首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

2.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

3.
Forested peatlands contain large pools of terrestrial carbon. As well as drainage, forest management such as fertilizer application can affect these pools. We studied the effect of wood ash (application rates 0, 5 and 15 t ha?1) on the heterotrophic soil respiration (CO2 efflux), cellulose decomposition, soil nutrients, biomass production and amount of C accumulated in a tree stand on a pine‐dominated drained mire in central Finland. The ash was spread 13 years before the respiration measurements. The annual CO2 efflux was statistically modelled using soil temperature as the driving variable. Wood ash application increased the amounts of mineral nutrients of peat substantially and increased soil pH in the uppermost 10 cm layer by 1.5–2 pH units. In the surface peat, the decomposition rate of cellulose in the ash plots was roughly double that in control plots. Annual CO2 efflux was least on the unfertilized site, 238 g CO2‐C m?2 year?1. The use of wood ash nearly doubled CO2 efflux to 420–475 g CO2‐Cm?2 year?1 on plots fertilized with 5–15 t ha?1 of ash, respectively. Furthermore, ash treatments resulted also in increased stand growth, and during the measurement year, the growing stand on ash plots accumulated carbon 11–12 times faster than the control plot. The difference between peat C emission and amount of C sequestered by trees on the ash plots was 43–58 g C m?2, while on the control plot it was 204 g C m?2. Our conclusion is that adding wood ash as a fertilizer increases more C sequestration in the tree stand than C efflux from the peat.  相似文献   

4.
Soil respiration is a carbon flux that is indispensable for determining carbon balance despite variations over time and space in forest ecosystems. In Kanchanaburi, western Thailand, we measured the soil respiration rates at different slope positions—ridge (plot R), upper slope (plot U), and lower slope (plot L)—on a hill in a seasonal tropical forest [mixed deciduous forest (MDF)] to determine the seasonal and spatial variations in soil respiration on the slope. The heterotrophic (organic layer and soil) and autotrophic (root) respiration was differentiated by trenching. Soil respiration rates showed clear seasonal patterns: high and low rates in rainy and dry seasons respectively, at all plots, and tended to decrease up the slope. Soil respiration rates responded significantly to soil water content in the 0–30?cm layer, but the response patterns differed between the lower slope (plot L) and the upper slope (plots R and U): a linear model could be applied to the lower slope but exponential quadratic models to the upper slope. The annual carbon dioxide (CO2) efflux from the forest floor was also associated with the slope position and ranged from 1908?gC?m?2?year?1 in plot L to 1199?gC?m?2?year?1 in plot R. With ascending position from plot L to R, the contribution of autotrophic respiration increased from 19.4 to 36.6% of total soil respiration, while that of the organic layer decreased from 26.2 to 9.4%. Mineral soil contributed to 46.3 to 54.4% of the total soil respiration. Soil water content was the key factor in controlling the soil respiration rate and the contribution of the respiration sources. However, the variable responses of soil respiration to soil water content create a complex distribution of soil respiration at the watershed scale.  相似文献   

5.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

6.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

7.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

8.
High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization. We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential, and that temperature sensitivity of C mineralization will increase. To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5, 15 and 25 °C. Results showed external N supply had no significant effect on CO2 emission. However, external C supply increased CO2 emission. Temperature coefficient (Q10) ranged from 1.13 to 1.29. Significantly higher values were measured with C than with N addition and control treatment. Temperature dependence of C mineralization was well-represented by exponential functions. Under the control, CO2 efflux rate was 425 g CO2–C m?2 year?1, comparable to the in situ measurement of 422 g CO2–C m?2 year?1. We demonstrated if N is disregarded, microbial decomposition is primarily limited by lack of labile C. It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil.  相似文献   

9.
Understanding carbon (C) cycling and sequestration in vegetation and soils, and their responses to nitrogen (N) deposition, is important for quantifying ecosystem responses to global climate change. Here, we describe a 2-year study of the C balance in a temperate grassland in northern China. We measured net ecosystem CO2 exchange (NEE), net ecosystem production (NEP), and C sequestration rates in treatments with N addition ranging from 0 to 25 g N m?2 year?1. High N addition significantly increased ecosystem C sequestration, whose rates ranged from 122.06 g C m?2 year?1 (control) to 259.67 g C m?2 year?1 (25 g N). Cumulative NEE during the growing season decreased significantly at high and medium N addition, with values ranging from ?95.86 g C m?2 (25 g N) to 0.15 g C m?2 (5 g N). Only the highest N rate increased significantly cumulative soil microbial respiration compared with the control in the dry 2014 growing season. High N addition significantly increased net primary production (NPP) and NEP in both years, and NEP ranged from ?5.83 to 128.32 g C m?2. The C input from litter decomposition was significant and must be quantified to accurately estimate NPP. Measuring C sequestration and NEP together may allow tracking of the effects of N addition on grassland C budgets. Overall, adding 25 or 10 g N m?2 year?1 improved the CO2 sink of the grassland ecosystem, and increased grassland C sequestration.  相似文献   

10.
Soil contains the major part of carbon in terrestrial ecosystems, but the response of this carbon to enriching the atmosphere in CO2 and to increased N deposition is not completely understood. We studied the effects of CO2 concentrations at 370 and 570 μmol CO2 mol?1 air and increased N deposition (7 against 0.7 g N m?2 year?1) on the dynamics of soil organic C in two types of forest soil in model ecosystems with spruce and beech established in large open‐top chambers containing an acidic loam and a calcareous sand. The added CO2 was depleted in 13C and thus the net input of new C into soil organic carbon and the mineralization of native C could be quantified. Soil type was the greatest determining factor in carbon dynamics. After 4 years, the net input of new C in the acidic loam (670 ± 30 g C m?2) exceeded that in the calcareous sand (340 ± 40 g C m?2) although the soil produced less biomass. The mineralization of native organic C accounted for 700 ± 90 g C m?2 in the acidic loam and for 2800 ± 170 g C m?2 in the calcareous sand. Unfavourable conditions for mineralization and a greater physico‐chemical protection of C by clay and oxides in the acidic loam are probably the main reasons for these differences. The organic C content of the acidic loam was 230 g C m?2 more under the large than under the small N treatment. As suggested by a negligible impact of N inputs on the fraction of new C in the acidic loam, this increase resulted mainly from a suppressed mineralization of native C. In the calcareous sand, N deposition did not influence C concentrations. The impacts of CO2 enrichment on C concentrations were small. In the uppermost 10 cm of the acidic loam, larger CO2 concentrations increased C contents by 50–170 g C m?2. Below 10 cm depth in the acidic loam and at all soil depths in the calcareous sand, CO2 concentrations had no significant impact on soil C concentrations. Up to 40% of the ‘new’ carbon of the acidic loam was found in the coarse sand fraction, which accounted for only 7% of the total soil volume. This suggests that a large part of the CO2‐derived ‘new’ C was incorporated into the labile and easily mineralizable pool in the soil.  相似文献   

11.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

12.
Impacts of 43-year nutrient management on carbon (C) and nutrient dynamics were studied in a rice-wheat-jute system in tropical India. Carbon dynamics was investigated on the basis of its distribution of labile (microbial biomass C, permanganate oxidizable C and water soluble C) and slow pools (Walkley Black oxidizable organic C), its indices (C pool index, lability index) and C management index (CMI) at different soil depths. Nutrient dynamics was judged by major nutrients availability, and related soil enzymatic activities. We studied seven treatments including unfertilized control, 100% NPK (N:P2O5:K2O 60:30:60), 50% NPK, 150% NPK, 100% NP, 100% N, 100% NPK + farm yard manure (10 tonnes FYM ha?1). Nutrients availability and soil enzymatic activities were significantly increased under balanced fertilization (100% NPK + FYM) over other treatments. Labile, slow and total C was also found highest in 100% NPK + FYM. Enhanced C indices under 100% NPK + FYM over 100% NPK and other treatments signified the importance of long term balanced fertilization on soil C stabilization. Lability indexes were lower at sub-soil (30-45cm). In terms of favourable nutrient dynamics and CMI, balanced application of NPK plus organics were recommend for long term sustainability of rice-wheat-jute system in tropics.  相似文献   

13.
The field experiment on effect of primary treated biomethanated spentwash (PBSW) on physiochemical and biological properties of soil and yield of sunflower (Helianthus annuus L.) on sodic soil was conducted at the Postgraduate Farm, Mahatma Phule Agricultural University, Ahmednagar, India, during 2008–9. The experiment was laid out in a randomized block design (RBD) with nine treatments [control, varying doses of PBSW (30, 60, 90, 120, 150, and 180 m3 ha?1), farmyard manure (FYM) + recommended dose of fertilizer (RDF), and FYM + gypsum at 50% gypsum requirement (GR) + RDF] with three replications. The FYM dose was 5 Mg ha?1. The experimental soil was sodic calcareous, being of the Sawargaon series of isohyperthermic family of Vertic haplustepts with high exchangeable sodium percentage (ESP), low available nitrogen (N) and phosphorus (P), and high available potassium (K). The results revealed that the physical properties [bulk density, mean weight diameter (MWD) of water-stable aggregates, and hydraulic conductivity] of soil were improved in both layers of sodic soil (0–30 and 30–60 cm) as a result of the addition of increased doses of PBSW. The significant reduction in pH, calcium carbonate (CaCO3), ESP and increase in organic carbon, cation exchange capacity (CEC) and electrical conductivity (EC) were observed in both soil layers as a result of the addition of PBSW at 180 m3 ha?1. The changes in chemical properties were also seen in the treatment of FYM + GR + RDF, but it was at par with lower doses of PBSW (30 to 90 m3 ha?1). The microbial populations [bacteria, fungi, actinomycetes, azotobacter, and phosphate-solubilizing bacteria] increased with an increase in the levels of application of PBSW. However, it was maximum in FYM + GR + RDF treatment, and it showed an overall increase up to the flowering stage and thereafter reduced at harvest. The soil basal respiration as mg carbon dioxide (CO2) increased with the increase in levels of PBSW application but it was the greatest in the FYM + gypsum + RDF treatment. Among the PBSW treatments, the greatest activities of soil enzymes (urease, dehydrogenase, and acid phosphatase) under the treatment of 180 m3 ha?1 PBSW were observed at the flowering stage. The available N, P, and K after harvest of sunflower crop were significantly greater in the PBSW treatment applied at 180 m3 ha?1; however, N, P, and K uptake and yield of sunflower were significantly greater in FYM + RDF + gypsum treatment followed by FYM + RDF and 180 m3 ha?1 of PBSW.  相似文献   

14.
We studied a semi-natural forest in Northern Italy that was set aside more than 50 years ago, in order to better understand the soil carbon cycle and in particular the partitioning of soil respiration between autotrophic and heterotrophic respiration. Here we report on soil organic carbon, root density, and estimates of annual fluxes of soil CO2 as measured with a mobile chamber system at 16 permanent collars about monthly during the course of a year. We partitioned between autotrophic and heterotrophic respiration by the indirect regression method, which enabled us to obtain the seasonal pattern of single components.The soil pool of organic carbon, with 15.8 (±4.5) kg m?2, was very high over the entire depth of 45 cm. The annual respiration rates ranged from 0.6 to 6.9 μmol CO2 m?2 s?1 with an average value of 3.4 (±2.3) μmol CO2 m?2 s?1, and a cumulative flux of 1.1 kg C m?2 yr?1. The heterotrophic component accounted for 66% of annual CO2 efflux. Soil temperature largely controlled the heterotrophic respiration (R2 = 0.93), while the autotrophic component followed irradiation, pointing to the role of photosynthesis in modulating the annual course of soil respiration.Most studies on soil respiration partitioning indicate autotrophic root respiration as a first control of the spatial variability of the overall respiration, which originates mainly from the uppermost soil layers. Instead, in our forest the spatial variability of soil respiration was mainly linked to soil carbon, and deeper layers seemed to provide a significant contribution to soil respiration, a feature that may be typical for an undisturbed, naturally maturing ecosystem with well developed pedobiological processes and high carbon stocks.  相似文献   

15.
Fly ash and biosolid wastes can be mixed and applied to soil as a means of disposal. A significant decline in soil respiration following waste application indicates restricted activities of functional microbial populations. Weathering decreases salinity and neutralizes alkalinity in fly ash, but there is little information on the effects of unweathered fly ash and biosolid mixtures on soil carbon (C) mineralization. The objective of this study was to determine the effects of a weathered fly ash–limestone scrubber residue (LSR) mixed with an aerobically digested biosolid on soil respiration in a laboratory incubation study. Biosolids significantly increased carbon dioxide (CO2) production (p < 0.05), but up to 6.75% (w/w) fly ash did not. Mean total C mineralization was 770 mg CO2‐C kg?1 soil in the control and 3,810 mg CO2‐C kg?1 soil in the 6.75% (w/w) biosolid treatment. Fly ash with neutral pH and low salinity appears unlikely to affect soil and biosolid C mineralization.  相似文献   

16.

Purpose

Carbon (C) dynamics in grassland ecosystem contributes to regional and global fluxes in carbon dioxide (CO2) concentrations. Grazing is one of the main structuring factors in grassland, but the impact of grazing on the C budget is still under debate. In this study, in situ net ecosystem CO2 exchange (NEE) observations by the eddy covariance technique were integrated with a modified process-oriented biogeochemistry model (denitrification–decomposition) to investigate the impacts of grazing on the long-term C budget of semiarid grasslands.

Materials and methods

NEE measurements were conducted in two adjacent grassland sites, non-grazing (NG) and moderate grazing (MG), during 2006–2007. We then used daily weather data for 1978–2007 in conjunction with soil properties and grazing scenarios as model inputs to simulate grassland productivity and C dynamics. The observed and simulated CO2 fluxes under moderate grazing intensity were compared with those without grazing.

Results and discussion

NEE data from 2-year observations showed that moderate grazing significantly decreased grassland ecosystem CO2 release and shifted the ecosystem from a negative CO2 balance (releasing 34.00 g C?m?2) at the NG site to a positive CO2 balance (absorbing ?43.02 g C?m?2) at the MG site. Supporting our experimental findings, the 30-year simulation also showed that moderate grazing significantly enhances the CO2 uptake potential of the targeted grassland, shifting the ecosystem from a negative CO2 balance (57.08?±?16.45 g C?m?2?year?1) without grazing to a positive CO2 balance (?28.58?±?14.60 g C?m?2?year?1) under moderate grazing. The positive effects of grazing on CO2 balance could primarily be attributed to an increase in productivity combined with a significant decrease of soil heterotrophic respiration and total ecosystem respiration.

Conclusions

We conclude that moderate grazing prevails over no-management practices in maintaining CO2 balance in semiarid grasslands, moderating and mitigating the negative effects of global climate change on the CO2 balance in grassland ecosystems.  相似文献   

17.
Management practices can have significant implications for both soil quality and carbon (C) sequestration potential in agricultural soils. Data from two long‐term trials (one at field scale and the other at lysimeter scale), underway in north‐eastern Italy, were used to evaluate the dynamics of soil organic carbon (SOC) and estimate the impact of recommended management practices (RMPs) on soil carbon sequestration. Potential SOC sequestration was calculated as the differences between the change in SOC of treatments differing only for the specified RMP for a period of at least 25 years. The trials compared the following situations: (a) improved crop rotations versus monoculture; (b) grass versus improved crop rotations; (c) residue incorporation versus residue removal; (d) high versus low rates of inorganic fertilizers; (e) integrated nutrient management/organic manures versus inorganic fertilizers. At the lysimeter scale, some of these treatments were evaluated in different soils. A general decrease in SOC (1.1 t C ha?1 year?1) was observed after the introduction of intensive soil tillage, evidencing both the worsening of soil quality and the contribution towards global CO2 emissions. Initial SOC content was maintained only in permanent grassland, complex rotations and/or with the use of large quantities of livestock manure. SOC sequestration reached a maximum rate of 0.4 t C ha?1 year?1 comparing permanent grassland with an improved crop rotation. Crop residue incorporation and rates of inorganic fertilizer had less effect on SOC sequestration (0.10 and 0.038 t C ha?1 year?1, respectively). The lysimeter experiment highlighted also the interaction between RMPs and soil type. Peaty soil tended to be a source of C independent of the amount and quality of C input, whereas a proper choice of tillage practices and organic manures enhanced SOC sequestration in a sandy soil. The most promising RMPs in the Veneto region are, therefore, conversion to grassland and use of organic manures. Although some of these RMPs are already supported by the Veneto Region Rural Development Plan, their more intensive and widespread implementation requires additional incentives to become economically feasible.  相似文献   

18.
Land‐use change and soil management play a vital role in influencing losses of soil carbon (C) by respiration. The aim of this experiment was to examine the impact of natural vegetation restoration and long‐term fertilization on the seasonal pattern of soil respiration and cumulative carbon dioxide (CO2) emission from a black soil of northeast China. Soil respiration rate fluctuated greatly during the growing season in grassland (GL), ranging from 278 to 1030 mg CO2 m?2 h?1 with an average of 606 mg CO2 m?2 h?1. By contrast, soil CO2 emission did not change in bareland (BL) as much as in GL. For cropland (CL), including three treatments [CK (no fertilizer application), nitrogen, phosphorus and potassium application (NPK), and NPK together with organic manure (OM)], soil CO2 emission gradually increased with the growth of maize after seedling with an increasing order of CK < NPM < OM, reaching a maximum on 17 August and declining thereafter. A highly significant exponential correlation was observed between soil temperature and soil CO2 emission for GL during the late growing season (from 3 August to 28 September) with Q10 = 2.46, which accounted for approximately 75% of emission variability. However, no correlation was found between the two parameters for BL and CL. Seasonal CO2 emission from rhizosphere soil changed in line with the overall soil respiration, which averaged 184, 407, and 584 mg CO2 m?2 h?1, with peaks at 614, 1260, and 1770 mg CO2 m?2 h?1 for CK, NPK, and OM, respectively. SOM‐derived CO2 emission of root free‐soil, including basal soil respiration and plant residue–derived microbial decomposition, averaged 132, 132, and 136 mg CO2 m?2 h?1, respectively, showing no difference for the three CL treatments. Cumulative soil CO2 emissions decreased in the order OM > GL > NPK > CK > BL. The cumulative rhizosphere‐derived CO2 emissions during the growing season of maize in cropland accounted for about 67, 74, and 80% of the overall CO2 emissions for CK, NPK, and OM, respectively. Cumulative CO2 emissions were found to significantly correlate with SOC stocks (r = 0.92, n = 5, P < 0.05) as well as with SOC concentration (r = 0.97, n = 5, P < 0.01). We concluded that natural vegetation restoration and long‐term application of organic manure substantially increased C sequestration into soil rather than C losses for the black soil. These results are of great significance to properly manage black soil as a large C pool in northeast China.  相似文献   

19.
ABSTRACT

Soil organic carbon (SOC) is a key component for sustaining crop production. A field experiment was conducted during 2004–2018 to assess the changes in soil carbon fractions under different fertilization practices in grass-legumes mixture. The result indicates that application of farmyard manure (FYM) at 80 Mg ha–1 has increased SOC concentration leading to carbon sequestration rate of 4.2 Mg ha–1 year–1. Further, it has increased the proportion of labile carbon in the total SOC and have accumulated 126, 60, 83 and 95% higher very labile, labile, less labile and non-labile C stock than that of control plot, respectively, in top 30 cm soil layer. Inorganic fertilization and FYM 20 Mg ha–1 influenced SOC concentration, SOC stock and C sequestration rate similarly. The highest carbon management index (264) was found in the treatment receiving FYM 80 Mg ha–1 and it was positively correlated with SOC (r = 0.84**). The sensitivity index of the SOC varied from 26 to 152% and the differences were greatest in FYM treatments. The result indicates that grass-legumes mixture build-up the SOC in long term and the addition of FYM further increases it.  相似文献   

20.

Purpose

Cover crop residue is generally applied to improve soil quality and crop productivity. Improved understanding of dynamics of soil extractable organic carbon (EOC) and nitrogen (EON) under cover crops is useful for developing effective agronomic management and nitrogen (N) fertilization strategies.

Materials and methods

Dynamics of soil extractable inorganic and organic carbon (C) and N pools were investigated under six cover crop treatments, which included two legume crops (capello woolly pod vetch and field pea), three non-legume crops (wheat, Saia oat and Indian mustard), and a nil-crop control (CK) in southeastern Australia. Cover crops at anthesis were crimp-rolled onto the soil surface in October 2009. Soil and crop residue samples were taken over the periods October?CDecember (2009) and March?CMay (2010), respectively, to examine remaining crop residue biomass, soil NH4 +?N and NO3 ??CN as well as EOC and EON concentrations using extraction methods of 2?M KCl and hot water. Additionally, soil net N mineralization rates were measured for soil samples collected in May 2010.

Results and discussion

The CK treatment had the highest soil inorganic N (NH4 +?N?+?NO3 ??CN) at the sampling time in December 2009 but decreased greatly with sampling time. The cover crop treatments had greater soil EOC and EON concentrations than the CK treatment. However, no significant differences in soil NH4 +?N, NO3 ??CN, EOC, EON, and ratios of EOC to EON were found between the legume and non-legume cover crop treatments across the sampling times, which were supported by the similar results of soil net N mineralization rates among the treatments. Stepwise multiple regression analyses indicated that soil EOC in the hot water extracts was mainly affected by soil total C (R 2?=?0.654, P?<?0.001), while the crop residue biomass determined soil EON in the hot water extracts (R 2?=?0.591, P?<?0.001).

Conclusions

The cover crop treatments had lower loss of soil inorganic N compared with the CK treatment across the sampling times. The legume and non-legume cover crop treatments did not significantly differ in soil EOC and EON pools across the sampling times. In addition, the decomposition of cover crop residues had more influence on soil EON than the decomposition of soil organic matter (SOM), which indicated less N fertilization under cover crop residues. On the other hand, the decomposition of SOM exerted more influence on soil EOC across the sampling times among the treatments, implying different C and N cycling under cover crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号