首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A field experiment was condutced in a clay loam soil to study the performance of three Bradyrhizobium japonicum strains; USDA 110, USDA 138 and TAL 379, in relation to their N2-fixing potential and competitiveness on two soybean cultivars (Clark and Calland). Inoculation of soybean cultivars with these strains, either singly or in combination, induced significant increases in plant dry weight, N2 fixation and seed yields. However, no significant differences were found between the rhizobial strains and/or their mixtures in N2 fixation and increased seed yield for both cultivars. The two soybean cultivars gave similar responses to inoculation. No significant differences in seed yield were observed between Clark and Calland cultivars. The interaction between inoculant strain and soybean cultivar was not significant. The competition between strains for nodulation was assessed. Strain USDA 110 was the most competitive, followed by USDA 138. Strain TAL 379 was always less competitive on both cultivars. The incidence of double-strain occupancy of nodules varied from 8% to 40%.  相似文献   

2.
A field experiment was conducted to assess the effect of microbial inoculants and inorganic fertilizers for sustaining the yield of soybean. Application of 100% recommended dose of fertilizer (RDF) gave significantly highest yield (2433 kg ha?1) over 75% RDF (2317 kg ha?1) and without RDF (2205 kg ha?1). Seeds inoculated with Rhizobium (Bradyrhizobium japonicum) and phosphate-solubilizing bacteria (2480 kg ha?1) gave significantly highest soybean yield over without inoculation (2191 kg ha?1). Rhizobium and phosphate-solubilizing bacteria with 100% RDF (2674 kg ha?1) gave significantly highest seed yield than rest of the treatment combinations. Root nodules and their dry weight were remained un-influenced due to fertilizer levels, whereas in bio-fertilizers, it was significantly higher with Rhizobium inoculation (24.3 and 408 mg, respectively) followed by dual inoculation of Rhizobium and PSB. 100% RDF and dual inoculation with Rhizobium and PSB earned Rs. 47916/- and Rs. 51182/- net returns per ha, respectively.  相似文献   

3.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

4.
Summary Hydrogenase activities and N2-fixing capacities of soybean nodules (Glycine max. cv. Hodgson), inoculated with strains ofBradyrhizobium japonicum andRhizobium fredii from different geographical regions, were measured after 35 days of culture under controlled conditions. Of the strains tested, 47% induced nodules with bacteroids which recycled H2. The data obtained suggest that H2-recycling ability is not a major factor influencing early N2-fixation which depends essentially on the precocity and intensity of the initial nodulation.  相似文献   

5.
The objectives of this experiment were to determine the chloroplast pigments dynamics of soybean leaves during the growth stages under different tillage systems, which can be a major factor limiting yield of soybean. The greatest differences between the photosynthetic productivity parameters of the investigated soybean were determined from reproductive stages (R2 and R3?–?4). The chlorophyll a, chlorophyll a/b and carotenoids content under CT, DH and NT were greater in the reproductive stages (R2 and R3?–?4) than in the early stages (V3?–?4 and R1). The concentration dynamics of chlorophyll b and chlorophyll a/b was very similar in all growth stages and under all tillage systems in the 2-yr average. The increased drought stress in 2003 was likely critical in the observed lower seed yields in 2003. The yield of soybean was significantly lower under NT than CT and DH treatments in both years. The relationship between the soybean yield and chloroplast pigments concentration is strongly influenced by external factors. In the 2-yr average the soybean yield was considerably affected by the years and tillage systems. Statistical analysis showed a very significant relationship between chlorophyll pigments content, but photosynthetic parameters investigated did not correlate with soybean yield.  相似文献   

6.
Pueraria is an herbaceous, perennial legume crop originating in Asia. Pueraria phaseoloides (Roxb.) Benth. (tropical kudzu) is frequently introduced into production systems and is used as green manure, a cover crop and a forage plant, making it important economically. We used P. phaseoloides as a trap crop to study and characterize soil rhizobia in Eastern Cameroon. Bacteria were isolated from fresh nodules collected from field-grown P. phaseoloides roots. The 16S-23S rRNA internal transcribed spacer (ITS) sequences from 30 bacterial isolates were amplified by polymerase chain reaction (PCR) and the reaction products were sequenced. Phylogenetic analysis revealed that all isolates were ascribed to the genus Bradyrhizobium and were grouped into three clusters of Bradyrhizobium sp. strains, one cluster of B. yuanmingense strains, and one cluster of B. elkanii strains. Acetylene reduction assay (ARA) results indicated that the B. yuanmingense strains had significantly higher nitrogen fixation potential and that they could be used as inoculants to enhance nitrogen fixation in Pueraria grown in Eastern Cameroon.  相似文献   

7.
Abstract

The response of peanut (Arachis hypogaea L.) to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus etunicatum) and Bradyrhizobiurn sp. was studied in pots by the acetylene reduction activity (ARA) and ‘A-value’ methods. The soil used was a Light-coloured Andosol and the treatments consisted of the inoculation of VAM fungi only, inoculation of Bradyrhizobium only, dual inoculation of VAM fungi and Bradyrhizobium and control, under non-sterilized and sterilized soil conditions.

In the non-sterilized soil the ARA and nitrogen fixation determined by the ‘A-value’ method increased significantly only by dual inoculation of VAM fungi and Bradyrhizobium at 100 days after planting (DAP), but no significant difference was observed at 70 DAP. In the case of dual inoculation, 75% of the nitrogen of the plant was derived from fixation whereas the plants inoculated only with Bradyrhizobium derived 68% of their nitrogen from fixation and the control plants, 64%. Amount of P in plant increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.

In the sterilized soil a highly significant increase in the ARA was observed of the dual inoculation at all the sampling times. Nitrogen fixation determined by the A-value technique and N and P contents in plant also increased significantly by dual inoculation. Results obtained by the A-value method showed that plants with dual inoculation derived 68% of their nitrogen from fixation while the plants inoculated only with Bradyrhizobium, 38%.

From our this study we conclude that nitrogen fixation as well as N and P contents in peanut increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.  相似文献   

8.
The objective of the present study was to record the seed yield and to examine visually the quality of soybean seeds cultivated under different types and placements of urea fertilizers. In addition to the conventional fertilizer application (including ammonium sulfate 16 kg N ha-1 broadcasting (100 kg N ha-1 of urea (0B) and X00-d type coated urea CU-100 (CUB), and deep placement (100 kg N ha-1) of urea (UD) and 100-d type coated urea CU-100 (CUD) was conducted in separate plots in a paddy field converted to an upland field located at Shindori Experimental Station of Niigata University. Soybean plant growth was periodically analyzed and the quality of harvested seeds was also visually examined (hereafter referred to as “visual quality”). It was found that the deep placement treatments were more conducive 1o nitrogen (N2)fixation, based on the relative mreide N concentration in the xylem sap, which is a good indicator of N~fixation by soybean. Also the total seed yield was the highest in CUD (82 g plant-1) and 0D (81 g plant-1), compared to the control (62 g plant-1), UB (68 g plant-1), and CUB (68 g plant-1). The visual quality of harvested seeds showed that CUD enhanced the quality of seeds compared to the other treatments, in which the percentage of good quality seeds, hereafter referred to as "good seeds," based on the dry weight was 51 (control), 65 (K3B), 61 (CUB), 61 (0D), and 6696 (CUD). In terms of diseased seeds, the percentage of turtle wrinkle and broken seed coats was found to decrease by N application compared to the control. Thus, it is suggested that N fertilization management is important for maximum yield of soybean as well as for the enhancement of seed quality.  相似文献   

9.
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules.  相似文献   

10.
The effects of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense strains on the growth of soybean were evaluated with regard to the estimation of N2 fixation using the 15N isotope dilution technique. Inoculation, in general, increased the dry mass of soybean as well as nitrogen content. Dual inoculation with a mixture of B. japonicum and A. brasilense strains was superior over single inoculation with B. japonicum. Nitrogen fixed (Ndfa) varied according to inoculant and soil conditions. Percentages of nitrogen derived from air (% Ndfa) using a non-nodulating isoline were 72% and 76% for B. japonicum and B. japonicum plus A. brasilense, respectively, in non-sterile soil. A similar but higher trend was recorded in sterilized soil, in which the percentages of N2 fixed were 81% and 86% for single and dual inoculation, respectively. The correlation coefficient between N2 fixed and N uptake (r=0.94) and dry mass (r=0.89) was significant. Application of special bacterial inoculants in agricultural systems of Egypt seems to be a promising technology and could be used for improving soybean growth as well as soil fertility, thus minimizing environmental pollution. Received: 10 January 1996  相似文献   

11.
Five barley cultivars were grown together in complete, low-P·low-pH and high-Al medium containing only NO3, only NH4 or both NO3 and NH4 as N sources, respectively using an automatic control system of pH for water culture, and the relationship between the differential Al tolerance and the plant-induced pH change of medium among the barley cultivars was investigated.

The pH of the medium containing only NO3 as N source tended to increase, whereas the pH of the other media containing only NH4 or both NO3 and NH4 as N sources tended to decrease, but the fluctuations of the medium pH could be maintained within the value of 0.2 pH in the complete medium and within the value of 0.1 pH in the high-Al medium.

Barley cultivars still differed in their Al tolerance in the medium which was continuously stirred and circulated at a constant pH. The pattern of Al tolerance was not affected by the N sources in the medium. The plant-induced pH change of medium for each cultivar was influenced by the N sources in the medium, and was not correlated positively with Al tolerance. The contents of Al and Ca or other nutrient cations in roots were positively correlated with Al tolerance and positive correlations were recognized also between the contents of Al and Ca or some other nutrient cations in the roots.

In conclusion, the following mechanisms are proposed. Al tolerant barley cultivars exclude Al actively outside the plasmalemma of the root cells, and the excluded Al may polymerize and or react with P to form Al precipitates. Consequently, in the Al tolerant barley cultivars the Al content may be low in the root protoplasts, high in the whole root tissues and the contents of Ca or other nutrients may be high in the roots. The plant-induced pH change of medium is not considered to be the cause of the differential Al tolerance among barley cultivars.  相似文献   

12.
Sulphur (S) has become a major limiting factor for plant production in industrial as well as in remote industrial rural areas. Limitation of S can reduce legume N2 fixation by affecting nodule development and function. In pot experiments with pea (Pisum sativum L.) and alfalfa (Medicago sativa L.), we investigated the influence of S on growth, ferredoxin, ATP and leghemoglobin concentrations. Addition of 200 mg S pot−1 increased yield of shoots, roots and nodules of both plant species significantly. However, the influence of S on nodule yield formation was most pronounced. Pea and alfalfa roots were found to have higher S concentrations than shoots and being up to 2.9 times the S concentration in the shoots of peas under S-sufficient conditions. Sulphur addition also increased N2 fixation significantly. The ferredoxin concentration in bacteroids of root nodules of pea was increased significantly by S only 10 weeks after planting and in bacteroids of root nodules of alfalfa 10 and 17 weeks after planting, while on per pot base the amounts of ferredoxin were higher throughout the experimental period of time. The ATP concentration of bacteroids of root nodules of both plant species as well as of mitochondria of root nodules of pea were significantly higher with optimum S supply. The effects of S deficiency on N2 fixation are likely to be caused by the shortage of ferredoxin and ATP. The amount of leghemoglobin was reduced in comparison to nodules of the S-sufficient plants.  相似文献   

13.
Abstract

This research was undertaken on a paleudult soil in southern Brazil, 30° south latitude, to quantify lime and P effect upon soybean (Glycine max (L.) Merrill). A lime x P factorial experience with lime treatments of 0, 0.5, 1, and 2 times SMP interpretation to pH 6.5, and 0, 44, 88, 132, and 176 kg P/ha with 3 replications were installed. The experiment was conducted for 2 years (1973–74, 1974–75), with leaf‐N, P, and K; yield; seed‐N, P, and K; Bray P2 (0.03N NH4F + 0.1N HC1) avail‐able‐P and soil pH measurements completed each year. Data was evaluated with linear, quadratic, logarithmic, polynomial, segmented line, and multiple regression using the coefficient of determination as goodness of fit.

The best model fit between P treatment and Bray P2 available‐P was a quadratic equation; the model between relative yield and Bray P2‐P with 54% of the relative yield attributed to Bray P2 available‐P, a sigmented line. This model indicated point of maximum yield (91% relative yield) was obtained at 7.4 ppm‐P, with no increase in relative yield with increasing levels of soil available‐P. To calculate the P fertilizer necessary to increase available soil‐P to the level of maximum yield of equation Yp = [1639(7.4 ‐ xs)]1/2, where Yp = kg P/ha fertilizer needed; and xs = initial Bray P2 soil available‐P in ppm's. The lime effect upon soil pH was best described as a linear relationship. Yield increase with lime at this site was not significant at the 5% level.

The leaf‐N, P, and K increased significantly with soil available‐P levels. A second degree polynomial with logarithmic function best defined these relationships. The calculated DRIS indices and sum proved useful to evaluate the plant‐N, P, and K balance of each treatment.

Only seed‐P level was directly related to soil available‐P. Both seed‐N and seed‐K were highly correlated with indirect effects of soil available‐P levels.

Results from this study suggest the segmented line model would best interpret soybean yield response to Bray P2 available‐P for this soil. To obtain maximum yield using this model rather than the second degree polynomial would require less fertilizer P. Foliar analyses interpretation confirmed adequate plant‐P level would be supplied for maximum yield at this level of fertilization.  相似文献   

14.
Abstract

The main objective of this study was to increase the productivity of soybean [Glycine max (L.) Merr. cv. Enrei] seed by deep placement of controlled release nitrogen fertilizers and by the application of different methods of inoculation of bradyrhizobia. Ten days old seedlings in an inoculated paper pot (IPP), in a non-inoculated paper pot (NIPP), and those grown in a vermiculite bed without paper pot (DT) were transplanted to an upland field converted from a drained paddy field in Nagaoka. In addition to the basal application of 16 kg N ha?1 in the surface layer (Control), deep placement of 100 kg N ha?1 of urea (Urea), 100-day type coated urea (CU-100), and calcium cyanamide (CaCN2) treatments were applied at the depth of 20 cm. In the IPP method, a significantly higher seed yield was obtained with the deep placement of CaCN2 and CU-100 compared with the Urea and Control treatments. A similar tendency was observed for the DT and NIPP methods. Among the same N fertilizer treatments, the seed yield for IPP and DT tended to exceed that for NIPP, although the NIPP roots also showed nodulation probably due to infection with indigenous bradyrhizobia. The percentage of nitrogen derived from atmospheric N2 estimated by the simple relative ureide method was higher in the plants with CU-100 and CaCN2 compared with those with the Urea and Control treatments at the RI stage, suggesting that the basal deep placement of CaCN2 or CU-100 for soybean cultivation enabled the supply of N without concomitant depression of N2 fixation. Thus the deep placement of cheaper CaCN2 was found to be as effective as that of CU-100 for enhancing the soybean seed yield.  相似文献   

15.
To link Chinese soybean classification with the world soybean maturity group system suggested by American researchers, 264 soybean landraces from China and 48 varieties of 13 soybean maturity groups from the United States (US) were tested under the natural and extended day-length at Nanjing, China. Based on comparing Chinese with the US soybeans in days to maturity, Chinese soybean landraces were classified into maturity group (MG) 000, 00, 0, I, II,..., IX, which only MG X might not exist in China. Chinese soybean landraces in each of MG 0, I, II and III revealed large variation in days to flowering and were almost grown in all eco-regions in China. These four maturity groups were further divided into eight sub-groups according to the variation in days to flowering and geographical distribution of soybeans of the same maturity group. The geographic distribution of soybean maturity groups in China was also presented in this paper. This study should be significant for soybean researchers in the world to understand the whole feature of Chinese soybean landraces germplasm.  相似文献   

16.
Several commercial fungicide seed treatments were evaluated for their possible effect on the survival of Bradyrhizobium japonicum on seeds and on the nodulation and yield of soybeans in a greenhouse and a field experiment. quinolate Pro (carbendazim and oxine copper), Vitavax 200FF (carboxin and thiram), and Monceren (pencycuron) had a small effect or no effect on the survival of B. japonicum and on the nodulation and yield of soybeans. They can thus be considered compatible with soybean seed inoculation. Germipro UFB (carbendazim and iprodione), Apron 35J (metalaxyl), and Tachigaren (hymexazol) decreased B. japonicum survival and the nodulation and yield of soybeans and thus cannot be considered compatible with soybean seed inoculation.  相似文献   

17.
Summary Differences between isogenic uptake hydrogenase (HUP) mutants of Bradyrhizobium japonicum in terms of nodule efficiency, N2 fixation and N incorporation into various plant parts were studied in a monoxenic greenhouse experiment in order to confirm previous results with soybeans and beans inoculated with various HUP+ and HUP strains. The HUP+ revertant PJ17-1 of a HUP mutant (PJ17) of strain USDA DES 122 showed a completely restored relative efficiency (100% versus 78±2% for the HUP mutant), higher nodule efficiency (N2 fixed per g nodules), higher ureide-N transport rates, higher N contents in pods and higher N harvest indices. All these observations confirm previous experiments with HUP+ and HUP strains.  相似文献   

18.
In the present study, the influence of S supply on S concentrations, N2 fixation, available amounts of glucose and adenylates of Vicia faba minor L. were weekly investigated, starting 6 weeks after sowing. Glucose was determined photometrically in shoots, roots and nodules and in ATP, ADP and AMP by bioluminescence in roots, mitochondria and bacteroids. Sulphur deficiency resulted in significantly lower S concentrations of shoots, roots and nodules, in a reduced N2 fixation as well as in significantly lower amounts of glucose in shoots and nodules. In roots and bacteroids, S deficiency resulted in lower ATP concentrations, while the influence of S supply on ADP and AMP was less pronounced. With optimum S supply, the available amounts of glucose and ATP were strongly influenced by flower formation and seed development. Dedicated to Prof. Dr. Dr. h.c. W. Werner on the occasion of his 75th birthday.  相似文献   

19.
A pot experiment was conducted to investigate the effect of growing soybean on N2O emission from soil. When soybean was growing in pots, the cumulative N2O emission during the growing season was 2.26 mg N pot−1, which was 5.9 times greater than that from the identical but unplanted pots (CK). However, the difference in N2O fluxes between the two treatments was not significant until the grain-filling stage. Of the total N2O emission, 94% took place during the period from grain-filling to ripening. Premature harvesting of the aerial parts of the plants at various growth stages substantially stimulated N2O emission from the soil. These results implied that the process of symbiotic N fixation per se does not stimulate N2O production or emission, but rather senescence and decomposition of the roots and nodules in the late growth stage. Therefore, additional N2O would be emitted from the soil after harvesting of soybean with roots, litter, and residues left in situ.  相似文献   

20.
Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. Williams. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号