首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experiment was conducted for two years, 2004–5 and 2005–6 during July–March at the research farm of the Central Institute of Medicinal and Aromatic Plants, Lucknow to study the compatibility, productivity and economics of intercropping in safed musli (Chlorophytum borivilianum Santapau & Fernandes). Vegetable crops viz cowpea, okra and bottle gourd, maize for grain, long duration pigeon pea, sweet basil in first year at their full and half population were intercropped with full population of safed musli in additive series. In the second year okra and sweet basil were replaced by lablab bean and sacred basil, respectively. Results of two years' experiments showed that intercropping of pigeon pea and bottle gourd with musli were advantageous in terms of overall yield, land equivalent ratio (LER), monetary advantage and economic return. The most appropriate combinations to realize the maximum advantage from intercropping were half plant population of bottle gourd grown at 100 × 100 cm or 120 × 90 cm spacing and pigeon pea grown at 120 × 20 cm spacing with musli. These combinations gave additional yield of 49.82 t ha?1of bottle gourd and 6.51 t ha?1 grain of pigeon pea (2-year mean) without significantly reducing the root yield of musli.  相似文献   

2.
A field experiment was conducted during the (rabi) seasons of 2009–2010 and 2010–2011 at the research farm, Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, to find out the suitable row ratio of Indian mustard (Brassica juncea L.) intercropping with wheat (1:9, 2:9, 1:6, 2:6) and lentil (1:4, 1:5, 2:4, 2:5) row ratios, respectively. The highest yield attributes of mustard were recorded with mustard + lentil (2:5), which was significantly superior to mustard + wheat (1:9) and mustard + lentil (1:5). Maximum seed yield and stover yield of mustard was recorded with mustard + lentil (2:4), which was being significant over other row ratios of mustard + wheat (1:6, 1:9, 2:9) but was at par with mustard + lentil (1:5) and mustard + wheat (2:6) row ratios. Mustard equivalent yield (3128 kg ha?1) recorded under intercropping of mustard with wheat in 1:9 row ratio was significantly higher than sole cropping of mustard, wheat, and lentil, and other remaining intercropping systems. Intercropping of mustard with wheat in 1:9 row ratio showed the highest land equivalent ratio (1.51), aggressivity index (+0.15), net return (60,468 Rs ha?1), and benefit:cost ratio (4.3) among all other intercropping treatments.  相似文献   

3.
ABSTRACT

A study was conducted from 2014 to 2017 in Malawi to elucidate the short-term effects of maize-legume intercropping and rotation systems under conservation agriculture (CA) and conventional tillage (CT) on crop productivity and profitability. Twelve farmers hosted on-farm trials per district, in three districts, with each farmer having six plots. The design of the study was randomised complete block design arranged in a split plot fashion with tillage as main plot and cropping systems as sub-plots, with each farmer acting as a replicate. CA had 1400 and 3200 kg ha?1 more maize grain yield in the second and third seasons, respectively compared with CT. In the first two seasons, CT had 310, 180 and 270 kg ha?1 more cowpea, soybean and pigeon pea grain yields in Salima, Mzimba and Mangochi districts, respectively, compared with CA. Similarly, CA had 1100 and 950 kg ha?1 more groundnut grain yields than CT in Salima and Mzimba districts in the second and third seasons, respectively. Over the three-year study period, partial land equivalent ratio for maize ranged from 0.78 to 1.24. Largest net returns were achieved by intercropping maize with pigeon pea in Mangochi and rotating maize and groundnut in Mzimba and Salima districts.  相似文献   

4.
ABSTRACT

Uncertainties exist about the importance of rhizobia inoculant and starter nitrogen (N) application in dry pea (Pisum sativum L.) production. Three field experiments were conducted to evaluate how rhizobia inoculant and starter N fertilizer affect pea seed yield and protein concentration in a semi-arid environment in central Montana. Commercial rhizobia inoculant was mixed with seed prior to planting at the manufacturer’s recommended rate. Starter N fertilizers were applied into the same furrow as seed at 0, 22, 44 and 88 kg ha?1 as urea, slow-release polymer-coated N fertilizer (ESN), and a combination of both. The application of rhizobia inoculant had no or a very small beneficial effect on pea yield in lands with a previous history of peas. In a land without pea history, application of rhizobia increased pea seed yield by 16%. The positive effect of starter N was only pronounced when initial soil N was low (≤ 10 kg ha?1 nitrate-nitrogen), which increased net return by up to US$ 42 ha?1. In this condition, application of slow-release N outperformed urea. However, application of starter N (especially with urea) had a negative effect on pea establishment, vigor and seed yield when soil initial N was high (≥ 44 kg ha?1 NO3-N). The results indicate that the rate, placement and form of the starter N must be optimized to benefit pea yield and protein without detrimental effects on germination and nodulation. Moreover, application of starter N must be guided by the soil nitrate content.  相似文献   

5.
A long-term field experiment was conducted at the research farm of the All-India Coordinated Research Project for Dryland Agriculture, Phulbani, Orissa, India, from 2001 to 2006 to identify the best integrated nutrient-use treatments for ensuring greater productivity, profitability, sustainability, and improved soil quality in pigeon pea + rice (two rows of pigeon pea followed by five rows of rice alternately) intercropping system. In all, nine treatments, eight comprising integrated nutrient-use practices, chemical fertilizer (CF), farmyard manure (FYM), and green leaf manure (GLM) to supply nitrogen (N) at 45 kg N ha–1 and one farmer's practice equivalent to 25 kg N ha–1 (FYM 5 t ha–1), were tested on a long-term basis. Results of the study revealed that 20 kg N ha–1 (FYM) + 25 kg N (CF) gave maximum mean rice grain yield of 1.52 t ha–1, followed by 20 kg N (GLM) + 25 kg N (urea) with grain yield of 1.51 t ha–1. In the case of pigeon pea, 30 kg N (FYM) +15 kg N (urea) gave maximum pigeon pea grain yield of 0.94 t ha–1, which was 34% greater than the sole application of chemical fertilizer. Pigeon pea grain yield tended to increase with increasing proportion of organic N in FYM + CF or GLM + CF combinations. Application of 20 kg N (FYM) + 25 kg N (urea) recorded maximum mean rice equivalent yield of 3.59 t ha–1 and sustainability yield index of 59%. While studying profitability, application of 20 kg N (FYM) + 25 kg N (CF) gave maximum net returns of US$168.94 ha–1. Impact of treatments on soil quality as assessed in terms of relative soil quality indices (RSQI) increased with increasing proportion of organic sources of N. Using an innovative and new approach, an index of integrated productivity–sustainability–profitability–soil quality performance index (I P,S,Pr,SQ) was computed to make a precise evaluation of the treatments. Based on this index, the order of performance of the treatments was T6 [20 N (FYM) + 25 N (CF)] (7.7) > T7 [30 N (FYM) + 15 N (CF) (6.9)] > T3 [20 N (GL) + 25 N (CF)] (6.8) > T5 [10 N (FYM) + 35 N (CF) (6.6)] > T9 [GL] (6.5) > T8 [CF] (6.2) > T4 [30 N (GL) + 15 N (CF)] (6.0) > T2 [10 N (GL) + 35 N (CF)] (5.7) > T1 [FYM at 5 t ha–1] (4.1). Thus, the results and the methodology adopted in this study using long-term data would be very useful to researchers, farmers, land managers, and other stakeholders not only in India but also across the world under similar climatic and edaphic situations.  相似文献   

6.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on the yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore, a field trial was carried out in Peshawar, Pakistan, during the winters in 2012–2013. The field experiment was conducted in a randomized complete block design with split plots, having three replications. Fertilizer treatments (control, composted manure Higo Organic Plus at 5 t ha?1, Maxicrop Sea Gold seaweed extract at 5 L ha?1, farm yard manure at 10 t ha?1, inorganic nitrogen–phosphorus (NP) at 90:60 kg ha?1, NP at 120:90 kg ha?1 and NP at 150:120 kg ha?1) were allotted to main plots, while genotypes (Sandrina, Serenada and Kawe Terma) were allotted to the sub-plots. Plots treated with the application of NP at 120:90 kg ha?1 produced the highest beet yield (76.4 t ha?1) and sugar yield (11.1 t ha?1), and had the second highest polarizable sugar content (14.52%) and more economic return (Rs. 553,000 per hectare) as compared to control plots. Sugar beet genotype Serenada had significantly higher beet yield (55.5 t ha?1) and sugar yield (7.9 t ha?1) and a higher economic return (Rs. 380,000 per hectare) than the other genotypes. Sugar beet genotype Serenada supplied with NP at 120:90 kg ha?1is recommended for the general cultivation in the agro-climatic conditions of Peshawar valley.  相似文献   

7.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   

8.
A field experiment in a split-plot design with three replications was conducted on wheat + compact-mustard intercropping in a 5:1 row proportion at the research farm, Institute of Agricultural Sciences, Banaras Hindu University, India, during the winter seasons of 2005.–2006 and 2006.–2007. The main plot treatment involved a combination of three fertilizer doses [100, 120 and 140% recommended fertilizer dose (RFD) to wheat, accompanied by 100% RFD to mustard] and two wheat varieties (HD-2824 and HUW-468); the subplot treatment consisted of three seed rates of wheat (100, 115 and 130 kg ha?1). The treatment differences were studied intensively in light of the various reciprocity indices. Wheat variety HD-2824 at 115 kg ha?1 seed rate and 140% RFD, intercropped with compact-mustard variety Sanjukta Aschesh at 100% RFD in a 5:1 row proportion, resulted in the best land utilization, maximum productivity and monetary advantage. Among the various yield indices studied, area time equivalent ratio (ATER), competitive ratio (CR) and effective land equivalent ratio (LER) curves were found to be good for comparing the variations in fertilizer doses and seed rates used in wheat varieties. Nevertheless, to compare monetary advantage, the monetary advantage index (MAI) based on LER proved a better index than intercropping advantage (IA), which is based on actual yield loss (AYL).  相似文献   

9.
Mono-cropping is the most common farming practice followed in the North Eastern Hilly Region (NEHR) of India and farmers leave the land fallow after harvesting the main crop. The identification of suitable sequential crops is essential to increase the cropping intensity, land-use efficiency and overall productivity of the land. Therefore, a study was carried out during 2008–09, 2009–10 and 2010–11 on maize (rainy season) followed by table pea, mustard, French bean and groundnut (post rainy season). Sequence crops were imposed with paddy straw mulch at 5.0 t ha?1 and without mulch. The availability of water and moisture retention was higher (p < 0.05) on mulched plots, yield was also higher. However, recorded soil temperature was higher on mulched plots at 08.00 hours and lower at 12.00 and 16.00 hours compared with the no-mulch plots. Recorded maize equivalent yield, production efficiency, economics and total energy use and output (MJ ha?1) were higher for maize–French bean.  相似文献   

10.
A field experiment was conducted during the winter seasons between 2004 and 2006 to assess the role of balanced fertilization and bioregulators (foliar-applied brassinosteroid 0.5 mg I?1, thiourea 1000 mg I?1 and kinetin 10 mg I?1) in enhancing the productivity of wheat. Conjoint application of NPKSZn (120 kg N, 40 kg P2O5, 30 kg K2O, 40 kg S, 5.5 kg Zn ha?1) recorded maximum improvements in yield attributes and significantly out-yielded all the fertilization treatments with 14.90, 4.97 and 6.39% increments in grain yield compared with NPK, NPKS and NPKZn treatments, respectively. Nutrient (N, P, K, S, Zn) content and uptake were also improved significantly with balanced fertilization. Among the bioregulators, application of 0.50 mg I?1 brassinosteroid recorded maximum increments in grain yield (14.10%), followed by 10 mg I?1 kinetin (12.31%) and 1000 mg I?1 thiourea (9.92%), over control (4.99 t ha?1). Bioregulators significantly enhanced the uptake of nutrients (N, P, K, S, Zn) over control. NPKSZn treatment also gave the maximum net return (Rs. 51,209 ha?1). Among the bioregulators, brassinosteroid provided the maximum net return (Rs. 47,292 ha?1) and benefit:cost (B:C) ratio (3.37) followed by thiourea (Rs. 45,500 ha?1 and 3.35). Kinetin also provided yield advantage, however, it gave a significantly reduced B:C ratio compared with control.  相似文献   

11.
A field experiment with peppermint (Mentha piperita L.) was conducted in a sandy loam (Typic ustifluvent) soil during 2007 and 2008 at Lucknow, India. Ten treatments consisting of control (no synthetic or organic nitrogen fertilization), synthetic nitrogen fertilization (SN) 75, 150 and 225 kg ha?1 alone, vermicompost (VC) 3 t + 37.5 kg SN ha?1, VC 6 t + 75 kg SN ha?1 and VC 9 t + 112.5 kg SN ha?1 and intercropping of one, two and three rows of cowpea for green manuring in combination with 50, 100 and 150 kg SN ha?1, respectively, were evaluated in a randomized block design. Integrated use of VC 9 t with 112.5 kg SN ha?1 produced maximum essential oil (94.3 kg ha?1), increased the herb and essential oil yields by 104 and 89%, respectively, over control and reduced SN use by 50%, without affecting the quality of essential oil. Application of VC and intercropping of cowpea for green manuring significantly improved the organic carbon, available N, P and K content in soil over SN alone. To get sustainable production of peppermint, application of VC 9 t ha?1 along with 112.5 kg N ha?1 through synthetic fertilizer is recommended for light textured sandy loam soils.  相似文献   

12.
The objective of the study was to determine the profitability and employment-generation potential of different cropping systems involving menthol mint (Mentha arvensis L.) as a component of sequential/intercropping in comparison with the most common paddy–wheat–green gram cropping system. Field experiments were conducted at Lucknow, India (26° 5′ N, 80° 5′ E and 120 m above mean sea level) for three years from July 2004 to June 2007. Menthol mint yielded the maximum fresh shoot biomass and essential oil (21.0 t and 151 kg ha?1, respectively) grown after sweet basil (Ocimum basillicum)–potato followed by paddy–potato–menthol mint (18.9 t and 136 kg ha?1, respectively) and maize–mustard–menthol mint (17.7 t and 131 kg ha?1, respectively). Net returns of all the menthol-mint-based cropping systems were 82.6–354% higher than traditional paddy–wheat–green gram cropping system. Maize–garlic–menthol mint + okra was found to be most profitable (77,200 Rs ha?1) followed by pigeon pea + sweet basil–menthol mint + okra (76,120 Rs ha?1). Employment-generation efficiency was much higher in cropping systems involving menthol mint and vegetable crops, the highest (2.21 man days ha?1 day?1) being in a maize–cauliflower–onion–menthol mint + okra cropping system.  相似文献   

13.
The aim of this research was to investigate the spatial distribution of roots and cracks in two clay soils cropped with sunflower under different inter-row spacing in order to identify the optimal management. A latin square experimental design was applied to compare bare soil and soil cropped with sunflower, with three plant densities, obtained by keeping constant the number of plants on the row (3 plants m?1) and varying the row spacing (0.4, 0.6, 0.8 m). The presence of the crop and the different distance between rows influenced soil moisture content as well as the root spatial distribution and thus the structural features of cracks. Increasingly lower values of moisture were found in both soils as the distance between rows decreased; an opposite trend was observed for both root density and crack size. The volume of cracks in the soil grown with sunflower at 0.4 m row spacing was 201.4 m3 ha?1, thus 8 times higher than the value on the bare soil and 2.5 times higher compared to the one grown at 0.8 m between rows. Optimal results in terms of root density, soil moisture and crack size were obtained with an inter-row spacing of 0.6 m.  相似文献   

14.
To establish a national inventory of soil organic carbon (SOC) stocks and their change over time, soil was sampled in 1986, 1997 and 2009 in a Danish nation‐wide 7‐km grid and analysed for SOC content. The average SOC stock in 0–100‐cm depth soil was 142 t C ha?1, with 63, 41 and 38 t C ha?1 in the 0–25, 25–50 and 50–100 cm depths, respectively. Changes at 0–25 cm were small. During 1986–97, SOC in the 25–50‐cm layer increased in sandy soils while SOC decreased in loam soils. In the subsequent period (1997–2009), most soils showed significant losses of SOC. From 1986 to 2009, SOC at 0–100 cm decreased in loam soils and tended to increase in sandy soils. This trend is ascribed to dairy farms with grass leys being abundant on sandy soils while cereal cropping dominates on loamy soils. A statistical model including soil type, land use and management was applied separately to 0–25, 25–50 and 50–100 cm depths to pinpoint drivers for SOC change. In the 0–25 cm layer, grass leys added 0.95 t C ha?1 year?1 and autumn‐sown crops with straw incorporation added 0.40 t C ha?1 year?1. Cattle manure added 0.21 t C ha?1 year?1. Most interestingly, grass leys contributed 0.58 t C ha?1 year?1 at 25–50 cm, confirming that inventories based only on top‐soils are incomplete. We found no significant effects in 50–100 cm. Our study indicates a small annual loss of 0.2 t C ha?1 from the 0–100 cm soil layer between 1986 and 2009.  相似文献   

15.
Abstract

A field experiment was conducted at Star City (legal location SW6‐45‐16‐W2); Saskatchewan, Canada from May 2000 to June 2000, to measure nitrogen (N) and phosphorus (P) supply rates from fertilizer bands to the seed‐row of canola crop. Ion exchange resin membrane probes (PRSTM) were used to measure N and P supply rates in four treatments [80 kg N ha?1 of urea as side‐row band, 80 kg N ha?1 of urea as mid‐row band, check/no N (side‐row)/P side‐row, check/no N (mid‐row)/seed placed P]. The treatments were arranged in a randomized complete block design with four replications. Two anion and cation exchange resin probes (PRSTM) were placed in each plot in the seed‐row immediately after seeding and fertilizing. The probes were allowed to remain in the field for 2 days and replaced with another set of probes every 4 days for a total of 14 days until canola emerged. Ammonium‐N, nitrate‐N and P supply rates were calculated based on the ion accumulated on the probes. Urea side‐row band treatments (fertilizer N 2.5 cm to side of every seed‐row) had significantly higher cumulative available N supply rates than mid‐row band placement in which fertilizer N was placed 10 cm from the seed‐row in between every second seed‐row. No significant differences were observed in P supply rates. The higher N rates (120 kg N ha?1) resulted in lower grain yield in side‐row banding than mid‐row banding possibly due to seedling damage. However, the earlier fluxes of N into the seed‐row observed with side‐row banding may be an advantage at lower N rates in N deficient soils.  相似文献   

16.
In the present study, seven fertilizer treatments [T1, 50% NPK; T2, 100% NPK (Recommended dose of fertilizer, 200–65.4–124.5 kg N-P-K ha?1); T3, 150% NPK; T4, 100% PK; T5, 100% NK; T6, 100% NP and T7, control (zero NPK)] with four replications were assessed in the new alluvial soil zone (Entisols) of West Bengal, India. The objectives of the study were to generate information on potato productivity, profitability, indigenous nutrient supply and net gain/loss of NPK in post-harvest soil. Plants grown under higher NPK supply resulted in higher tuber yield and there were significant (p ≤ 0.05) reductions in total yield with nutrient omissions. Nutrient?limited yields were 19.78, 2.83 and 1.77 t ha?1 for N, P and K, considering total tuber yield (28.24 t ha?1) obtained under 100% NPK as targeted yield. Indigenous nutrient supply of N, P and K were estimated at 24.1, 22.34 and 110.22 kg ha?1, respectively that indicates higher K?supplying capacity of experimental soil as compared to N and P. Net income (US$1349 ha?1 year?1) and B:C ratio (1.91) was highest with 100% NPK, and further addition of NPK (150%) resulted in decrease on net return (US$1193 ha?1 year?1) and B:C ratio (1.73).  相似文献   

17.
Abstract

Establishment methods have proven to be of major importance for grass-seed production. The objective of this research was to test the effect of different sowing techniques on plant establishment and the subsequent seed yield. Perennial ryegrass (Lolium perenne L.) is used as the model grass due to its large importance in Danish agriculture.

In a three-year trial six different methods of under-sowing of perennial ryegrass in a spring barley cover crop were employed. Perennial ryegrass was either sown directly at different depths within the spring barley (Hordeum vulgare L.) rows or placed 2, 6, or 12 cm from the spring barley rows. Results of dry-matter yield indicate that the best establishment of the grass occurred when placing the grass 6 or 12 cm from the cover-crop row, and this is of importance in less vigorous grasses. Overall, no seed-yield difference has been observed for perennial ryegrass when placing the grass 2, 6, or 12 cm from the cover-crop row. Placement of the ryegrass seed crop 6 cm from the cereal row showed that a significant yield increase of 34–71 kg ha?1 can be obtained compared with sowing in the cereal row.  相似文献   

18.
Influence of excess cobalt (Co; 10 to 400 μM Co) on growth, biomass, Co accumulation, photosynthetic pigments, lipid peroxidation, proline, non-protein thiols and cysteine contents as well as activities of anti-oxidative enzymes was studied in pigeon pea (Cajanus cajan Mill). In pigeon pea leaves decreased concentrations of chlorophyll and carotenoids on exposure to excess Co was associated with decrease activity of catalase and super oxide dismutase and suggest antiperoxidative nature of excess Co. However, a marked increase in the activities of ascorbate peroxidase and peroxidase and enhanced levels of cysteine, non-protein thiols, and proline are suggestive of induction of antioxidants in excess Co. The threshold of toxicity (10% growth reduction) and toxicity (33% growth reduction) values of Co in pigeon pea were 75 and 160 μg g?1in leaves, 42 and 180 μg g?1in stem and 50 and 340 μg g?1Co in roots, respectively.  相似文献   

19.
Pigeon pea is cultivated by most smallholder crop–livestock farmers mainly as a border crop. It is quite often sparsely intercropped in cereal‐based cropping systems in the subhumid zone of Ghana. Management of pigeon pea and its biomass is a promising means of improving many abandoned arable fields but has not been consciously undertaken. The objective of this trial was to explore the use of pigeon pea and the management of its pruned biomass as part of an improved fallow for crop–livestock farming. Three pigeon‐pea management options and a natural fallow (two‐year fallow period) were compared in terms of maize grain yield and changes in soil organic carbon, total nitrogen and cation exchange capacity. Pigeon pea grain yield ranged between 615 and 678 kg ha−1 and 527 and 573 kg ha−1 in the first and second year of fallow, respectively. In the first year after fallow, maize grain yield ranged between 0·43 and 2·39 t ha−1 and was significantly influenced by the fallow system. There was a marked decrease in maize grain on the pigeon pea fallow plots in the second year, ranging between 50 and 38·6 per cent in Kumayili and between 42·6 and 17·6 per cent in Tingoli. After the two‐year fallow period, increase of soil organic carbon on the pigeon pea fallow plot compared with the natural fallow plot was 30·5 per cent, and there was an improvement of total nitrogen (48·5 per cent) and CEC (17·8 per cent). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The form of sulfur fertilizer can influence its behavior and crop response. A growth chamber study was conducted to evaluate five sulfur fertilizer forms (ammonium sulfate, ammonium thiosulfate, gypsum, potassium sulfate, and elemental sulfur) applied in seed row at 20 kg S ha?1 alone, and in combination with 20 kg phosphorus pentoxide (P2O5) ha?1, to three contrasting Saskatchewan soils. Wheat, canola, and pea were grown in each soil for 8 weeks and aboveground biomass yields determined. The fate of fertilizer was evaluated by measuring crop sulfur and phosphorus concentration and uptake, and supply rates and concentrations of available sulfate and phosphate in the seed row. Canola was most responsive in biomass yield to the sulfur fertilizers. Sulfate and thiosulfate forms were effective in enhancing soil-available sulfate supplies in the seed row, crop sulfur uptake, and yield compared to the elemental sulfur fertilizer. Combination of sulfur fertilizer with monoammonium phosphate may provide some enhancement of phosphate availability, but effects were often minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号