首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
淹水厌氧培养对水稻土中酶活性的影响   总被引:4,自引:0,他引:4  
WANG Xiao-Chang  LU Qin 《土壤圈》2006,16(4):532-539
An incubation experiment with soil water content treatments of 0.15 (W1), 0.20 (W2), and 0.40 (W3) g g^-1 soil was carried out for two months to investigate the activities of important enzymes involved in C, N, P, and S cycling in a paddy soil from the Taihu Lake region, China, under waterlogged and aerobic conditions. Compared with air-dried soil, waterlogging resulted in a significant decrease (P ≤ 0.05) of fluorescein diacetate (FDA) and /3-D-glucosidase activities, and this effect was enhanced with increasing waterlogging time. Waterlogging also significantly inhibited (P ≤ 0.05) arylsulfatase as well as alkaline and acid phosphatase activities, but did not decrease the activities with the increase in waterlogging time. Short-term waterlogging did not affect urease activity, but prolonged waterlogging decreased it markedly. In contrast, the aerobic incubation (W1 and W2 treatments) significantly increased (P ≤ 0.05) FDA, alkaline phosphatase, and /3-D-glucosidase activities. With aerobic treatments the activities of FDA and alkaline phosphatase increased with incubation time, whereas /3-D-glucosidase activity decreased. A significant difference (P ≤ 0.05) was usually observed between the W1 and W2 treatments for the activities of FDA as well as alkaline and acid phosphatase; however,/3-D-glucosidase and urease were usually not significant (P ≤ 0.05). No activity differences were observed between waterlogging and aerobic incubation for arylsulfatase and urease.  相似文献   

2.
Soil microbes produce extracellular enzymes that mineralize organic matter and release carbon and nutrients in forms that can be assimilated. Economic theories of microbial metabolism predict that enzyme production should increase when simple nutrients are scarce and complex nutrients are abundant; however, resource limitation could also constrain enzyme production. We tested these hypotheses by monitoring enzyme activities and nutrient pools in soil incubations with added simple and complex nutrient compounds. Over 28 days of incubation, we found that an enzyme's activity increased when its target nutrient was present in complex but not simple form, and carbon and nitrogen were available. β-Glucosidase and acid phosphatase activities also increased in treatments where only carbon and nitrogen were added. Glycine aminopeptidase and acid phosphatase activities declined in response to ammonium and phosphate additions, respectively. In some cases, mineralization responses paralleled changes in enzyme activity—for example, β-glucosidase activity increased and respiration was 5-fold greater in soil incubations with added cellulose, ammonium, and phosphate. However, a doubling of acid phosphatase activity in response to collagen addition was not associated with any changes in phosphorus mineralization. Our results indicate that microbes produce enzymes according to ‘economic rules’, but a substantial pool of mineral stabilized or constitutive enzymes mediates this response. Enzyme allocation patterns reflect microbial nutrient demands and may allow microbes to acquire limiting nutrients from complex substrates available in the soil.  相似文献   

3.
ABSTRACT

Previous meta-analyses revealed that the ratio of activities of carbon (C)-acquiring enzyme to nitrogen (N)-acquiring enzymes in tropical forest ecosystems was nearly identical to those in other ecosystems, despite of the N-rich condition in tropical forests. This could be explained by microbes in tropical forest soils, which require a large amount of N to produce N-rich acid phosphatase (AP) for catalyzation of the organic form of phosphorus (P) and compensation for poor P availability in soils. Based on this idea, we hypothesized that experimental P fertilization would reduce the allocation to N-acquiring enzymes compared with that of C-acquiring enzymes, i.e. that it would increase the ratios of activities of β-1,4-glucosidase (BG) to β-1,4-acetylglucosaminidase (NAG) and leucine aminopeptidase (LAP). We tested this hypothesis using an experimental fertilization site with factorial N (100 kg ha?1 yr?1) and P (50 kg ha?1 yr?1) addition in a primary tropical lowland forest in Bornean Malaysia, where our earlier work demonstrated that P fertilization reduced AP activity. Contrary to our hypothesis, the BG:NAG and BG:(NAG + LAP) ratios were not altered by either N or P fertilizations. This result indicated that AP production was not a reason for the maintenance of a relatively high investment in N-acquiring enzyme at our study site. Rather, NAG and LAP production was likely driven by C acquisition, rather than N acquisition, as the target substrates contained C as well as N. This idea was supported by the fact that neither the BG:NAG ratio nor the BG:(NAG + LAP) ratio was elevated by N addition. We propose that the ratios of activities of BG to NAG and LAP do not necessarily indicate the ratio of C:N acquisition, at least in our N-rich tropical forest ecosystem.  相似文献   

4.
Glucans like cellulose and starch are a major source of carbon for decomposer food webs, especially during early- and intermediate-stages of decomposition. Litter quality has previously been suggested to notably influence decomposition processes as it determines the decomposability of organic material and the nutrient availability to the decomposer community. To study the impact of chemical and elemental composition of resources on glucan decomposition, a laboratory experiment was carried out using beech (Fagus sylvatica, L.) litter from four different locations in Austria, differing in composition (concentration of starch, cellulose and acid unhydrolyzable residue or AUR fraction) and elemental stoichiometry (C:N:P ratio). Leaf litter was incubated in mesocosms for six months in the laboratory under controlled conditions. To investigate the process of glucan decomposition and its controls, we developed an isotope pool dilution (IPD) assay using (13)C-glucose to label the pool of free glucose in the litter, and subsequently measured the dilution of label over time. This enabled us to calculate gross rates of glucose production through glucan depolymerization, and glucose consumption by the microbial community. In addition, potential activities of extracellular cellulases and ligninases (peroxidases and phenoloxidases) were measured to identify effects of resource chemistry and stoichiometry on microbial enzyme production. Gross rates of glucan depolymerization and glucose consumption were highly correlated, indicating that both processes are co-regulated and intrinsically linked by the microbial demand for C and energy and thereby to resource allocation to enzymes that depolymerize glucans. At early stages of decomposition, glucan depolymerization rates were correlated with starch content, indicating that starch was the primary source for glucose. With progressing litter decomposition, the correlation with starch diminished and glucan depolymerization rates were highly correlated to cellulase activities, suggesting that cellulose was the primary substrate for glucan depolymerization at this stage of decomposition. Litter stoichiometry did not affect glucan depolymerization or glucose consumption rates early in decomposition. At later stages, however, we found significant negative relationships between glucan depolymerization and litter C:N and AUR:N ratio and a positive relationship between glucan depolymerization and litter N concentration. Litter C:N and C:P ratios were negatively related to cellulase, peroxidase and phenoloxidase activities three and six months after incubation, further corroborating the importance of resource stoichiometry for glucan depolymerization after the initial pulse of starch degradation.  相似文献   

5.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

6.
Summary In Ap horizons of typical arable soils under cereals in Northwest Germany, biological activity was estimated by measuring microbial activity. Twelve soils on local farms and six soils on a research farm were analysed. Microbial biomass, dehydrogenase activity, and alkaline phosphatase activity were compared with the biological availability of P, an index describing the relationship among several P fractions that has been used in ecological agriculture. The correlation between the microbial biomass and dehydrogenase and alkaline phosphatase activity was strong but the correlation between the biological availability of P and the enzyme activities was weak. In contrast, in the farm fields, there was a significant correlation between the microbial biomass and the biological availability of P. The correlation between the biological availability of P and pH was highly significant (r=0.65–0.93***). Explanations for these correlations are discussed and proposals for further investigations are made. (1) Is the pH effect a direct chemical one or an indirect biological one? (2) Which soil organisms affect the biological availability of P in contrast to the microbial biomass, dehydrogenase activity, and alkaline phosphatase activity? (3) Is the method suitable for the investigation of all arable soils?  相似文献   

7.
Longer and more severe drought periods are expected in the near future for Mediterranean ecosystems. Soil enzymes play an essential role in the nutrient mineralization and their activity is an exceptional sensor in predicting the capacity of nutrient supply to plants. We conducted an experiment of water availability manipulation in evergreen oak mountain stands with the aim to study the effects of enhanced drought on the activity of five soil enzymes. The drought treatment consisted of runoff exclusion by a ditch along the entire top edge of the upper part of treatment plots and partial rain exclusion by suspending PVC strips and funnels. The reduction of 10% of soil moisture produced by runoff exclusion decreased urease activity by 10-67%, protease activity by 15-66% and β-glucosidase activity by 10-80%, depending on annual period and soil depth. The reduction of 21% of soil moisture produced by runoff and rainfall exclusion together reduced urease activity by 42-60%, protease activity by 35-45%, β-glucosidase activity by 35-83% and acid phosphatase activity by 31-40%. No significant effects were observed on alkaline phosphatase activity. The activities of the enzymes involved in the nitrogen cycle, protease and urease, were the most affected by drought. In all cases, the activities of these enzymes strongly decreased with soil depth and they were greater in spring than in autumn. These results show the link between drought and a slower nutrient turn-over, which decreases the nutrient supply to plants.  相似文献   

8.
The spatial ecology of soil microbial communities and their functioning is an understudied aspect of soil microbial ecology. Much of our understanding of the spatial organisation of microbial communities has been obtained at scales that are inappropriate for identifying how microbial functioning and spatial patterns are related. In order to reveal the spatial strategies of soil microorganisms, we measured the microscale spatial distribution of 6 exoenzyme activities (EEA) and related them to the catalytic potential of three soils. The relationship between EEA profiles and microbial community structure was also measured in soil aggregates. All the EEA exhibited scale-invariant spatial clustering. The extent of spatial clustering varied significantly among EEA, suggesting that microbial communities employ different spatial strategies when foraging for different elements. The dispersed distribution of alkaline phosphatase suggests that microorganisms invest more heavily in the acquisition of P. The EEA associated with the C and N cycles, but not the P cycle, were significantly affected by management practices in the loamy soil. A significant negative relationship between the extent of spatial clustering of EEA and the overall intensity of the EEA was identified in the two loamy soils, indicating that the microscale spatial ecology of microbial activity may have a significant impact on biogeochemical cycles. No relationship was found between microbial community structure and EEA profiles in aggregates. However, a number of negative relationships between the relative abundance of certain taxa and the most dispersed EEA (alkaline phosphatase and β-glucosidase) were found, suggesting that these taxa make the EEA products available by means other than the production of exoenzymes (e.g. solubilisation of phosphate through the production of organic acids).  相似文献   

9.
Soil enzymes are critical to soil nutrient cycling function but knowledge on the factors that control their response to major disturbances such as wildfires remains very limited. We evaluated the effect of fire-related plant functional traits (resprouting and seeding) on the resistance and resilience to fire of two soil enzyme activities involved in phosphorus and carbon cycling (acid phosphatase and β-glucosidase) in a Mediterranean shrublands in SE Spain. Using experimental fires, we compared four types of shrubland microsites: SS (vegetation patches dominated by seeder species), RR (patches dominated by resprouter species), SR (patches co-dominated by seeder and resprouter species), and IP (shrub interpatches). We assessed pre- and post-fire activities of the target soil enzymes, available P, soil organic C, and plant cover dynamics over three years after the fire. Post-fire regeneration functional groups (resprouter, seeder) modulated both pre- and post-fire activity of acid phosphatase and β-glucosidase, with higher activity in RR and SR patches than in SS patches and IP. However, we found no major differences in enzyme resistance and resilience between microsite types, except for a trend towards less resilience in SS patches. Fire similarly reduced the activity of both enzymes. However, acid phosphatase and β-glucosidase showed contrasting post-fire dynamics. While β-glucosidase proved to be rather resilient to fire, fully recovering three years after fire, acid phosphatase showed no signs of recovery in that period. Overall, the results indicate a positive influence of resprouter species on soil enzyme activity that is very resistant to fire. Long-lasting decrease in acid phosphatase activity probably resulted from the combined effect of P availability and post-fire drought. Our results provide insights on how plant functional traits modulate soil biochemical and microbiological response to fire in Mediterranean fire-prone shrublands.  相似文献   

10.
黄土丘陵区生物结皮广泛发育,可影响土壤磷素有效性。目前鲜见生物结皮对土壤磷素有效性的研究报道。本文以该区不同年限退耕地的生物结皮为研究对象,通过野外调查和室内分析,研究了生物结皮对土壤全磷、有效磷及碱性磷酸酶活性的影响。结果表明,1)生物结皮的形成可显著提高结皮层土壤全磷含量,而下层(010 cm)全磷含量差异不显著; 2)生物结皮的形成可显著提高结皮层土壤有效磷含量,研究区生物结皮层土壤有效磷含量为3.27~5.87 mg/kg,占到同层土壤全磷含量的0.57%~0.95%,生物结皮层磷酸酶活性高于下层(010 cm) 381倍; 3)生物结皮对土壤磷素有效性及碱性磷酸酶活性的影响与生物结皮发育阶段有关; 4)生物结皮主要通过提高结皮层土壤碱性磷酸酶活性和有机质含量,降低土壤pH,进而提高了土壤磷素有效性。本文研究结果表明,生物结皮的形成有助于提高黄土丘陵区退耕地土壤磷素有效性。  相似文献   

11.
Organic P can serve as an important source of P for plants and microbes when mineralized by extracellular phosphatases. Substrate induction, end-product repression and/or resource limitation regulate activities of phosphatase in bulk soils. Yet, factors controlling enzyme activities in fine-scale microsites may differ from those observed at larger scales. Understanding such differences is needed to improve estimates of global models of biogeochemical cycling. Imprinting of soil profiles using cellulose sheets infused with chromogenic substrates allows study of extracellular enzymes at mm scales under naturally occurring soil temperatures, with minimal disturbance to soil microbial communities. In this study, we used a soil imprinting approach to investigate soil chemical characteristics associated with mm-scale regions of high in situ phosphatase activities in a mixed paper birch – Douglas-fir forest in the southern interior of British Columbia. In addition, we tested whether the addition of simple (ammonium chloride plus sodium acetate) and complex (cellulose, collagen, chitin) forms of carbon (C) and/or nitrogen (N) to 1 cm2 microplots on soil profiles influenced in situ phosphatase activity. In unamended microplots, percent C was 30% higher on average (P = 0.05) and percent N was about 15% higher (P = 0.05) in high-phosphatase microsites. Extractable P did not differ between high and low-phosphatase microsites, regardless of the form of P measured. Within the first 24 h, no difference in imprintable phosphatase was observed between C and N addition treatments, but after 72 h, microplots receiving any substrate containing N had higher phosphatase activities than those receiving only water (P < 0.001). The results from both of our studies support a role for resource limitation in regulating phosphatase activities at this site because either (i) P became limiting in microsites with higher amounts of C and N, and/or (ii) microsites with higher C and N were the ones where these nutrients were in sufficient supply to allow microbes to excrete extracellular enzymes. We conclude that phosphatase excretion occurs in C + N-enriched soil microsites, but that any such phosphatase-active microsites located beyond the rhizosphere are unlikely to supply P to roots because of the low diffusion rates of orthophosphate.  相似文献   

12.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

13.
  【目的】  田间环境的复杂性影响促腐菌种的实际促腐效果。研究3个经鉴定的促腐菌种在田间条件下提高秸秆腐解相关酶活性的效果,并比较其和商品菌剂的效果,为秸秆促腐菌剂研发及秸秆高效还田提供科学依据。  【方法】  田间试验采用秸秆包网袋填埋法,在江西省上高县双季稻种植区晚稻季节进行,设置水稻秸秆接种假单胞菌、芽孢杆菌、青霉、商品菌剂以及不施菌剂 (对照) 5个处理,分别于秸秆包填埋于土壤后第7、14、28、56、84天取秸秆样品,测定秸秆剩余量、养分含量及胞外酶活性,并计算秸秆腐解率。  【结果】  1) 不论是否添加促腐菌剂,秸秆的腐解均呈现出先快后慢的趋势。添加假单胞菌处理秸秆腐解率以及C、N、P释放率在0~84天始终显著高于对照,最终分别提高5.6%、9.09%、11.66%和7.87%;添加青霉处理秸秆腐解率 (第14天除外) 和氮释放率在0~84天也显著高于对照,最终分别提高5.2%和7.46%;添加商品菌剂处理秸秆腐解率仅在第14天显著高于对照;而添加芽孢杆菌处理秸秆腐解率始终与对照无显著差异。2) 腐解时间是影响胞外酶活性的最重要因素,添加菌剂也能不同程度地提高秸秆腐解胞外酶活性。胞外酶中,乙酰氨基葡萄糖苷酶和β-葡萄糖苷酶活性是影响秸秆腐解和养分释放的重要变量,其次是β-纤维二糖苷酶和磷酸酶。添加假单胞菌处理乙酰氨基葡萄糖苷酶、β-葡萄糖苷酶 (第14天除外) 以及磷酸酶的酶活性在0~84天内显著高于对照,添加青霉、芽孢杆菌以及商品菌剂处理相关胞外酶活性表现并不稳定,添加青霉处理乙酰氨基葡萄糖苷酶活性仅在0~14天显著高于对照。3) 添加菌剂处理水稻产量较对照提高1.87%~9.92%,施假单胞菌处理增产最为显著。  【结论】  胞外酶中乙酰氨基葡萄糖苷酶和β-葡萄糖苷酶活性与秸秆腐解和养分释放关系最为密切。青霉仅在秸秆腐解的前14天显著提高乙酰氨基葡萄糖苷酶活性,芽孢杆菌剂对胞外酶活性的提升效果不稳定,因此,其在田间条件下促进秸秆腐解、养分释放的效果也不稳定,最终没有增产效果。假单胞菌剂可在0~84天腐解周期内显著提高乙酰氨基葡萄糖苷酶和β-葡萄糖苷酶 (第14天除外) 活性,因而在田间条件下,假单胞菌剂可以有效促进秸秆腐解和养分释放,提高晚稻产量。  相似文献   

14.
孙权  王静芳  王振平 《土壤通报》2008,39(2):304-308
调查了宁夏御马酿酒葡萄基地不同栽培年限下土壤的蔗糖酶、磷酸酶、脲酶、过氧化氢酶的活性,并与土壤的基本理化性质进行了回归分析。结果表明,供试土壤为强碱性反应,耕作施肥对土壤pH和全盐含量影响不显著;土壤有机质、全氮、铵态氮、速效磷、阳离子代换量大都处于最低的六级水平,但肥力随耕种年限的延长显著增加;随栽培年限的延长,表层土壤磷酸酶活性、蔗糖酶和脲酶活性显著增加;蔗糖酶、脲酶活性随剖面深度的加深而显著减小;表土过氧化氢酶活性随栽培年限的延长而显著下降,但不同土地利用下表层以下各层次土壤过氧化氢酶活性总体上高于表层,且差异显著。磷酸酶活性与土壤有机质、全氮、全磷、速效磷、缓效钾、速效钾之间存在着极显著相关关系;磷酸酶活性、蔗糖酶和脲酶活性与土壤有机质、全氮、全磷、速效磷、缓效钾、速效钾之间存在着极显著相关关系;四种酶之间,磷酸酶与脲酶之间存在极显著相关关系,脲酶与蔗糖酶之间存在极显著相关关系。由此表明,磷酸酶、脲酶、蔗糖酶活性的大小可以代表宁夏贺兰山东麓酿酒葡萄栽培区土壤肥力的高低。  相似文献   

15.
The chloroform fumigation technique has been successfully employed to quantify intracellular and extracellular urease and arylsulfatase activities in soil. In this study, the same approach was evaluated for its ability to differentiate between various pools of phosphomonoesterase activities in soils and reference proteins purified from plant and microbial sources. The activities of acid and alkaline phosphatases were assayed in 10 surface soils and reference proteins at their optimal pH values before and after chloroform fumigation and in the presence and absence of toluene. Chloroform fumigation decreased the activities of acid and alkaline phosphatases in soils, on average, by 6 and 8%, respectively. Similarly, the activities of two purified reference enzyme proteins were decreased after fumigation, with acid and alkaline phosphatase activities exhibiting a reduction of 17 and 8%, respectively. Toluene treatment caused an increase in the activities of acid and alkaline phosphatases by 8 to 18% in nonfumigated soils, but showed no effect in the fumigated soils. Average enzyme protein concentrations, calculated for the 10 soils based on the activity values of the soils and the specific activity of the purified enzymes (i.e., activity values per mg protein), were 22.5 and 2.1 mg protein (kg soil)—1 for acid and alkaline phosphatase, respectively. The decrease in enzyme activity by the fumigant was either by direct denaturing of the periplasmic and extracellular portion of the particular protein after lysis of the microbial cell membrane, by absorption and/or inhibition of the released phosphomonoesterases by organic and inorganic constituents or by degradation of the protein by soil proteases. The ratios of acid phosphatase protein concentrations relative to organic C in six soils were significantly, but negatively correlated with soil organic C, suggesting differences in organic C quality. Comparison of the activity values of soil phosphatases with those of the protein concentrations present in soils indicated that alkaline phosphatase has greater catalytic efficiency than does acid phosphatase.  相似文献   

16.
Rhizobium leguminosarum biovarviceae strain TAL 1236 growing on different organic P compounds as sources of phosphate exhibited phosphatase activities. The strain was able to produce both acid and alkaline phosphatase. However, its ability to produce alkaline phosphatase was much higher. When cellular phosphate fell to 0.115% of cell protein, cellular and extracellular phosphatase activities were enhanced. Mg2+, Co2+, and Ca2+ stimulated the activity of alkaline phosphatase more than acid phosphatase. However, Mn2+ and Fe2+ activated acid phosphatase rather than alkaline phosphatase. It may be concluded thatR. leguminosarum contributes significantly to the release of P from organic compounds through the action of phosphatase which can be activated by a range of cations.  相似文献   

17.
As part of a study of the processes involved in litter biodegradation, we considered the variations over 1 year of the phosphatase activities in sclerophyllous evergreen oak litter (Quercus ilex L.). Evergreen oak is representative of tree species in the forests of the French Mediterranean area. Acid (E.C. 3.1.3.2.) and alkaline (E.C. 3.1.3.1.) phosphatases, were measured over 13 months in the forest litter, along with several biotic and abiotic variables, potentially involved in the regulation of these enzymes. These comprised moisture, temperature, pH, water-extractable inorganic P (PI), fungi, culturable heterotrophic bacteria and protein concentrations. Moisture considerably affected the production of proteins and acid phosphatases, probably formed by litter microorganisms. This result corroborated the study of Criquet et al. [Soil Biology and Biochemistry 34 (2002) 1111] which indicated that rainfall was the most important factor regulating the production and the activity of numerous enzymes in sclerophyllous forest litter. However, it appeared that moisture cannot alone predict all of the variations in phosphatase activities and the mineralisation rate of organic P (PO). Indeed, principal component analyses (PCA) and multiple regressions showed that temperature and bacterial communities were also implicated in phosphatase dynamics and PO mineralisation. Acid phosphatases were negatively correlated with the temperature, whilst alkaline phosphatases were positively correlated with this variable. The significant correlation obtained between bacteria and PI concentrations, and the lack of correlation between bacteria and both acid and alkaline phosphomonoesterases, suggest that other important phosphatase types, such as phosphodiesterases, must be strongly implicated in PO mineralisation of the litter and in the regulation of P microbial metabolism.  相似文献   

18.
Soil enzymes are linked to microbial functions and nutrient cycling in forest ecosystems and are considered sensitive to soil disturbances. We investigated the effects of severe soil compaction and whole-tree harvesting plus forest floor removal (referred to as FFR below, compared with stem-only harvesting) on available N, microbial biomass C (MBC), microbial biomass N (MBN), and microbial biomass P (MBP), and dehydrogenase, protease, and phosphatase activities in the forest floor and 0–10 cm mineral soil in a boreal aspen (Populus tremuloides Michx.) forest soil near Dawson Creek, British Columbia, Canada. In the forest floor, no soil compaction effects were observed for any of the soil microbial or enzyme activity parameters measured. In the mineral soil, compaction reduced available N, MBP, and acid phosphatase by 53, 47, and 48%, respectively, when forest floor was intact, and protease and alkaline phosphatase activities by 28 and 27%, respectively, regardless of FFR. Forest floor removal reduced available P, MBC, MBN, and protease and alkaline phosphatase activities by 38, 46, 49, 25, and 45%, respectively, regardless of soil compaction, and available N, MBP, and acid phosphatase activity by 52, 50, and 39%, respectively, in the noncompacted soil. Neither soil compaction nor FFR affected dehydrogenase activities. Reductions in microbial biomass and protease and phosphatase activities after compaction and FFR likely led to the reduced N and P availabilities in the soil. Our results indicate that microbial biomass and enzyme activities were sensitive to soil compaction and FFR and that such disturbances had negative consequences for forest soil N and P cycling and fertility.  相似文献   

19.
A six-year (1999–2005) experiment of drought manipulation was conducted in a Quercus ilex Mediterranean forest (Southern Catalonia) to simulate predicted climatic conditions projected for the decades to come. The aim was to investigate the direct and indirect effects of drought conditions on acid and alkaline phosphatase activity in soil and on P concentrations in soil, leaves and litter throughout the year. Soil acid phosphatase activity was higher than soil alkaline phosphatase activity. Drought reduced acid phosphatase activity in soil in all seasons, including summer and winter, the seasons with less biological activity due to water and cold stress. Reductions of soil water content between 13 and 29% reduced soil acid phosphatase activity between 22 and 27% depending on the season. Drought reduced alkaline phosphatase activity (by 28%) only in winter. Soil acid and alkaline phosphatase activities were positively correlated with soil water content in all seasons. In contrast short-term available-P which increased under drought in several seasons was weakly correlated with soil phosphatase activities. As a result, immediately/short-term available-P concentration ratios decreased in all the seasons (between 10 and 71%). Drought increased foliar P concentration and reduced the C/P concentration ratio in litter fall of the dominant tree Q. ilex. Drought also decreased the ratio between organic C and short-term available-P in soil. The results show that soil phosphatase activity is more directly dependent on changes in water availability than on changes in its substrate, short-term available-P. These effects of drought have several implications: the accumulation in the soil of labile P not directly available to plants, the increase in potential P losses from leaching and erosion during the torrential rainfalls typical of the Mediterranean climate, and changes in plant, litter and soil C:P stoichiometry that may lead to changes in soil trophic chains.  相似文献   

20.
We addressed the mechanistic basis for a negative correlation between soil pH and phosphomonoesterase activity, often found in various soils. Also in the present study, a significant negative correlation was observed between soil pH and phosphomonoesterase activity measured at pH 6.5 in Japanese acidic forest soils (3 Inceptisols, 3 non-allophanic Andisols, and 2 allophanic Andisols). A hypothesis that higher activity of phosphomonoesterase in acid forest soils results from increased synthesis of phosphomonoesterase by microorganisms in response to P limitation was tested. Soils with lower pH showed a lower optimum pH for phosphomonoesterase activity and greater activity at the optimum pH than other soils. To assess nutrient limitations of the soil microbial community, the effects of addition of C, N, or P on phosphomonoesterase and dehydrogenase activities, which is an intracellular enzyme and the activity of which reflects overall microbial activity, were examined in the soil samples. Addition of P increased dehydrogenase activity in some forest soils. Also, microorganisms in some soils were co-limited by C, N, and P. Response ratios (RR) of phosphomonoesterase and dehydrogenase activities in P-amended soil to their activity in non-amended soil were used to evaluate the response of soil microorganisms to P limitation. The ratio of RR-dehydrogenase to RR-phosphomonoesterase was strongly correlated with phosphomonoesterase activity at the optimum pH (P < 0.01). The results indicate that P limitation accounts for higher phosphomonoesterase activity in the more acid forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号