首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of efficient bio-inoculants in chickpea is the best way to increase crop productivity under rainfed conditions. To assess the combined effect of bio-inoculants on crop yield, field experiments were conducted during Rabi seasons at Research Station, Punjab Agricultural University, Ballowal Saunkhri, Punjab, India. The application of different bio-inoculants significantly improved number of pods, grain and straw yield of chickpea over the un-inoculated treatment. The combined application of Rhizobium + PSB?+?AM fungi?+?azotobactor inoculums as seed treatment with 75% of recommended phosphorus produced highest grain yield. The nodule count, nodule weight, per cent root colonization of AM fungi and different enzymes activities in soil were also highest in combined bio-inoculants treatment. The present study concluded that combined application of bio-inoculants (Rhizobium, PSB, AM fungi and azotobactor) can save 25% of recommended phosphorus by sustaining the crop yield and improving the soil health.  相似文献   

2.
The field experiment studied the effect of irrigation [irrigation 15 days before sowing (DBS), irrigation 15 DBS + rice straw mulch, irrigation 7 DBS and irrigation 7 DBS + one irrigation at flower initiation] and biofertilizers [no biofertilizer (control), Rhizobium inoculation and Rhizobium inoculation + phosphate-solubilizing bacteria (PSB)] on chickpea growth. In mulch treatment, paddy straw mulch was applied at 4 t ha?1 one day after pre-sowing irrigation and was retained until sowing. Pre-sowing irrigation at 15 DBS showed 28.7 and 30.0% less plant stand than irrigation applied 15 DBS + straw mulch and irrigation applied 7 DBS, respectively. Nodulation was significantly higher with irrigation 15 DBS + mulch and irrigation 7 DBS than with irrigation applied 15 DBS. The grain yield was 16.6, 20.3 and 44.0% higher in irrigation 15 DBS + mulch, irrigation 7 DBS and irrigation 7 DBS + irrigation at flowering treatments, respectively, over irrigation at 15 DBS. Rhizobium inoculation significantly improved the number of nodules and nodule dry weight compared with no treatment. Grain yield was significantly higher with Rhizobium than in untreated plots. Water use efficiency was highest when irrigation was applied 7 DBS.  相似文献   

3.
This study aims to highlight the beneficial effect of the phosphorus on enhancing of growth plant, the efficiency of use rhizobial symbiosis and ionic partition in chickpea grown under salt stress. Exposure of plants to salt stress (0, 150 mM of NaCl) caused ionic imbalance, which resulted in increased Na+ and P and reduced K+ contents in the leaves and root. Indeed, stressed plants showed decrease of plant growth and phosphorus use efficiency. The efficiency use of rhizobial symbiosis was also affected by salinity. However, addition of two different level of phosphorus (37 and 55 mM) to saline soil increased significantly availability of P in plant organs. Specially, the (150 mM NaCl?×?37 mM P) mixture increased (33%) phosphorus use efficiency, induced better nodulation and increased plant biomass which results in the high efficiency in use of the rhizobial symbiosis. Our findings suggest that the combination of low level of P to saline soil presumably improved the tolerance of chickpea plant to salinity.

Abbreviations: phosphorus (P); phosphorus use efficiency (PUE); biological nitrogen fixation (BNF); plant dry weight (PDW); yeast extract mannitol (YEM); efficiency in use of the rhizobial symbiosis (EURS); shoot dry weight (SDW); symbiotic nitrogen fixation (SNF).  相似文献   

4.
Low availability of phosphorus (P) and potassium (K) in acidic soil is a major constraint for crop production. Therefore, a field study was conducted to determine the effects of K and P on nodulation, productivity, and nutrient uptake of cowpea (Vigna unguiculata L. Walp) under rainfed conditions. The K and P were subjected to main and subplots, respectively with 100, 75, and 50% of fertilizer application. The growth and yield attributes were better using 100% K with 100% P. However, 100% K resulted in 20.9 and 16.9% greater green pod and stover yield than 50% K. Similarly, 100% P recorded 20.2 and 15.6% greater green pod and stover yield than 50% P. Uptake of nutrients such as nitrogen (N), P, and K followed the trend of greater to lower, 100% > 75% > 50%, in order for K and P. Similarly, nutrient-use efficiencies and production efficiency followed the trend of nutrient uptake.  相似文献   

5.
In this investigation, productivity, sustainability and profitability of rice-wheat system were evaluated using the data of a long-term fertility experiment initiated during 1984 at Pantnagar, Uttarakhand, India. Eight treatments (application of N, NP, PK, NK, NPK, NPK + Zn, NPK + FYM and control) were tested in randomized block design. Results revealed that application of NPK + FYM gave the highest and sustainable grain yields for rice, wheat and the system. None of the treatments except NPK + FYM was able to enhance the soil organic carbon content after 31 crop cycles over the initial level. Application of NPK + FYM was the most profitable treatment which provided the highest net return and B: C ratio for rice, wheat and the system. Trend analysis indicated that there were yield declines in all the treatments. Response to P, K and Zn in rice and wheat, and to FYM in terms of system productivity increased over the studied period. The results suggest that continuous application of NPK + FYM would sustain higher yields of rice and wheat over longer period of time with higher profits in rice-wheat system.  相似文献   

6.
Biochar amendments offer promising potential to improve soil fertility, soil organic carbon (SOC) and crop yields; however, a limited research has explored these benefits of biochar in the arid and semi‐arid regions. This two‐year field study investigated the effects of Acacia tree biomass‐derived biochar, applied at 0 and 10 t ha?1 rates with farmyard manure (FYM) or poultry manure (PM) and mineral phosphorus (P) fertilizer combinations (100 kg P ha‐1), on maize (Zea mays L.) productivity, P use efficiency (PUE) and farm profitability. The application of biochar with organic–inorganic P fertilizers significantly increased soil P and SOC contents than the sole organic or inorganic P fertilizers. Addition of biochar and PM as 100% P source resulted in the highest soil P (104% increase over control) and SOC contents (203% higher than control). However, maize productivity and PUE were significantly higher under balanced P fertilizer (50% organic + 50% mineral fertilizer) with biochar and the increase was 110%, 94% and 170% than 100%‐FYM, 100%‐PM and 100% mineral fertilizer, respectively. Maize productivity and yield correlated significantly positively with soil P and SOC contents These positive effects were possibly due to the ability of biochar to improve soil properties, P availability from organic–inorganic fertilizers and SOC which resulted in higher PUE and maize productivity. Despite the significant positive relationship of PUE with net economic returns, biochar incorporation with PM and mineral fertilizer combination was economically profitable, whereas FYM along biochar was not profitable due to short duration of the field experiments.  相似文献   

7.
根瘤菌结瘤基因的表达调控研究概况   总被引:5,自引:0,他引:5  
根瘤菌结瘤基因的表达调控在根瘤菌与植物的共生结瘤过程中起着十分重要的作用。随着研究的深入,发现根瘤菌的结瘤过程不仅与根瘤菌结瘤基因表达调控有关,而且与寄主植物的信号分子如黄酮类物质有关。根瘤菌结瘤基因的表达调控有一个复杂的过程,本文将简要地介绍这方面的研究成果。  相似文献   

8.
Chickpea (Cicer arietinum L.) nodulation variants of two cultivars ICC 4948 and ICC 5003 were used as trap plants to isolate 385 native rhizobia from CCS Haryana Agricultural University, Hisar farm soil. After authentication and considering growth characteristics, selected 110 rhizobia revealed immense molecular diversity using the profiles of DNA fragments generated by Polymerase chain reaction (PCR) with enterobacterial repetitive intergeneric consensus (ERIC) sequences. Low nodulating variants of cvs ICC 4948 and ICC 5003 were able to trap more numbers of rhizobial genotypes, namely seven as compared four to five by high nodulating variants of these cultivars. Overall eight rhizobial genotypes were trapped by the chickpea cultivars. Rhizobial isolates from same nodule or same plants were present in the same or different clusters and few isolates showed 100% similarity also. Based on nodules from a plant, nodulation variant or cultivar, rhizobia could not be differentiated and no exclusive cluster was formed by either rhizobial isolates from low or high nodulating variants of both the cultivars. Two most efficient rhizobial isolates LN 707b and LN 7007 were characterized by amplification and sequencing of 16S rRNA gene. Rhizobial isolate LN 707b showed more than 98% similarity with Mesorhizobium sp SH 2851 and Mesorhizobium mediterraneum. Another isolate LN 7007 showed more than 99% similarity with the sequence of 16S r RNA gene of Mesorhizobium sp STM 398, and M. mediterraneum. So the chickpea rhizobia from Northern Indian subcontinent are proposed to be kept under M. mediterraneum strain LN707b and LN 7007.  相似文献   

9.
根瘤菌与豆科植物共生可以固定大量的氮。根瘤菌剂接种豆科作物是一项普遍推广应用、有效的农业技术。但由于大量土著根瘤菌的存在,产生竞争障碍,降低了接种菌剂的占瘤率。大多数的土著根瘤菌对春雷霉素敏感,因此接种抗春雷霉素的高效结瘤固氮根瘤菌,并用春雷霉素处理种子,可抑制土著根瘤菌,提高接种菌剂的占瘤率,从而达到高结瘤、高固氮和提高产量的目的。本文将探讨诱变对根瘤菌抗春雷霉素突变的作用,并对获得的抗性突变株的生物固氮特性进行分析。  相似文献   

10.
ABSTRACT

A study was conducted from 2014 to 2017 in Malawi to elucidate the short-term effects of maize-legume intercropping and rotation systems under conservation agriculture (CA) and conventional tillage (CT) on crop productivity and profitability. Twelve farmers hosted on-farm trials per district, in three districts, with each farmer having six plots. The design of the study was randomised complete block design arranged in a split plot fashion with tillage as main plot and cropping systems as sub-plots, with each farmer acting as a replicate. CA had 1400 and 3200 kg ha?1 more maize grain yield in the second and third seasons, respectively compared with CT. In the first two seasons, CT had 310, 180 and 270 kg ha?1 more cowpea, soybean and pigeon pea grain yields in Salima, Mzimba and Mangochi districts, respectively, compared with CA. Similarly, CA had 1100 and 950 kg ha?1 more groundnut grain yields than CT in Salima and Mzimba districts in the second and third seasons, respectively. Over the three-year study period, partial land equivalent ratio for maize ranged from 0.78 to 1.24. Largest net returns were achieved by intercropping maize with pigeon pea in Mangochi and rotating maize and groundnut in Mzimba and Salima districts.  相似文献   

11.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

12.
An experiment comprising seven treatments was conducted to study the effect of boron and lime integrated with organic manures and nitrogen, phosphorus, and potassium (NPK) fertilizers on garden pea productivity. Seed yield along with growth parameters were significantly influenced by combined use of farmyard manure and NPK fertilizers either alone or in combination with boron and lime. Treatment combination of 20 t farmyard manure / ha + 100% NPK + borax (T4) resulted in 37% increase in seed yield over recommended practice of 20 t farmyard manure / ha + 100% NPK (T3). In addition, recommended practice supplemented with granubor (T5) and lime (T6) also significantly surpassed T3 with respective increase of 14 and 10% in seed yield. Similarly, maximum nutrient was observed in T4. Hence, application of boron along with farmyard manure and NPK fertilizers could be the best option to maximize pea productivity in acidic soils under humid subtemperate climate.  相似文献   

13.
Field experiments evaluated the effects of integrated nutrient management on symbiotic parameters, growth, nutrient accumulation, productivity and profitability of lentil (Lens culinaris Medikus). Application of recommended dose of nutrients (RDN, 12.5 kg N ha?1 + 40 kg P2O5 ha?1) + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers [Rhizobium + phosphate solubilizing bacteria (PSB) + plant growth promoting rhizobacteria (PGPR)] + 1.0 g ammonium molybdate kg?1 seed recorded the highest number & dry weight of nodules, leghaemoglobin content, root & shoot dry weight, plant height, number of pods plant?1 and 100-seed weight. The next best treatment was RDN + seed inoculation with biofertilizers + 1.0 g ammonium molybdate kg?1 seed. On the basis of mean of three-year data, the treatment of RDN + 25 kg ZnSO4 ha?1 + seed inoculation with biofertilizers 1.0 g ammonium molybdate kg?1 seed proved the best in realizing the highest grain yield (34.0%), gross returns (34.0%) and net returns (54.8% higher over control). Nitrogen, phosphorus and potassium in the grains and straw were significantly improved where RDN was applied in combination with seed inoculation, basal application of ZnSO4 and seed treatment with 1 g ammonium molybdate than their single applications.  相似文献   

14.
Silicon (Si) is not considered as an essential element for plant growth and development but application of Si improved plant growth. In this study, the effect of various concentrations of Si as sodium metasilicate (0, 50, 100, 200, 400, and 800 µg g–1) on nodule growth and mineral nutrition of Rhizobium sp. U 15–inoculated cowpea (Vigna unguiculata (L.) Walp.) plants grown in pots was studied. Lower additions of Si (50–100 µg g–1) significantly increased nodule growth (nodule number, nodule fresh weight and dry weight), relative yield of root and shoot, nitrogen, phosphorus, and calcium concentrations. Plant Si concentrations increased with an increase in soil‐applied Si. Nodule growth negatively correlated with higher applied concentrations of Si (200–800 µg g–1). The results indicate that Si at low concentrations is beneficial for nodule growth.  相似文献   

15.
A field experiment was conducted at the G.B.Pant University Research Station,Ujhani(U.P.)in rainy (Kharif) season of the year 1994-1995 to study the effect of Rhizobium,VAM(vesicular arbuscular myc-orrhiza) and PSB(phophate solubilizing bacteria) inoculation,with and without P,on blackgram(Vigna mungo L.) seed yield.Phosphorus application in sol with medium P content(5.4 mg kg^-1) increased nodulation,grain yield,N and P in plant and grain over no phosphorus control.Forty kilograms of P2O5 each hactare recorded an increase of 20.6% in nodule dry weight,significant increases of 0.35 g kg^-1 in N concentration and 1.28 g kg^-1 in P concentration of plant over 20 kg P2O5 ha^-1 ,Similar significan increases of 0.5 g kg^-1 in grain yield and 0.54 and 0.23 g kg^-1 in N and P concentrations of the grain,respectively,over 20 kg P2O5 ha^-1 were also obtained with higher dose.Inoculation of Rhizobium VAM PSB at all the stages of plant growth recorded maximum increaes in all the parameers studied .Dual inoculation of Rhizobium with either VAM or PSB was generally significan in the effect and better than that of VAM PSB,however,P accumulation in plat and grain was more with VAM PSB.A mong single inoculations,Rhizobium gave highest and 21.0% more nodule number,34.7% more nodule dry mass,0.73 g kg^-1 more N in grain and 4.2% higher grain yield over PSB.PSB.however,registered significant increases in P concentration in plant and grain over VAM and Rhizobium.  相似文献   

16.
Strains isolated from chickpea (Cicer arietinum L.) rhizospheric soil from selected sites in Algeria were screened for their plant-growth-promoting potential, for indole acetic acid production and P solubilization ability. Then, we selected native rhizobial strains with high nitrogen-fixing potential. On the basis of their efficiency under controlled conditions, two plant-growth-promoting rhizobacteria (PGPR) isolates and three nodulating bacteria were selected. Then, the effect of single PGPR isolates inoculation was compared to their combination with rhizobial inoculants on plant growth, on native cereal-growing soils under greenhouse conditions. No effects were observed on chickpea yield by using rhizobial inoculation alone, nor by PGPR-rhizobial co-inoculation on two soils presenting weak and no nodulation pattern in natural conditions. Only PGPR inoculation improved growth of plants on soil with no nodulation pattern. These findings emphasized inoculation on native soils at a little scale before large assays on field because no one could predict inocula behavior with native soil microflora.  相似文献   

17.
实验室培养条件下,研究了有机复混磷肥对石灰性土壤无机磷组成变化的影响。结果表明: 1)单独施用有机物料对提高土壤速效磷含量的影响不大,但施用磷肥,无论是磷酸一铵化肥还是有机复混磷肥,均显著提高了土壤速效磷含量;施用有机复混磷肥提高土壤速效磷的幅度(67.5mg/kg~80.4mg/kg)高于施用磷酸一铵化肥处理(62.3mg/kg);有机复混磷肥中有机物料的含量高低对土壤速效磷含量的影响不大。2)单独施用有机物料具有提高土壤Ca2-P含量的作用,且明显提高了Ca8-P含量,但对Al-P、Fe-P、O-P、Ca10-P含量影响不大;施用无机磷肥和有机复混磷肥,显著提高了土壤Ca2-P、Ca8-P、Al-P含量,而对Fe-P、O-P、Ca10-P含量的影响很小;与磷酸一铵化学磷肥处理相比,施用有机复混磷肥对Ca2-P含量影响较小,但明显提高了Ca8-P含量,Fe-P含量也表现增加的趋势,而Al-P含量明显降低,O-P和Ca10-P含量的变化则没有明显规律;有机复混磷肥中有机物料的比例高低对土壤无机磷组成变化的影响没有表现出明显的规律性。3)施用磷肥引起速效态Ca2-P和缓效态Ca8-P的变化最大,其它形态无机磷的变化相对较小。与磷酸一铵化肥处理相比,有机复混磷肥处理Ca8-P的变异提高幅度增加,而Al-P的变异提高幅度减小,其它指标库容的变异幅度与之相近。4)施磷处理土壤速效磷含量与土壤Ca2-P、Ca8-P含量呈线性正相关,相关系数分别达到0.9888、0.9867,而Al-P、 Fe-P、O-P、Ca10-P与土壤速效磷相关性不显著,磷肥施入土壤后,土壤无机磷库中Ca2-P、Ca8-P的变化对土壤速效磷含量的贡献最大。  相似文献   

18.
We investigated C management index (CMI; an indicator of sustainability of a management system and is based on total and labile C) and soil aggregation in medium-textured soils (silt loam and silty clay loam) under different cropping systems as follows: maize-wheat (M-W), rice-wheat (R-W), soybean-wheat (S-W), Guinea grass, and Setaria grass. Field experiments were 6–32 years long and were located in the wet-temperate zone of northwest Himalayas. The plant nutrients were applied through chemical fertilizers (urea, superphosphate, and muriate of potash) with or without organic materials (FYM, wheat straw, and Lantana spp.). The content of total C (CT), labile C (CL), CMI, mean weight diameter (MWD), and aggregate porosity varied significantly under different cropping systems. The range was 1.59 (R-W)–4.29% (Setaria) for CT, 1.23 (R-W)–3.89 mg/kg (Guinea grass) for CL, 52.09 (R-W)–129.77 (Guinea grass) for CMI, 0.90 (R-W)–5.09 (Guinea grass) for MWD, and 41.5 (R-W)–56.8% (S-W) for aggregate porosity. Aggregate porosity was highest (56.8%) under S-W, followed by grasses (50.1–51.2%), and M/R-W (41.5–50.0%). As per these data, (a) continuous use of N alone as urea lowered soil sustainability over control (no fertilizers); (b) use of NPK at recommended rates improved soil productivity over control; (c) the NPK + organic amendments further improved soil sustainability; and (d) the sustainability under different cropping systems followed the order: perennial grasses > soybean-wheat > maize-wheat > rice-wheat.  相似文献   

19.
Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25℃ and 15℃, respectively. Although increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r=0.92**). At an inoculation level of 10^2 cells mL^-1, the P supply did not affect the number of nodules; however, at inoculation levels of 10^3.5 and 10^5 cells mL^-1, increasing P supply increased both the number and size of nodules. Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibited the nodule development and thereby the total N2 fixation.  相似文献   

20.
System of Rice Intensification (SRI) has spread as an innovation of rice cultivation that can produce higher crop yields and conserve seed and water resources. The SRI innovation is also gaining popularity in north-western (NW) Himalayas on one hand and hybrid rice technology on the other in the region. Moreover, rice productivity in NW Himalayas is quite low owing to the use of low-yielding germplasm and poor crop management. Thus, SRI principles coupled with hybrid rice technology seems to be a boon to boost rice productivity in the irrigated ecosystem of wet-temperate NW Himalayas well known for rice cultivation. Therefore, comparative performance of promising rice hybrids under SRI was assessed at three locations in wet-temperate NW Himalayas (India) using nine promising rice hybrids including state-recommended rice hybrid “Arize–6129” as check cultivar. It was revealed that various hybrids differed significantly w.r.t. days to 50% flowering, days to 75% maturity, plant height, tillers hill?1, panicles hill?1, panicles m?2, and panicle length. Highest number of panicles m?2 (370) was observed in Arize–6129 followed by US–312, Bioseed–786, and NK–3325, respectively. Significantly longer panicles were observed in Dhanya–2366 followed by Arize–6129, US–312, Bioseed–786, NK–3325, and US–10, respectively. Arize–6129 resulted in significantly higher grain (75 q ha?1) and straw yield (125 q ha?1) followed by US–312, Dhanya–2366, NK–3325, PAC–801, US–10, Bioseed–786, Uday–111, and Uday–131, respectively. The production- and monetary-efficiency as well as gross and net returns and B:C ratio also followed the similar trend as that of crop productivity with significantly higher production– (67 kg ha?1 day?1) and monetary–efficiency (INR 608.4 ha?1 day?1), and net returns (INR 68138 ha?1) and B:C ratio (3.66) in check cultivar “Arize–6129” over other rice hybrids. Higher grain productivity (49.5–75.0 q ha?1), net returns (INR 39238–68138 ha?1), and B:C ratio (2.53–3.66) in current study conclusively inferred that SRI coupled with hybrid rice technology can harness higher productivity and profitability. Protein content (8.30–8.45%) exhibited higher values under Bioseed–786 followed by NK–3325, UDAY–111, and Arize–6129; however, NPK uptake (grains, straw, total) was significantly highest in Arize–6129 followed by US–312, Dhanya–2366, and NK–3325, respectively. Total water productivity (6.4–9.75 kg ha?1 mm?1), irrigation water productivity (16.5–25 kg ha?1 mm?1), and economic water productivity (64.0–97.5 INR ha?1 mm?1) collectively followed the trend of Arize–6129 > US–312 > Dhanya–2366 > NK–3325 > US–10 > PAC–801 > Bioseed–786 > Uday–111 > Uday–131 in current study. Overall, Arize–6129, US–312, and Dhanya–2366 were proved as potential rice hybrids in terms of their higher crop and water productivity and economic profitability among above nine rice hybrids for their large-scale cultivation under SRI in wet-temperate NW Himalayas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号