共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide emission from a transplanted rice field in alluvial soil as influenced by management of nitrogen fertiliser 下载免费PDF全文
We investigated nitrous oxide (N2O) emission from an irrigated rice field over two years to evaluate the management of nitrogenous fertiliser and its effect on reducing emissions. Four forms of nitrogenous fertilisers: NPK at the recommended application rate, starch–urea matrix (SUM) + PK, neem‐coated urea + PK and urea alone (urea without coating) were used. Gas samples were collected from the field at weekly intervals with the static chamber technique. N2O emissions from different treatments ranged from 11.58 to 215.81 N2O‐N μg/m2/h, and seasonal N2O emissions from 2.83 to 3.89 kg N2O‐N/ha. Compared with other fertilisers, N2O emissions were greatest after the application of the conventional NPK fertiliser. Moreover, SUM + PK reduced total N2O emissions by 22.33% (P < 0.05) compared with NPK during the rice‐growing period (P < 0.05). The results indicate a strong correlation between N2O emissions and soil organic carbon, nitrate, ammonium, above‐ and below‐ground plant biomass and photosynthesis (P < 0.05). The application of SUM + PK in rice fields is suitable as a means of reducing N2O emissions without affecting grain production. 相似文献
2.
The effect of urea and urea mixed with different doses of two nitrification inhibitors, dicyandiamide (DCD) and karanjin [a furanoflavonoid, extracted from seeds of the karanja (Pongamia glabra Vent.) tree], on methane (CH4) consumption was examined in a Typic Ustochrept (alluvial inceptisol) soil, collected from a field under rice-wheat rotation. The soil, fertilized with urea (100 mg N kg-1 soil) and urea combined with different doses of the two inhibitors, DCD and karanjin (each added at 5%, 10%, 15%, 20% and 25% of applied N), was incubated at 25°C, at field capacity moisture content for 35 days. The methane consumption rate ranged between 0.2 and 1.7 µg CH4 kg-1 soil day-1 with little temporal variation (CV =10–31%). It was significantly higher in the control (no fertilizer-N) than other treatments except for a few cases, while total CH4 consumption in the incubation period was significantly higher in the control than other treatments. Methane consumption rate was found to be negatively and positively correlated with soil NH4
+ and NO2
- + NO3
- content, respectively. Mean CH4 consumption rate, as well as total CH4 consumption, was lower on the addition of karanjin due to slower nitrification and higher conservation of NH4
+ released from applied urea. Addition of urea led to a 17% reduction of total CH4 consumption while urea combined with karanjin and DCD had 50–64% and 19–34% reduction, respectively. Karanjin was a more effective nitrification inhibitor than DCD during the incubation period. 相似文献
3.
We studied the dynamics of dry matter (DM) and nitrogen (N) distribution in different plant parts (leaf, stem, and panicle) and grain yield of transplanted rice due to N management practices through neem coated urea (NCU). The results indicated that application of NCU at 125% recommended dose of N (RDN) with 50:25:25 split schedule at basal (B), active tillering (AT), and panicle initiation (PI) stages resulted in higher DM and N distribution to leaf, stem, and panicle at 60 and 90 days after transplanting and harvest than the application of prilled urea at 100% RDN with the same split schedule (existing practice). Further, the increment in grain yield was 10.95% than the existing practice. Hence, we suggest the application of NCU at 125% RDN with 50:25:25 split schedule at B, AT, and PI stages for achieving higher DM and grain yield on Mollisols. 相似文献
4.
Results from a field experiment conducted at the Indian Agricultural Research Institute, New Delhi, India showed that coating urea with elemental sulfur or gypsum or phosphogypsum gave higher yields (12.08, 6.78 and 6.14% higher grain yield compared to prilled urea) of high yielding an aromatic rice cultivar ‘Pusa Sugandh 5’ (Pusa 2511) and increased the efficiency of prilled urea. As regards nitrogen use efficiency sulfur coated urea was nearly twice as effective as gypsum or phosphogypsum coated urea; the latter two were equally effective compared to prilled urea alone. 相似文献
5.
Rajendra Prasad 《Archives of Agronomy and Soil Science》2013,59(4-5):447-454
Field experiments were made on a sandy clay loam soil at the Indian Agricultural Research Institute, New Delhi to study the effect of levels and sources of nitrogen on concentration and uptake of nitrogen by a high yielding variety Pusa 834 and a hybrid PRH3 of rice. Nitrogen concentration in hybrid PRH 3 remained lower than in Pusa 834, but N uptake was significantly more in the hybrid PRH 3. Nitrogen fertilization increased N concentration as well as N uptake by rice. At 30 days after transplanting (DAT) N uptake was more in Pusa 834, but at 60 DAT and at harvest hybrid PRH 3 recorded significantly more N uptake than Pusa 834. Use of neem oil blended urea (PNGU) and neem coated urea (NCU) increased N concentration and uptake by rice in both Pusa 834 and hybrid PRH 3. Use of neem coated/blended urea is recommended for rice. 相似文献
6.
This work evaluates the effect of different slow-release fertilizers and nitrification inhibitors (NI) on N-use efficiency, grain yield and N2 fixation in rice fields of Valencia (Spain) during three consecutive crop seasons (1998–2000). Eight N sources [ammonium sulphate, urea, polymer-coated urea (PCU 32% and 40% N), sulphur coated urea, isobutylidene diurea (IBDU), ammonium sulphate nitrate (ASN) plus dicyandiamide and ASN plus dimethyl pyrazole phosphate, were applied at 120 kg N ha–1 and at 2 or 15 days before flooding (DBF) during 1998. Another experiment was based on the use of urea blended with PCU (40% N) at four ratios (1:0, 3:1, 1:1, 1:3) and applied at 15 DBF and at four rates (70, 95, 120 and 145 kg N ha-1) during 1999 and at only one rate (120 kg N ha–1) during 2000. Both experiments also included a control (no N). The results showed that, when applied shortly before flooding, PCU (32% and 40% N) and IBDU application improved biological N2 fixation compared to the conventional fertilizer application, with or without NI, reaching similar values to those observed in the absence of N fertilizer. Slow release fertilizers, particularly PCU 40% N applied basally before flooding, were the best N source for grain yield and improved recovery efficiency. Differences among N sources were only significant when the flooding was delayed for 15 days after fertilizer application. 相似文献
7.
Summary Field experiments were conducted on transplanted rice (Oryza sativa L., var. Ratna) in a submerged soil, in order to study the distribution of N applied at 100 kg/ha. N was introduced as prilled urea or neem cake coated urea broadcast on the soil, and as urea supergranules, 1 or 2.5 g in size, point-placed at 5 cm depth. The surface-broadcast N was found mostly in the top 0–5 cm layer of soil and there was only a small vertical movement of applied N to 5–10 cm depth. With point placement of 1-g urea granules, the fertilizer N was found mostly at 5–10 cm depth and within 2.5 cm horizontal distance from the point of placement, compared with 5–10 cm depth and within 5 cm horizontal distance from the point of placement for the 2.5-g granules. With the two broadcast applications, the NH4
+-N content reached peaks of 40–68 mg/kg soil in the top 0–5 cm of soil within the first 3–6 days, decreased at a faster rate from the 6th to 12th day and then at a slower rate up to the 32nd day. In contrast, the NH4
+-N content around the points of placement of the urea supergranules reached peaks of 570–900 mg/kg soil during the first 3–12 days after placement, then decreased rapidly during the next 6–9 days, after which the values remained more or less unchanged but were still higher than the untreated control value. 相似文献
8.
Md. Abdullah Al Mamun M. Moynul Haque M. Abu Saleque Qazi Abdul Khaliq A. J. M. Sirajul Karim Md. Arifur Rahman Khan 《Journal of plant nutrition》2020,43(14):2186-2199
AbstractEnhancing rice yield is a great challenge for rice growers in the tidal flooded ecosystem, where poor agronomic management is one of the major constrains. Improve management practice (IMP) was compared with traditional farmers’ practice (TFP) in evaluating rice productivity, nutrient uptake, translocation and farm income in tidal flooded ecosystem. Results revealed that, IMP significantly produced higher number of panicles m?2, more grain panicle?1 and better grain filling. The rice cultivars produced 2.0 to 2.5 t grain ha?1 with TFP, while 3.0 to 4.0 t ha?1 with IMP. In different rice cultivars, the grain yield in IMP increased 12 to 60% over TFP. Similarly, the grains in IMP treatment absorbed 21.41 to 57.03?kg N ha?1 whereas only 15.85 to 46.94?kg N ha?1 in TFP plot. However, higher nitrogen (N) transfer from shoot to grain in IMP also suggests that the amount of N in soil was too low to meet the plant demand in TFP. Although, the IMP involved additional cost, but it gave significantly higher gross return (438 to 954?US$ha?1) and margin (397 to 913?US$ha?1) which added farm income upto 225?US$ha?1 over TFP. Hence, it could be concluded that IMP is a potential option for increasing grain yield and farm income during aman season in the tidal flooded ecosystem. 相似文献
9.
包膜尿素和普通尿素不同掺混比例对水稻产量与氮肥利用率的影响 总被引:11,自引:2,他引:11
以晚粳稻"秀水110"为供试水稻品种,在2007、2008连续2年田间试验条件下,研究了硫磺加树脂双层包膜尿素(SPCU)和普通尿素(PU)不同掺混比例对水稻产量及氮肥利用率的影响。结果表明,与当地农民习惯施用普通尿素PU100%(N 210 kg/hm2)处理相比,等氮量下一次性基施包膜尿素SPCU100%、SPCU70%+PU30%和SPCU50%+PU50%处理产量为7644.0、7172.5和7008.2 kg/hm2,增产17.75%、10.49%和7.96%;氮肥利用率为27.64%、23.24%和18.06%,提高18.73、14.33和9.15个百分点;氮肥农学效率也有显著增加。 相似文献
10.
P. Chaiwanakupt J. R. Freney D. G. Keerthisinghe S. Phongpan R. L. Blakeley 《Biology and Fertility of Soils》1996,22(1-2):89-95
We studied the interacting effects on NH3 loss and grain yield of adding (1) urease inhibitors to retard the hydrolysis of urea (2) the algicide terbutryn to limit floodwater pH increases, and (3) C2H2 (provided by waxcoated calcium carbide) to prevent NH3 oxidation. The algicide treatment maintained the floodwater pH values below 8 for the first 3 days after the urea application and depressed the maximum values below 8.5 on subsequent days. As a consequence, NH3 loss was significantly (P<0.05) reduced in all treatments containing algicide. The addition of wax-coated calcium carbide effectively inhibited nitrification, as judged by the increased ammoniacal (NH3+NH4) N concentrations in the floodwater, However, these increased ammonical-N concentrations resulted in large losses of NH3. The results also showed that the effectiveness of a urease inhibitor cannot be judged solely from the ammonical-N concentrations in the floodwater of a single treatment with the inhibitor. Additional treatments with an algicide and a nitrification inhibitor are required to determine whether the low ammoniacal-N concentrations are caused by NH3 losses and nitrification. Thus N-(n-butyl)thiophosphorictriamide (NBPT) appeared to retard urea hydrolysis when judged by the low ammoniacal-N concentrations in the floodwater; however, treatments with NBPT, algicide, and C2H2 showed that the low concentrations were mainly a result of NH3 volatilization and nitrification. Even though NBPT did not completely inhibit urea hydrolysis, some treatments with this compound reduced NH3 losses and increased grain yields by up to 31%. 相似文献
11.
Methane emission and entrapment in flooded rice soils as affected by soil properties 总被引:7,自引:0,他引:7
Z. P. Wang C. W. Lindau R. D. Delaune W. H. Patrick Jr. 《Biology and Fertility of Soils》1993,16(3):163-168
Laboratory incubation experiments were conducted to study the effects of soil chemical and physical properties on CH4 emission and entrapment in 16 selected soils with a pH range of 4.7–8.1, organic matter content of 0.72–2.38%, and soil texture from silt to clay. There was no significant correlation with CH4 emission for most of the important soil properties, including soil aerobic pH (measured before anaerobic incubation), total Kjeldahl N, cation exchange capacity, especially soil organic matter, and soil water-soluble C, which were considered to be critical controlling factors of CH4 emission. A lower CH4 emission was observed in some soils with a higher organic matter content. Differences in soil Fe and Mn contents and their chemical forms contributed to the this observation. A significant correlation between the CH4 emission and the soil organic C content was observed only after stratifying soils into subgroups according to the level of CH4 emission in soils not amended with organic matter. The results also showed that the soil redox potential (Eh), anaerobic pH, anerobic pH, and biologically reducible Fe and Mn affected CH4 emission significantly. Urea fertilization promoted CH4 emission in some soils and inhibited it in others. This result appeared to be related to the original soil pH. CH4 entrapment was positively correlated with soil clay content, indicating the importance of soil physical characteristics in reducing CH4 emissions to the atmosphere. 相似文献
12.
13.
Mineralization of carbon and nitrogen,and nitrification in Scots pine forest soil treated with fast- and slow-release nitrogen fertilizers 总被引:5,自引:0,他引:5
We studied the effects of fast- and slow-release organic N fertilizers (urea and urea-formaldehyde, Nitroform) on mineralization, nitrification, and N leaching in an acid, poor forest soil. We also studied the effects of a nitrification inhibitor (dicyandiamide) applied together with urea. Net nitrification, mineralization of N and C were determined by aerobic laboratory incubation of soil samples taken one and three growing seasons after N application. Numbers of autotrophic nitrifiers were estimated by a most probable number method three growing seasons after the treatment. Urea increased the CO2 production immediately after application, but after three growing seasons, CO2 production was the lowest in the urea-treated soils. In the nitroform-treated soils, the concentration of exchangeable NH
inf4
sup+
after the first and third growing seasons was of the same magnitude, in contrast to the urea-treated soils, where hydrolysis took place immediately. Three growing seasons after application, the highest amount of NH
inf4
sup+
accumulated during the laboratory incubation was in the nitro-form-treated soils. Unlike urea, nitroform did not increase the production of NO
inf3
sup-
or the number of NH
inf4
sup+
oxidizers. In the urea+dicyandiamide-treated soils there was less NO
inf3
sup-
and a lower number of nitrifiers than in the urea-treated soils. The results showed that a slow-release N fertilizer, such as nitroform, increases the availability of mineral N in acid forest soils without increasing nitrification and hence the risk of NO
inf3
sup-
leaching. 相似文献
14.
Suppression of methane oxidation in aerobic soil by nitrogen fertilizers,nitrification inhibitors,and urease inhibitors 总被引:7,自引:0,他引:7
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH
4
+
oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH
4
+
oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH
4
+
oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown. 相似文献
15.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(10):1155-1172
Abstract A laboratory study was used to simulate the pattern of diffusion of ammonium and nitrate ions in flooded soil. Ammonium, deep incorporated in a submerged irrigation system, diffused upward from the anaerobic to the aerobic layer where biochemical oxidation nitrified it to NO2 and NO3. These oxidized N species diffused downward from the aerobic layer to the anaerobic layer where most or at least partly, was lost as gaseous end products. Three crops of rice were grown in a glasshouse experiment to estimate N use efficiency under various combinations of irrigation and N management practices. Overall N use efficiency averaged 45%. Under continuous flooding, almost two thirds of the applied fertilizer N (647% use efficiency) was recovered by the rice crop. Under alternate flooding and drying, the response was very poor, with only about one fourth (26% use efficiency) of the applied fertilizer N being recovered by the crop. This demonstrated importance of the proper combination of irrigation and fertilizer management in paddy soils to maximize N utilization. 相似文献
17.
Nitrogen is the most important element for rice (Oryza sativa L.) growth. However, excessive use of conventional urea leads to serious environmental problems in China. The objective of this study was to evaluate the release patterns of coated urea and response of rice to coated urea on dry matter accumulation, nitrogen uptake, and nitrogen use efficiencies on a clay soil. A two single-year experiment was carried out in southern China to evaluate two coated urea, polymer-coated urea (PCU) and polymer-sulfur coated urea (PSCU). Nitrogen (N) release patterns of PCU and PSCU were determined in the laboratory and in the field. The release rate of PSCU in the field was much higher than that in the laboratory. And PCU had a similar release pattern both in the field and laboratory. Compared with urea, rice fertilized with PCU and PSCU had similar dry matter accumulation, but higher grain yield and N use efficiencies. Recovery efficiency of PCU treatment reached 50% in 2012 and 60% in 2013, around 40% for PSCU, which was only 16% for single application of urea. 相似文献
18.
太湖地区稻田绿肥固氮量及绿肥还田对水稻产量和稻田土壤氮素特征的影响 总被引:11,自引:0,他引:11
通过田间试验,利用15N自然丰度法,研究了太湖地区水稻土冬季绿肥的固氮量,以及绿肥还田后配施氮肥对水稻产量、稻田土壤供氮能力及土壤氮素淋失特征的影响。试验结果表明,紫云英和蚕豆当季分别能固定氮约32.8和68.8 kg km-2进入稻田生态系统以培肥土壤和供下季水稻利用。蚕豆秸秆还田后基本能满足水稻生长所需的氮,紫云英和蚕豆还田施氮120 kg km-2时,既可保证水稻较高产量,又节约当季化学氮肥45%~55%。紫云英和蚕豆还田不施氮肥处理,整个生长期耕层土壤溶液NH+4-N、NO-3-N和TN浓度均低于配施氮肥的处理;蚕豆还田处理土壤溶液TN浓度高于紫云英还田处理。随氮肥用量增加,NH+4-N、NO-3-N和TN浓度有增加趋势,不同施氮量间差异不显著。绿肥-水稻轮作,紫云英和蚕豆还田土壤氮素淋溶显著降低。配施氮肥增加了土壤氮的淋失量,尤其施氮300 kg km-2处理,土壤淋溶液NH+4-N、TN浓度显著高于施氮0~240 kg km-2的处理。 相似文献
19.
Muhammad Zahid Mumtaz Muhammad Saqib Ghulam Abbas Javaid Akhtar Zia-ul Qamar 《Journal of plant nutrition》2018,41(2):233-242
A field experiment was conducted under two natural field conditions at the Research Farm (normal soil) and Proka Farm (salt-affected soil) of The Institute of Soil and Environmental Sciences (ISES), University of Agriculture, Faisalabad, Pakistan, to evaluate the performance of 11 rice genotypes in normal and salt-affected conditions. The experiment was laid out in randomized complete block design (RCBD) with three replications. The gas exchange attributes were measured at vegetative stage whereas the grain and straw yields and the yield components were recorded at maturity. After harvesting, the ionic parameters including sodium (Na+) and potassium (K+) were determined. Afterward, grain quality in terms of length, width, milling recovery, broken fraction, and chalkiness was also determined for the selected genotypes. Salt-affected conditions adversely affected the physiology, yield, and quality of the tested genotypes. The genotypes KS-282 followed by Shaheen Basmati showed significantly higher photosynthetic rate, transpiration rate, and stomatal conductance under both normal and salt-affected conditions, whereas the genotypes 99404 followed by 99417 showed minimum values of gas exchange attributes. The grain and straw yields were the highest in the case of KS-282 at both sites, whereas the lowest grain and straw yields were observed in the case of 99440 followed by 99417 under both normal and salt-affected conditions. Regarding the quality attributes, Super Basmati produced longer grains but with higher broken fraction and lower milling recovery, whereas the reverse was observed in the case of KS-282. 相似文献
20.
控释氮肥与尿素掺混比例对作物中后期土壤供氮能力和稻麦产量的影响 总被引:8,自引:2,他引:8