首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss on ignition (LOI) is one of the most widely used methods for measuring organic matter content in soils but does not have a universal standard protocol. A large number of factors may influence its accuracy, such as furnace type, sample mass, duration and temperature of ignition and clay content of samples. We conducted a series of experiments to quantify these effects, which enabled us to derive (i) guidelines for ignition conditions (sample mass, duration and temperature), (ii) temperature‐specific soil organic matter (SOM) to soil organic carbon (SOC) conversion factors and (iii) clay content‐dependent correction factors for structural water loss (SWL). Bulk samples of a sandy soil (4% clay) and a silt loam soil (25% clay) were used to evaluate the effects of ignition conditions. Samples with a range of clay contents (0–50%) were used to quantify conversion and correction factors. Two furnaces, one without and one with pre‐heated air, did not show significant differences in terms of within‐batch LOI variability. In both furnaces less combustion occurred close to the door, which necessitated tray turning at half‐time as this reduced the standard deviation per batch significantly. Variation in mass loss declined exponentially with sample mass (range, 0.15–20 g). The LOI increased with duration at lower temperatures (≤ 550°C) for the sandy soil. At greater temperatures (600 and 650°C), no effect of duration was found. For the silt loam soil, LOI values increased with duration for each temperature, which was attributed to SWL. The SOM to SOC conversion factor decreased strongly with temperature at an ignition duration of 3 hours from 0.70 (350°C) to 0.57 (500°C) and stabilized around 0.55 between 550 and 650°C, indicating that at temperatures ≥ 550°C all SOM had been removed. The clay correction factor for SWL increased from 0.01 to 0.09 as the temperature of ignition increased from 350 to 650°C. To minimize within‐batch LOI variation we recommend a standard ignition duration of 3 hours, tray turning at half‐time, a sample mass ≥ 20 g and temperatures equal to or greater than 550 °C. To avoid over‐estimates of SOM through structural water loss, the presented SWL correction procedure should always be applied.  相似文献   

2.
Soil respiration (CO2 evolution), soil temperature (1 dm) and water content (0–1dm) were determined over a 2 yr period in a grassland soil of the arid shrub-steppe. Respiration was due primarily to decomposition of plant roots by soil organisms. Although respiration rate was generally limited by soil temperature in the fall, winter and early spring and by soil water content in the late spring and summer, temperature and water content were interdependent in their effects on soil respiration rate. Soil organisms responded to changes in soil temperatures at water contents as low as 1–2 per cent (106-88 bar suction). Above approximately 6° C, increased soil water content resulted in increased soil respiration rate. but the extent of the increase was non-linear and dependent upon soil temperature. Respiration rate approached a maximum at soil water contents of 6–10 per cent (35-13 bar suction) depending upon soil temperature and was generally optimum at temperatures above 15° C. The mutual regulation of soil respiration rate by temperature and moisture during this study was best described by a soil temperature-water interaction or multiplicative term, and regression equations which included this term served to accurately predict seasonal changes in soil respiration rate. Using a simple regression equation which included only the interaction term, it was possible to account for 70 per cent of the total variation in soil respiration rate during the monitoring period.  相似文献   

3.
Effect of temperature on the breakdown of dicyandiamide in the soil The breakdown of dicyandiamide in a soil (sandy silty loam, pH 6.2, 0.13 % N) was investigated in relation to temperature. 1. The rate of conversion of dicyandiamide (DCD) (20 mg DCD-N/100 g soil) to guanylurea increased with rising temperature (10°–90°C). After 20 days, 14–100 % of the added DCD was metabolized. Small amounts of DCD (0.67 resp. 1.34 mg DCD-N/100 g soil) were broken down completely within 20–80 days at 8°–20°C. 2. Guanylurea was transformed to guanidine and then to ammonium. Increasing temperature in the region of 10° and 30°C accelerated the transformation. At higher temperatures (up to 70°C) an accumulation of guanidine occurred.  相似文献   

4.
Blue grama (Bouteloua gracilis (H.B.K.) Lag.) was grown at day (14 h) and night temperatures of 25° and 15°C, respectively, in a 14CO2-atmosphere during the last 31 of the 55 days from germination to seed set (period 1). An air-tight seal separated the shoot and root spheres. This period was followed by 21 days of a 14°C day (10 h) and 38°C night regime, and 29 days of continuous ?5°C (period 2), and 26 days of the original temperature and light conditions (period 3). Distribution of the assimilated 14C at the end of period 1 was: roots 33%; root-derived organic matter in the soil 23%; and 22% was released as CO2. The washed root mass to root-derived soil organic matter ratio of the labelled 14C was 60 to 40. A root mass decrease of 45% over the cool and frost period changed this ratio to 23 to 77. Polysaccharides and 0.1 n NaOH-extractable organic matter decreased while potential dehydrogenase activity and total organic P increased during this same period, thereby confirming field related observations. Measured dehydrogenase activity overwinter may have two different origins. As total C content of the soil did not increase under the conditions of the experiment, it was postulated that a portion of the observed increase in total C in the field overwinter was of inorganic rather than organic origin.  相似文献   

5.
The compost media biofilter is one of the most important biological processes applied to treat waste gases. Research on a pilot-scale compost media biofilter treatment of volatile organic compounds (VOCs) was performed. The volume of biofilter media was 4.3 m3 and the biofilter operated for 57 days. Fluctuation of water content in the biofilter media was investigated. With continuous switching of air flow direction, the water content of the biofilter media could be managed without any addition of exterior water. The range of average temperature of each stage measured between 18°C to 73°C. When the air flow direction switched from upward to downward, temperatures of lower stages increased and temperatures of upper stages decreased. Temperatures of one side of the media were usually higher than those of the opposite side at the same depth. Compost has the advantages of different types of nutrients present in the media. With the compost media, the removal efficiency of the biofilter could be maintained at more than 99% for the experimental period.  相似文献   

6.
Soil respiration, nitrogen mineralization and humus decomposition of East African soils after drying and remoistening Soil respiration and nitrogen mineralization of 51 East African cultivated, savanna and forest soils were compared after 3 and 21 weeks of air drying. The average soil respiration after 21 weeks of drying was 1.221 ± 0.106 times higher than that after 3 weeks of drying whereas the average nitrogen mineralization was not increased significantly (factor 1.132 ± 0.256). The increase in soil respiration was correlated positively with the water soluble organic matter. During air dryings of 3 days and moist incubations of 4 days at 30°C, which were repeated 20 times in 10 soils, 3–10% of the organic carbon and 8–19% of the organic nitrogen (low humus vertisol 69%) were mineralized. Changes in the amount and the extinction of humic and fulvic acids were considered to be indicative for an increased humification during the drying and remoistening of soils.  相似文献   

7.
The impact of organic fertilization and the level of mineral nitrogen fertilization on organic nitrogen and humus balance was studied in a long-term field experiment IOSDV Jable in central Slovenia (sub-Alpine climate, average annual precipitations 1345 mm, average annual temperature 9.5°C, heavy hydromorphic silty loam, umbric Planosols). During the period 1993–2010, precipitation increased significantly at an average rate of 19 mm a?1; over the same period, average annual temperature increased by 0.025°C (l.f.). The increase in annual precipitation had a negative impact on the yield of all crops (maize, wheat and oats). Increases in mineral N rate led to increased yields. At the highest mineral nitrogen rate, farmyard manure (FYM) did not have a positive impact on yield in the investigated crops, although there was a positive effect of straw incorporation on the yield of maize and oats, and a negative impact on the yield of winter wheat. The organic carbon (Corg) level in the soil increased for all treatments, including FYM or straw and mineral N fertilization. The N content in the soil decreased in the treatment with no organic fertilization and no mineral N, and in the treatment with straw and no mineral N. Corg was increased in treatments with organic fertilization and the highest N rates and remained the same in treatments with moderate N fertilization. All C balances were negative.  相似文献   

8.
以甘南尕海4种不同退化程度的湿地(未退化(UD)、轻度退化(LD)、中度退化(MD)及重度退化(HD))为研究对象,采用室内5 ℃、15 ℃、25 ℃、35 ℃ 培养法,测定不同土层 SOC 矿化速率和累积矿化量,运用一级动力学方程对土壤的半矿化分解时间(T1/2)、有机碳矿化潜势(C0)等参数进行拟合,分析温度、土壤深度和退化程度对土壤碳矿化过程的影响。结果表明:(1)在不同土层、不同温度下,各植被退化程度湿地土壤有机碳 CO2 释放量在整个培养期间大致可以分三个阶段,0-4 d快速生成 CO2 阶段,4-27 d缓慢生成 CO2 阶段,27-41 d平稳阶段;0-10 cm 土层各培养温度下,土壤有机碳矿化速率表现为UD>LD>MD>HD。(2)培养期间,不同退化湿地土壤有机碳矿化速率均随土层加深而降低,表层 0-10 cm的矿化速率(1.14~16.23 mg/(g?d))均显著高于10-20 cm(1.05~2.85 mg/(g?d))和20-40 cm(0.94~1.26 mg/(g?d))土层。(3)整个培养期内,不同退化湿地土壤有机碳总累积矿化量排序为5 ℃(34.54 mg/g)、15 ℃(46.67 mg/g)、25 ℃(58.28 mg/g)和35 ℃(86.46 mg/g)。(4)双库一级动力学方程的C0值随退化程度增加呈递减趋势,而C0/SOC随着温度的升高而降低。  相似文献   

9.
Soil aquifer treatment (SAT) is a cost-effective natural wastewater treatment and reuse technology. It is an environmentally friendly technology that does not require chemical usage and is applicable to both developing and developed countries. However, the presence of organic matter, nutrients, and pathogens poses a major health threat to the population exposed to partially treated wastewater or reclaimed water through SAT. Laboratory-based soil column and batch experiments simulating SAT were conducted to examine the influence of temperature variation and oxidation?Creduction (redox) conditions on removal of bulk organic matter, nutrients, and indicator microorganisms using primary effluent. While an average dissolved organic carbon (DOC) removal of 17.7?% was achieved in soil columns at 5?°C, removal at higher temperatures increased by 10?% increments with increase in temperature by 5?°C over the range of 15 to 25?°C. Furthermore, soil column and batch experiments conducted under different redox conditions revealed higher DOC removal in aerobic (oxic) experiments compared to anoxic experiments. Aerobic soil columns exhibited DOC removal 15?% higher than that achieved in the anoxic columns, while aerobic batch showed DOC removal 7.8?% higher than the corresponding anoxic batch experiments. Ammonium-nitrogen removal greater than 99?% was observed at 20 and 25?°C, while 89.7?% was removed at 15?°C, but the removal substantially decreased to 8.8?% at 5?°C. While ammonium-nitrogen was attenuated by 99.9?% in aerobic batch reactors carried out at room temperature, anoxic experiments under similar conditions revealed 12.1?% ammonium-nitrogen reduction, corresponding to increase in nitrate-nitrogen and decrease in sulfate concentration.  相似文献   

10.
Most of the carbon (C) in terrestrial ecosystems is stored in the mineral soil layers. Thus, the response of the mineral soil to potential increases in temperature is crucial for the prediction of the impact of climate change on terrestrial ecosystems. Samples from three mineral soil layers were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated at four temperatures (4, 10, 20 and 30°C) for c. 270 days. Carbon mineralization rates were related to soil and site characteristics. Soil water holding capacity, C content, nitrogen (N) content and organic matter all decreased with soil depth at all sites, with significantly larger amounts of organic matter, C and N in the top 0–5 cm of mineral soil than in the deeper layers. The conifer forest soils had significantly lower pH, higher C/N ratios and carbon contents in the top 5 cm than the broadleaf forest soils. Carbon mineralization rates decreased with soil depth and time at all sites but increased with temperature, with the highest rates measured at 30°C for all sites. Between 50 and 70% of the total C respired after 270 days of incubation came from the top 5 cm. The percentage C loss was small in all cases, ranging from 1 to 10%. A two‐compartment model was fitted to all data to derive the labile/active and slow/recalcitrant fractions, as well as their decomposition constants. Although the labile fraction was small in all cases, we found significantly larger amounts of labile C in the broadleaf forest soils than in the conifer forest soils. No statistically significant differences were found in the temperature sensitivity parameter Q10 among sites, soil layers or between conifer and broadleaf soils. The average Q10 for all soils was 2.98 (± 0.10). We found that despite large differences among sites, C mineralization can be successfully predicted as a combined function of site leaf area index, mean annual temperature and content of labile carbon in the soil (R2 = 0.93).  相似文献   

11.
Establishment of vesicular-arbuscular mycorrhizal fungi in plant roots involves a pre-infection phase of propagule germination, hyphal growth and appressorium formation, followed by growth of the fungus within the root. The effect of soil temperature on the pre-infection stage was examined by counting the numbers of fungal “entry-points” on the main roots of Medicago truncatula and Trifolium subterraneum, grown at soil temperatures of 12°, 16°, 20° and 25°C for periods up to 12 days. Increased root temperature was positively associated with increased numbers of “entry-points”. This effect was more marked between 12° and 16°C than at higher temperatures, as shown by comparing plants at the same stage of development (emergence of spade leaf) and by calculating the results as entry points per cm root.The first root nodules appeared sooner at higher temperatures (20° and 25°), but subsequent development of nodules (measured as nodule number and aggregate volume of nodules per plant, up to 21 days) was best at 16°C for both host Rhizobium combinations in non-sterile and autoclaved soil. There was no evidence that competition between mycorrhizal fungi and Rhizobium for infection sites occurred.A method of obtaining numbers of infective propagules of vesicular-arbuscular mycorrhizal fungi in soil is described.  相似文献   

12.
基于室内模拟培养试验,研究改良剂(生物质炭、过氧化钙)对旱地红壤微生物量碳、氮及可溶性有机碳、氮的影响。试验设置4个处理,即CK、Ca(过氧化钙,1.72g/kg)、C(生物质炭,21.46g/kg)、C+Ca。结果表明:各处理土壤微生物量碳、氮以及可溶性有机碳具有相同的变化趋势,即前期(3d内)都增加较快,在第3天达到最大值,随试验进行有所下降,配施效果优于单施。各处理可溶性有机氮在21d内缓慢增加;第21天时,C+Ca、Ca、C相比CK分别显著增加了62.1%,55.5%,40.9%;35d以后,配施(C+Ca)与单施过氧化钙(Ca)的效果显著优于单施生物质炭(C)和对照(CK)。120d培养期内,配施(C+Ca)处理能够明显提高微生物量碳、氮以及可溶性有机碳、氮的平均含量;微生物量碳的平均含量大小顺序为C+CaCCKCa,微生物量氮的平均含量C+Ca处理显著高于其他处理;可溶性有机碳的平均含量大小顺序为C+CaCaCCK,可溶性有机氮的平均含量C+Ca、Ca处理显著高于CK、C处理。微生物量碳、氮以及可溶性有机碳之间互为极显著正相关(P0.01),而微生物量碳与可溶性有机氮之间呈极显著负相关。因此,生物质炭和过氧化钙能有效提高旱地红壤微生物量碳、氮及可溶性有机碳、氮,且生物质炭与过氧化钙配合施用更有助于土壤改良。  相似文献   

13.
ABSTRACT

Addition of more resistant organic materials, such as biochars, to soils not only enhances soil C sequestration but also can also benefit soil fertility. The aim of this study was to investigate the effect of two organic materials (sheep manure and vermicompost) and their biochars produced at two pyrolysis temperatures (300 and 500°C) applied at 5% (w/w) on the chemical fractions of Zn and Cu and some chemical characteristics of an unpolluted, light textured calcareous soil. Addition of the raw organic materials and their-derived biochars significantly enhanced plant available K, P, and Zn but significantly decreased plant available Cu in the soil. Sheep manure biochar produced at 300°C was most effective at increasing plant available P (13-fold) and K (1.9 fold) likely due to formation of more soluble forms of P and K compared to raw material or biochar produced at higher temperature (500°C). Whereas, raw vermicompost and sheep manure were most effective at enhancing plant available Zn, by increasing water soluble and exchangeable Zn fraction likely due to organic complexation. All amendments, especially biochars produced at 300°C reduced water soluble and exchangeable Cu mainly attributed to increased soil P availability. The results of this study showed that in the short-term, addition of the low-temperature biochars was best for enhancing soil P and K availability, but concomitantly reduced Cu availability the most, whereas, addition of the raw organic materials was better for enhancing Zn availability compared to the biochars.  相似文献   

14.
Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.  相似文献   

15.
Biochar application has the potential to improve soil fertility and increase soil carbon stock, especially in tropical regions. Information on the temperature sensitivity of carbon dioxide(CO_2) evolution from biochar-amended soils at very high temperatures, as observed for tropical surface soils, is limited but urgently needed for the development of region-specific biochar management targeted to optimize biochar effects on soil functions. Here, we investigated the temperature sensitivity of soil respiration to the addition of different rates of Miscanthus biochar(0, 6.25, 12.5, and 25 Mg ha~(-1)) in two types of soils with contrasting textures. Biochar-amended soil treatments and their controls were incubated at constant temperatures of 20, 30, and 40℃. Overall, our results show that: i) considering data from all treatments and temperatures, the addition of biochar decreased soil CO_2 emissions when compared to untreated soils;ii) CO_2 emissions from biochar-amended soils had a higher temperature sensitivity than those from biochar-free soils; iii) the temperature sensitivity of soil respiration in sandy soils was higher than that in clay soils; and iv) for clay soils, relative increases in soil CO_2 emissions from biochar-amended soils were higher when the temperature increased from 30 to 40℃, while for sandy soils, the highest temperature responses of soil respiration were observed when increasing the temperature from 20 to 30℃. Together, these findings suggest a significantly reduced potential to increase soil organic carbon stocks when Miscanthus biochar is applied to tropical soils at high surface temperatures, which could be counteracted by the soil-and weather-specific timing of biochar application.  相似文献   

16.
This study was conducted to investigate the effects of poultry manure (PM) and its derived biochars on chemical properties of a calcareous soil. PM and biochars prepared at 200°C (B200), 300°C (B300) and 400°C (B400) were applied to a calcareous soil at 2% level (w/w) and incubated for 150 days. Selected soil chemical properties and phosphorous, potassium, iron, manganese, zinc and copper availability and recovery were determined at 1, 15, 45 and 150 days of incubation. Soil nutrients availability, organic carbon (OC), electrical conductivity (EC) and cation exchange capacity (CEC) increased by addition of all organic substances. Biochars prepared at higher temperatures were more effective in increasing soil OC with higher durability compared to other treatments. The addition of PM and B200 decreased soil pH, whereas B400 increased it. Although the highest soil EC was observed in B300- and B400-treated samples in the early stages of incubation, the rate of increase in soil EC was higher for PM- and B200-treated soils compared to other treatments. It was concluded that biochar prepared at 300°C had the highest positive effect on nutrients availability and lasts longer in calcareous soil compared to the other produced biochars and PM.  相似文献   

17.
Abstract

Column experiments were conducted to analyze the effect of the temperature on the amounts of organic materials in the leachate, especially organic acids and methane, from samples of the plow layer soil amended with rice straw. Total amount of inorganic carbon in the leachate during the 30-d period of incubation in relation to the temperature was 18°C < 25°C ≤ 30°C > 37°C > 45°C. Total amount of organic carbon in the leachate was signiicantly larger under 45°C incubation than that at other temperatures.

Acetic acid was the dominant organic acid in the leachate regardless of the temperature. Butylic and propionic acids were also present in large amounts in the early and the late period of incubation of temperatures ranging between 18 and 37°C, while only acetic acid was the dominant organic acid during the 30-d period of incubation at 45°C.

The total amount of methane in leachate during the 30-d period of incubation was very small at 18°C, while very large at 25, 30, and 37°C. It decreased nearly to one half at 45°C compared with that at 30°C. Based on the values of δ13CH4 in the leachate, 3 different stages were recognized in the predominant processes of methane production in the submerged paddy soil amended with rice straw: the stage when methane production from CO2-B2 was predominant followed by the stages of methane production from acetic acid and from CO2-H2 in this order. The second stage coincided with the time of decrease of the organic acid contents in the leachate. Under 45°C incubation, methane production from CO2-H2 was predominant throughout the 30-d period of incubation.  相似文献   

18.
《Geoderma》1986,37(2):149-155
Soil temperature regimes of Cameroon were estimated from the relationships between mean annual air temperature (MAAT) and mean annual soil temperature (MAST) and their seasonal fluctuations. In the normal range of MAAT in Cameroon (20–30°C), the MAST is 2.3° to 2.6°C higher than the MAAT. The difference between mean summer (MSST) and mean winter soil temperatures (MWST) being always less than 5°C, only isotemperature regimes occur in Cameroon. We estimated that MAST decreases by 0.46°C per 100 m increase in altitude.A provisional soil temperature regime map has been prepared from the estimates, which indicates isohyperthermic temperature regimes as predominant in Cameroon. Isothermic regimes are believed to occur above 1,600 m altitude and isomesic regimes probably above 3,100 m altitude on Mount Cameroon.  相似文献   

19.
Influence of soil characteristics, agricultural use and soil temperature on the N-mobilization of cultivated soils A new N-mobilization model, which considers also the short term and seasonal N-supplying capacity of soil is presented. At a fixed time the potential mobilizable N (N-MOB) is a sum of difficultly mobilizable N (N-MOBs) originating from the pool of difficultly mobilizable N (Ns) and the easily mobilizable N (N-MOB1) originating from the pool of easily mobilizable N (N1). It is possible to characterize soil according to their M1, N-MOBs and v (N-MOBs per day) values. Usefulness of these parameters in N-nutrition and ground water burden from N has been discussed. Basic parameters of this model have been experimentally determined independently with the help of two different experiments i. e. laboratory incubation and column lysimeter using surface soil samples. The easily mobilizable N pool (N1) values were found in the range of 142 to 814 kg N ha?1 which corresponded to 1.2 to 7.4 % of organic N content of these soils. The difficultly mobilizable N per day (i. e. v = N-MOBs per day) in an incubation experiment (35°C) were found in the range of 1.5 to 24kg N ha?1. However, in the column lysimeter experiment, in contrast, these values at 10°C ranged between 0.05 to 0.9 kg N ha?1. These values correspond to N-MOBs values in the range of 11–182 kg N·ha?1 for a period of 200 days which approximate to a vegetation period. For practical purposes, the N1 and v values could be calculated by just measuring 3–4 points after 14 days of incubation at 35°C. The results show that N-MOBs values strongly correlated compared to N1 values to total N, organic carbon and clay content and non significantly to pH and silt content. The results of an laboratory incubation experiment carried out to assess the effect of temperature on N-mobilization show that even at 0°C there was N-mobilization. The results revealed that in the temperature range of 0–8°C (a range of soil temp. usually observed in winter months) and in the range of 25–40°C (range of summer months temp. for surface arable soil), a small change in the soil temperature would result in enormous increase in the quantity of mobilized N. The highest mobilized N quantity was found above 60°C.  相似文献   

20.
Understanding the temperature sensitivity of soil organic matter (SOM) decomposition is important to predict the response of soil carbon (C) dynamics to projected global warming. There is no consensus, however, as to whether or not the decomposition of recalcitrant soil C is as sensitive to temperature as is that of labile soil C. Soil C is stabilized by three mechanisms: chemical recalcitrance, mineral interaction and physical accessibility. We used artificial soils with controlled compositions to assess the effects of chemical recalcitrance (cellulose compared with lignin) and clay‐mineral composition with montmorillonite (M) or kaolinite (K) on the decomposition of model organic compounds at 2, 12, 22 and 32°C. When only substrate composition was varied, the presence of cellulose enhanced the decomposition rate of lignin. Treatments with relatively large amounts of cellulose were very sensitive to temperature only at low temperatures (2–12°C), whereas treatments with relatively large amounts of lignin had similar temperature sensitivities at all temperatures. When only clay‐mineral composition was varied, CO2 production rates were greatest in soils containing kaolinite‐montmorillonite mixtures (10% K:20% M) and least in soils containing kaolinite only at temperatures ≥12°C. Clay mixtures and pure montmorillonite treatments had their greatest temperature sensitivities at 2–12°C, whereas pure kaolinite treatments had the greatest temperature sensitivities at 12–22°C. Temperature sensitivities at the highest temperatures (22–32°C) were all small (Q10 < 1.1 on days 30 and 140). Artificial soils with controlled but flexible compositions may serve as simple and useful models for evaluating SOM dynamics with a minimum of confounding factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号