光合速率是主要生理原因;降低土壤含水量将降低裸燕麦叶片相对叶绿素含量,但适度降低土壤含水量并未显著(P>0.05)降低叶片光合能力,而适度提高气孔受限程度,有利于提高叶片水分利用效率;超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等叶片保护酶活性对不同土壤水分状况响应不一致,中等土壤湿度时SOD活性较高,高土壤湿度时POD活性较高,低土壤湿度时CAT活性响应程度较高。  相似文献   

12.
灌水和氮肥类型对土壤微生物量和酶活性的影响   总被引:1,自引:0,他引:1  
灌水和施氮肥类型对土壤微生物和酶的影响尚不清楚。该研究旨在评估不同灌水和氮肥类型对土壤微生物生物量和酶活性的影响。结果表明,与清水灌溉相比,再生水灌溉显著增加了土壤细菌、放线菌、革兰氏阳性菌的生物量以及总磷脂脂肪酸,增加幅度分别为7.60%、10.48%、4.97%和4.88%。施氮肥显著提高了土壤细菌生物量和总磷脂脂肪酸,增加幅度范围分别为13.42%~17.34%和8.12%~11.19%。与清水灌溉相比,再生水灌溉并没有显著增加土壤脲酶、过氧化氢酶和蔗糖酶活性。施氮肥也没有显著提高土壤脲酶、过氧化氢酶和蔗糖酶活性。土壤微生物和酶在施缓释尿素肥的土壤中更为活跃。研究结果表明,与其他土壤微生物相比,放线菌和革兰氏阳性菌生长得更快,能更有效地利用再生水灌溉带入的可溶性有机氮;而细菌能更有效地利用氮肥带入的硝态氮。再生水灌溉和施缓释尿素肥在增加土壤微生物生物量和酶活性方面更有效。为了获得更好的土壤质量,更高的作物产量和可持续性利用水资源,建议夏玉米-冬小麦轮作种植利用再生水滴灌并施用缓释尿素肥。  相似文献   

13.
Fe2+对水稻生长及土壤微生物活性的影响   总被引:2,自引:1,他引:2  
通过盆栽试验,模拟冷浸田土壤亚铁毒害,研究了土壤-水稻-亚铁-微生物相互作用的体系中,外加Fe2+ 不同处理水平 (0、 100、 200、 400、 800和1600 mg/kg) 对水稻苗期和分蘖期相关生理指标、 土壤微生物活性及其生态特征的影响。结果表明, 在含一定亚铁本底(207.77 mg/kg)的正常稻田土壤中,外源性Fe2+的加入将逐步抑制水稻生长、 降低土壤微生物活性。外源Fe2+浓度达100 mg/kg后,水稻的株高、 干物质积累量显著降低; 水稻叶片生理指标叶绿素含量(SPAD值)、 脯氨酸含量、 抗氧化酶系统活性则显著增加,表明外源Fe2+浓度100 mg/kg 是本研究条件下外源Fe2+ 对水稻生长产生显著毒害影响的临界点; 同时随外源Fe2+浓度的增加, 土壤微生物活性指标土壤微生物量碳、 微生物三大基础菌系总量(细菌、 真菌、 放线菌)、 功能菌系总量(氨化细菌、 固氮菌、 纤维分解菌)、 铁还原菌总量总体是先快速下降,后逐渐平稳降低。 半效应浓度EC50分析表明,外源Fe2+浓度100 mg/kg 为多数土壤微生物活性指标(微生物基础菌系总量、 功能菌系总量、 铁还原菌)EC50变化的临界值; 体系中土壤微生物活性指标和水稻生长指标的变化存在显著的相关性, 表明供试土壤亚铁对水稻生长的影响是亚铁对土壤-植物-土壤微生物系统同步影响的结果。综上结果可知,外源Fe2+浓度100 mg/kg为导致供试土壤中水稻生长及土壤微生物活性受到显著负效应的临界值,进而推知,本研究所用土壤对水稻生长和微生物活性的亚铁毒胁迫临界浓度约为300 mg/kg(含本底), Fe2+含量超出该浓度时,需采取合理的农艺措施控制其负效应。  相似文献   

14.
The underlying question of these investigations asked, how and to which extent rape plants react with transpiration and soil water uptake to different degrees of nitrogen fertilization. Therefore repeated campaigns with concurrent measurements of plant surfaces (leaves, stems, pods), diurnal courses of leaf transpiration and root length density of rape plants growing on heavily (240 kg ha—1), moderately, (120 kg ha—1), and nil N‐fertilized plots of an experimental field in northern Germany were performed during two growing seasons. Additionally, matric potentials at different soil depths were measured. In the first year (1994) investigations were concentrated primarily on shoot area development and transpiration, whereas in the subsequent year (1995) root measurements were mainly undertaken. Also, the influence of soil management (ploughing, conservation tillage) was taken into consideration. The plots where the shoot measurements were carried out were ploughed in 1994 and rotovated in 1995. Matric potentials were measured in both years in ploughed soil and, for comparison, also in soils with conservation tillage. Shoot area index, as measure of the transpiratory capacity of the canopy, increased on ploughed soil and reached a maximum before flowering. Thereafter it decreased until harvest when the relative amount of green stems and pods was increasing. Then, the measured transpiration rate per pod surface area was equal to, or higher than, the transpiration rate per leaf surface area. Plant surface area was smaller in plots with conservation tillage and decreased generally with decreasing N‐fertilization. Increasing plant surface area was joined by an increasing density of plant canopy. Light interception was thus highest in the plots receiving 240 kg N ha—1. Although the shading effect may cause a reduction of transpiration per plant, the total plant mass per area generally resulted in a greater water loss from these plots. Roots reached at least 110 cm depth. Root length density was significantly higher in the upper 10—30 cm of soil than at greater depths. Root mass was smaller in soil with conservation tillage than in ploughed soil. Oscillations of soil matric potentials in the diurnal and long‐term periods were highest in the upper 10 cm of soil. Here, they corresponded well with the cumulative diurnal transpiratory water loss. It is concluded that the soil water dynamics depends largely on the distribution of plant roots. As a result, rape plants did not change their specific transpiration capacity as a response to increased nitrogen fertilization. However, the transpiring plant surface and root length density increased the turnover rate of water by a higher plant density per plot. This effect was more pronounced in ploughed than in rotovated plots.  相似文献   

15.
An incubation experiment was designed in order to determine the further microbiological response to an addition (500 m3 ha-1) of fresh olive mill wastewater (FOMWW) in a soil that has been frequently amended with uncontrolled doses of OMWW since 90s in an active disposal site (ADS soil). To achieve this aim, the phospholipid fatty acid (PLFA) profiles, microbial biomass C (Cmic), and dehydrogenase (DHA) and urease activities (URA) were monitored at the beginning (T0), 3 h (T1) and 97 d (Tf, i.e., the end) of incubation after FOMWW addition. After the FOMWW addition, an increase in the ratio of fungal to bacterial PLFAs was observed in ADS soil. Moreover, a relative increase of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SATFA) was found in the ADS soil. An increase of the Gram-positive to Gram-negative ratio was observed in this soil at the end of the incubation. While DHA and Cmic increased in the ADS soil after FOMWW addition, URA showed a decrease. Fungi and Gram-positive bacterial biomass experienced an increase after addition of a high dose of FOMWW in laboratory conditions.  相似文献   

16.
研究长期不同施肥条件下褐潮土微生物量碳(SMBC)、微生物量氮(SMBN)和土壤酶活性随季节的变化特征。结果表明,长期施肥条件下土壤SMBC、SMBN含量及土壤酶活性均表现出一定的季节变化。SMBC、SMBN含量在各施肥处理中的顺序为:化肥与猪厩肥配施处理(NPKM)化肥配施玉米秸秆处理(NPKS)单施化肥处理(NPK)不施肥处理(CK),各处理之间差异显著(P0.05);施肥还显著提高了土壤脲酶、转化酶、碱性磷酸酶活性,有机无机配施的高于单施化肥的。除过氧化氢酶活性随季节变化显著下降外,SMBC、SMBN、酶活性的值一般在夏季(6月到8月)较高。通过双因素单变量方差分析表明,不同施肥制度与季节变化对SMBC、SMBN与酶活性的影响分别达极显著水平(P0.01),不同施肥制度的SMBC、SMBN与酶活性的季节波动有极显著不同(P0.01)。  相似文献   

17.
The effect of medium-term (5 years) application of organic and inorganic sources of nutrients (as mineral or inorganic fertilizers) on soil organic carbon (SOC), SOC stock, carbon (C) build-up rate, microbial and enzyme activities in flooded rice soils was tested in west coast of India. Compared to the application of vermicompost, glyricidia (Glyricidia maculate) (fresh) and eupatorium (Chromolaena adenophorum) (fresh) and dhaincha (Sesbania rostrata) (fresh), the application of farmyard manure (FYM) and combined application of paddy straw (dry) and water hyacinth (PsWh) (fresh) improved the SOC content significantly (p < 0.05). The lowest (p < 0.05) SOC content (0.81%) was observed in untreated control. The highest (p < 0.05) SOC stock (23.7 Mg C ha?1) was observed in FYM-treated plots followed by recommended dose of mineral fertilizer (RDF) (23.2 Mg C ha?1) and it was lowest (16.5 Mg C ha?1) in untreated control. Soil microbial biomass carbon (Cmb) (246 µg g?1 soil) and Cmb/SOC (1.92%) were highest (p < 0.05) in FYM-treated plot. The highest (p < 0.05) value of metabolic quotient (qCO2) was recorded under RDF (19.7 µg CO2-C g?1 Cmb h?1) and untreated control (19.6 µg CO2-C g?1 Cmb h?1). Application of organic and inorganic sources of nutrients impacted soil enzyme activities significantly (p < 0.05) with FYM causing highest dehydrogenase (20.5 µg TPF g?1 day?1), phosphatase (659 µg PNP g?1 h?1) and urease (0.29 µg urea g?1 h?1) activities. Application of organic source of nutrients especially FYM improved the microbial and enzyme activities in flooded and transplanted rice soils. Although the grain yield was higher with the application of RDF, but the use of FYM as an organic agricultural practice is more useful when efforts are intended to conserve more SOC and improved microbial activity.  相似文献   

18.
Microbial colonization on the surface of rice roots along with their development and degradation was examined throughout the growth period of rice plants with the naked eye, by light microscopy, and scanning electron microscopy. Four stages were recognized in the development and degradation processes of rice roots and microbial colonization pattern. At stage I, both crown and lateral roots were undergoing development, white, and covered with a mucigel layer. Microbial colonization was rarely observed. At stage II, lateral roots developed further, and they stained brownish due to the deposition of iron oxides/hydroxides on the root surface. Microbial colonies commonly developed along the grooves between epidermal cells. At stage III, lateral roots ceased to develop, and the root surfaces were widely covered with deposits of iron oxides/hydroxides. Microbial colonies were found inside epidermal and exodermal cells as well as on epidermal cells. At stage IV, the roots became dark brown or transparent. Most of the epidermal and exodermal cells disappeared from the root surface. Roots went through stage I to stage IV as they aged, and respective degradation stages were observed from the nodal roots from higher nodes to the nodal roots from lower nodes. There were fewer microorganisms on the surface of lateral roots than on crown roots. About 50% of the roots were at stages I and II on June 20 and July 20, which corresponded to the early to middle growth stages, while most of the roots were at stages III or IV from August 10.  相似文献   

19.
Long-term effects of liming and short-term effects of an experimentally induced drought on microbial biomass and activity were investigated in samples from the O-layer (Of/Oh) and uppermost mineral soil (0—10 cm) in a spruce forest near Schluchsee (Black Forest, South-West Germany). Seven years after lime application a marked increase of pH values was restricted to the O-layer. The contents of C and N in the O-layer of the limed plot appeared to be lower, whereas in the A-horizon from the limed plot the contents of C and N appeared to be higher than on the control. However, these differences were statistically not significant due to a distinct spatial variability of topsoil conditions. On the limed plots Cmic, Nmic, and Pmic in the O-layer were lower in comparison to the control whereas differences in the A-horizon were negligible. In both sampling depths of the limed plot protease activity was higher while N-mineralization was lower. The other microbial activities studied (basal respiration, catalase activity) followed no consistent pattern after liming. Drought and drought in combination with liming, respectively, had no clear effects on microbial biomass and activity. Only in the A-horizon of the control, there is some evidence for drought stress for microorganisms. The high variability of results from the drought experiment (roof installation) is likely due to the marked spatial variability of top soil properties as well as imperfect and uneven achievement of experimental drought. Nevertheless, our study indicates that long-term effects of liming on microorganisms highly depend on site conditions. Thus, liming operations which currently affect vast areas of forest land should be accompanied by monitoring of soil organisms and their activities to reduce the possibility of a loss in functional diversity of soil organisms.  相似文献   

20.
通过不同地点的小区试验,研究不同轮作模式对土壤酶活性及可培养微生物群落的影响。结果表明,一季中晚稻的稻菜轮作模式和休闲轮作模式明显提高了土壤蔗糖酶和酸性磷酸酶的活性。其中稻菜轮作模式的效果又优于休闲轮作模式;与蔬菜连作模式相比,土壤蔗糖酶和酸性磷酸酶活性平均提高了48.1%和27.2%,有效降低土壤过氧化氢酶和多酚氧化酶活性。在可培养的土壤微生物群落中,不同种植模式完成一个周期后,稻菜轮作模式改善了微生物群落的组成,明显提高土壤细菌和放线菌数量,减少真菌数量,对维持土壤生产能力的可持续性具有显著的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号