首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Accurate and reliable predictive models are necessary to estimate above and below ground biomass of plant and biomass carbon stock non-destructively. Different growth models namely viz, Linear, Allometric, Logistic, Gompertz, Richard’s, Negative exponential, Monomolecular, Mitcherlich and Weibull were fitted to the relationship between dry biomass of litchi tree components with collar diameter. Richard’s model outperformed the others and fulfilled the validation criterions to the best possible extent with lowest Akaike information criteria (AICc) of 90.47 and root mean square error (RMSE) of 1.79. The value of adjusted R2 ranged from 0.947 to 0.971 for the Richard’s models fitted on various biomass components and the ‘t’ values for all the components was found non-significant (p > 0.05) indicating the validation of the model. The estimated total dry biomass varied from 0.50 Mg ha?1 in two year to 5.71 Mg ha?1 in 10 year old litchi orchards. The estimated stored biomass carbon stock in litchi orchards (branches, bole and roots) varied from 0.10 Mg ha?1 in two year to 1.85 Mg ha?1 in 10 year orchards with CO2 sequestration potential from 0.19–4.63 Mg ha?1.  相似文献   

2.
Abstract

To evaluate the effect of increasing forest disturbances on greenhouse gas budgets in a taiga forest in eastern Siberia, CO2, CH4 and N2O fluxes from the soils were measured during the growing season in intact, burnt and clear-felled larch forests (4–5 years after the disturbance). Soil temperature and moisture were higher at the two disturbed sites than at the forest site. A 64–72% decrease in the Q 10 value of soil CO2 flux from the disturbed sites compared with the forest site (5.92) suggested a reduction in root respiration and a dominance of organic matter decomposition at the disturbed sites. However, the cumulative CO2 emissions (May–August) were not significantly different among the sites (2.81–2.90 Mg C ha?1 per 3 months). This might be because decreased larch root respiration was compensated for by increased organic matter decomposition resulting from an increase in the temperature and root respiration of invading vegetation at the disturbed sites. The CH4 uptake (kg C ha?1 per 4 months [May–September]) at the burnt site was significantly higher (–0.15) than the uptake at the forest (–0.045) and clear-felled sites (0.0027). Although there were no significant differences among the sites, N2O emission (kg N ha?1 per 4 months) was slightly lower at the burnt site (0.013) and higher at the clear-felled site (0.068) than at the forest site (0.038). This different influence of burning and tree felling on CH4 and N2O fluxes might result from changes in the physical and chemical properties of the soil with respect to forest fire.  相似文献   

3.
Wide maize yield gaps have been reported in Eastern Africa, hence possibility for increasing production. Previous yield gap studies relied on generic soils data such as Harmonized World Soils Database (HWSD). Using CERES-Maize model, the importance of newly available and detailed Africa Soil and Information Service (AFSIS) data in estimating yield gaps and assessing intensification potentials was studied at Sidindi, Kenya and Mbinga, Tanzania. Predicted water-limited yields (Yw) at Sidindi using AFSIS and HWSD soils data were 9.21 Mg ha?1 and 9.88 Mg ha?1 (p = 0.002); and at Mbinga 10.48 Mg ha?1 and 10.90 Mg ha?1 (p = 0.085). Adequate rainfall masks differences in simulated Yw. The calibrated model predicted grain yield with a root mean square (RMSE) of 1.7 Mg ha?1 at Sidindi; and 2.13 Mg ha?1 at Mbinga. The model was sensitive to available phosphorus, with a 15% increase resulting in yield increases of 177% for treatment NK and 46% for the control. For stable organic carbon content, a 15% decrease increased grain yields for treatment PK by 57.6%. To guide intensification and yield gap estimations, accurate active soil carbon, total carbon, available phosphorus and texture data are vital.  相似文献   

4.
ABSTRACT

The study aimed to evaluate, in a marginal semi-arid Mediterranean agro-ecosystem (Sicily-Italy), the effects of arbuscular mycorrhizal fungi (AMF) inoculation and raw olive mill wastewater (OMW) (40 and 80 m3 ha?1) on forage (durum wheat-snail medick intercropping) yield, and grain production of broad bean and chickpea. AMF inoculation significantly increased (+13.6%) forage dry biomass and durum wheat nitrogen (+22.8%) and phosphorus (+32.5%) uptake. AMF inoculation, significantly promoted broad bean phosphorus uptake (+11.5%) and root nodule number (+13.9%) in the absence of OMW. OMW spreading reduced weeds in the forage (?31.3%), root nodule number (?29.7%) and dry weight (?22.7%) in broad bean. OMW also significantly increased snail medick dry biomass (+19.3%) as compared to control treatments (0, 40 and 80 m3 H2O ha?1, average production 361 g m?2), and broad bean grain yield with a production of 2.46 ± 0.12 and 1.94 ± 0.09 Mg ha?1 with and without OMW, respectively. During the experiment AMF colonization was not affected by OMW volumes. The results obtained showed that in a marginal Mediterranean agro-ecosystem: 1) OMW, notwithstanding spreading volumes, is a valuable amendment to maximize legume yield while 2) AMF inoculation is a valuable practice to improve biomass production and N and P uptake in wheat.  相似文献   

5.
ABSTRACT

Mangrove ecosystems play an important role in carbon (C) accumulation in tropical and subtropical regions. Below-ground deep anoxic soil is especially important for C accumulation. However, quantitative data on below-ground soil C stocks in mangrove ecosystems are lacking compared with data on above-ground biomass. In addition, soil C accumulation processes in mangrove ecosystems have not been sufficiently clarified. In this study, we quantified soil C stocks and focused on the mass of fallen litter and below-ground roots, which are produced by tree and that may directly influence soil C stocks in a mature subtropical mangrove in the estuary of Fukido River, Ishigaki Island, southwestern Japan. The principal species in this study site were Bruguiera gymnorhiza and Rhizophora stylosa, and total above-ground biomass at the site was 80.7 ± 1.3 (mean ± SD) Mg C ha?1 over the period from 2014 to 2016. Litter was collected in six litter traps from May 2013 to November 2016, it ranged from 7.8 to 11.5 Mg C ha?1, with the major proportion of litter being from foliage (leaves and stipules). The root C density at 90-cm depth was 27.1 ± 11.3 Mg C ha?1. The soil C stock in the mangrove forest at a depth of 90 cm at the study site was 251.0 ± 34.8 Mg C ha?1, and it seems to be lower value in the tropical region but it to be higher in subtropical East Asian mangrove sites. Dead roots, especially dead fine roots, but not fallen litter, were significantly positively correlated with soil C stocks. The δ13C values obtained from soils ranged from ?29.3‰ to ?27.0‰; these values are consistent with those for below-ground fine roots. These results strongly suggest that dead fine roots could be a main factor controlling soil C stocks at this study site.  相似文献   

6.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

7.
Afforestation of grasslands can increase C sequestration and provide additional economic and environmental benefits. Pine plantations, however, have often been found to deplete soil organic C and trigger detrimental effects on soils. We examined soil characteristics under a 45-year-old Pinus radiata stand and under adjacent grassland on maritime dunes in temperate Argentina. Soil under the pine plantation had greater soil organic C (+93%), total N (+55%) and available P (+100%) concentrations than under grassland. Carbon was stored under the pinestand at an estimated mean accretion rate of 0.64 Mg ha?1 y?1. At 0- to 25-cm depth, soil C amounted to 61 Mg ha?1 under pine and 27 Mg ha?1 under grassland. Soil C accumulated more on dune slopes (35 Mg ha?1 y?1) than on ridges(29 Mg ha?1 y?1) and bottoms (12 Mg ha?1 y?1). Compared with the grassland, soil acidity, cation-exchange capacity, base losses (K > Ca = Mg) and C/N ratio increased under pine. Spatial heterogeneity in soil characteristics was greater under pine than under grassland. Such variability was non-systematic and did not support the ‘single-tree influence circle’ concept. Afforestation increased C in soil, forest floor and tree biomass in dunes with ustic climate regime.  相似文献   

8.
Sorghum is one of the water- and nutrient-use efficient crops raised in dry regions worldwide. A 3 × 3 split-plot experiment in randomized complete block design was conducted to study the effects of petroleum refinery waste aqueous ammonia (NH3) on irrigated fodder sorghum for two consecutive growing seasons. The main plots consisted of 0 (control), 40, and 80 kg N ha?1, respectively, and the injection depths (surface 15 cm, and 20 cm depth) were assigned to sub-plots. A significant effect of NH3 on both fresh and dry biomass production was observed where the highest yield was recorded from the 80 kg N ha?1 than the control and 40 kg N ha?1, respectively. Sorghum biomass yield increased most when NH3 was injected at 20 cm depth as compared to other depths. Biomass nutrient content and nitrogen-use efficiency were increased when 80 kg N ha?1 was applied as compared to the control. The critical limit of K:(Ca+Mg), above which the tetany risk increases, did not exceed in sorghum biomass by NH3 fertilization. Results suggested that industrial waste NH3 equivalent to 80 kg N ha?1 injected at 20 cm depth can be a sustainable approach to fertilize irrigated sorghum growing as a forage crop.  相似文献   

9.
Farmers are looking for better management practices to utilize animal manure as an alternative to chemical fertilizers. A 2-year field experiment was conducted to study the effects of nitrogen (N) fertilizer source and application methods to Nicholson silt loam soil in central Kentucky, USA for no-till corn (Zea mays) production. The region has a temperate climate with a mean temperature of 14.5°C and rainfall of 1300 mm year?1. Treatments included a control, 179 kg N ha?1 urea ammonium nitrate (UAN) applied as preplant and sidedress, and swine effluent that was applied by three methods: broadcast, injection, and Aerway. Injection method produced the greatest corn grain yield (11.88 Mg ha?1) and biomass yield (18.9 Mg ha?1) in 2007. Results demonstrated that the effluent application methods and the timing of UAN application may not be agronomically important for corn production in this region. Hence, more studies are needed on different soils in this region.  相似文献   

10.
The quantities of residual mulch film in the soil will further increase with the wide application of agricultural plastic mulch film, and the pollution of residual mulch film, which is a continuous pollutant and the one that is difficult to degrade, is a major limiting factor for the sustainable development of agriculture in China. Residual mulch film in the soil inevitably affects soil hydrodynamic parameters, destroys the homogeneity of the soil texture, seriously impedes the movement of soil water and solutes, and thus greatly influences crop growth and fruit quality. To unravel the effects of residual mulch film on tomato growth and fruit quality, pot experiments in the greenhouse were carried out in 2015 and 2016 in Northwest China. Six levels of residual mulch film were applied: 0 kg ha?1 (CK), 80 kg ha?1 (T1), 160 kg ha?1 (T2), 320 kg ha?1 (T3), 640 kg ha?1 (T4), and 1280 kg ha?1 (T5). Plant height, stem diameter, dry biomass, yield, root length, root surface area, fruit shape index (FSI), soluble sugar content (SSC), organic acid (OA), vitamin C (VC), lycopene, and nitrate content (NC) were measured. Plant height, stem diameter, dry biomass, and yield of tomato had a downward trend as the residual mulch film amount increased. Root length and root surface area were significantly decreased with an increasing amount of residual mulch film, but root volume and root diameter showed an inconspicuous decrease. When the amount of residual mulch film was more than 80 kg ha?1, growth indexes, dry biomass, and yield of tomato showed a sharp decline. FSI, OA, and lycopene decreased as the residual mulch film amount increased, whereas SSC, VC, and NC showed an increase trend. With the increase in residual mulch film amount, the F and membership function values (X μ ) all showed a declining trend in comparison to the CK. Therefore, residual mulch film can aggravate the negative effects on the comprehensive fruit quality of tomato.  相似文献   

11.
In the traditional shifting cultivation system practiced by the Karen people in northern Thailand, the effects of burning on the content of extractable organic matter, microbial biomass, and N mineralization process of the soils were studied. Five plots (5×5 m2 quadrat) with 0, 10, 20, 50, and 100 Mg ha-1 of slashed materials were arranged and burned. Ten to 20 Mg ha-1 of slashed biomass corresponded to the amount commonly burned by the Karen people. During the burning process, the soil temperature at the depth of 2.5 cm in the 100 Mg ha-1 plot almost evenly increased to 300°C while the temperature in the 10 to 50 Mg ha-1 plots increased with large variations from 50 to 300°C. Burning caused a conspicuous increase in the contents of organic C and (organic + mineral)-N extracted at room temperature and a simultaneous decrease in the contents of microbial biomass C and N, especially in the soil of the 100 Mg ha-1 plot. In the rainy season, the values of the changes induced by burning reverted to the values recorded before burning, except for the microbial biomass in the 100 Mg ha-1 plot, which still remained lower. Based on an incubation experiment, N mineralization rate was higher in the soils taken just after burning, especially in the 100 Mg ha-1 plot, than in the soils taken during the rainy season. However, the soil in the 100 Mg ha-1 plot was considered to have the lowest ability to supply mineral N among the soils in the rainy season. Burning of 10 to 20 Mg ha-1 biomass corresponding to the values recorded in Karen peoples' shifting cultivation system was more compatible with soil ecology in terms of N supply at the initial stage of crop growth and of microbial biomass recovery during the rainy season, compared to the burning of 100 Mg ha-1 biomass corresponding to the value recorded in a natural forest. Thus, the shifting cultivation system implemented by the Karen people can be considered to be a well-balanced agricultural system.  相似文献   

12.
In this study, the agro-hydrological SWAP model was employed for simulation of grain yield, biomass, evapotranspiration (ET), soil water balance components, and water productivity for maize in Shiraz, Iran. The results showed that the irrigation regime is an important factor effecting on the yield and biomass. In general, the model slightly overestimates the yield, biomass, and leaf area index (LAI) for all irrigation treatments. Statistic criteria for the evaluation of the model such as the root mean square error (RMSE) and mean error (ME) were for grain yield (772 kg ha?1, ?9.6), biomass (265.6 Mg ha?1, ?1.5), and evapotranspiration (ET) (25.1 mm, ?6). The amount of water productivity for maize based on I, P, T, and ET were in the range of 1.74 to 3.22 kgm?3. The results indicated that, in general, the SWAP model was an appropriate tool for simulation of grain yield, biomass, and ET with an acceptable precision. The optimization of irrigation management is made to determine the maximum rate of water productivity (WP). The amounts of WP for maize were in the range of 1.74 to 3.22 kgm?3 based on irrigation (I), precipitation (P), transpiration (T), and ET. The results showed that 500 mm of irrigation depth, water productivity is the highest. Therefore, irrigation management can improve WP and thus the impact of limited water can be reduced.  相似文献   

13.
Increasing greenhouse gas emissions from anthropogenic activities continue to be a mounting problem worldwide. In the semi-natural Miscanthus sinensis Andersson; grasslands of Aso, Kumamoto, Japan, which have been managed for thousands of years, we measured soil methane (CH4) and nitrous oxide (N2O) emissions before and after annual controlled burns. We estimated annual soil carbon (C) accumulation, and CH4 and N2O emissions induced by biomass burning in 2009 and 2010, to determine the impacts of this ecosystem and its management on global warming. Environmental factors affecting soil CH4 and N2O fluxes were unknown, with no effect of annual burning observed on short-term soil CH4 and N2O emissions. However, deposition of charcoal during burning may have enhanced CH4 oxidation and N2O consumption at the study site, given that emissions (CH4: ?4.33 kg C ha?1 yr?1, N2O: 0.17 kg N ha?1 yr?1) were relatively lower than those measured in other land-use types. Despite significant emission of CH4 and N2O during yearly burning events in early spring, the M. sinensis semi-natural grassland had a large annual soil C accumulation, which resulted in a global warming potential of ?4.86 Mg CO2eq ha?1 yr?1. Consequently, our results indicate that long-term maintenance of semi-natural M. sinensis grasslands by annual burning can contribute to the mitigation of global warming.  相似文献   

14.
The combined seeding and cropping of non-leguminous and leguminous cover crops during the cold fallow season is recommended as an important agronomic practice to improve total biomass productivity and soil fertility in mono-rice (Oryza sativa L.) cultivation system. However, application of plant residues as green manure can increase methane (CH4) emission during rice cultivation and affect rice quality and productivity, but its effects are not well examined. In this field study, the mixture of barley (Hordeum vulgare R.) and hairy vetch (Vicia villosa R., hereafter, vetch) seeds with 75 % recommended dose (RD 140 kg ha?1) and 25 % RD (90 kg ha?1), respectively, were seeded after rice harvesting in late November, 2010, and harvested before rice transplanting in early June 2011. Total aboveground biomass was 36 Mg ha?1 (fresh weight basis with 68 % moisture content), which was composed with 12 Mg ha?1 of barley and 24 Mg ha?1 of vetch. In order to determine the optimum recycling ratio of biomass application that can minimize CH4 emission without affecting rice productivity, different recycling ratios of 0, 25, 50, 75, and 100 % of the total harvested biomass were incorporated as green manure 1 week before rice transplanting in a typical temperate paddy soil. The same rates of chemical fertilizers (N–P2O5–K2O?=?90–45–58 kg ha?1) were applied in all treatments. Daily mean CH4 emission rates and total CH4 fluxes were significantly (p?<?0.05) increased with increasing application rates of cover crop biomass. Rice productivity also significantly (p?<?0.05) increased with biomass application, but the highest grain yield (53 % increase over the control) was observed for 25 % recycling. However, grain quality significantly (p?<?0.05) decreased with increasing cover crop application rates above 25 % recycling ratio, mainly due to extended vegetative growth periods of rice plants. Total CH4 flux per unit grain yield, an indicator used to simultaneously compare CH4 emission impact with rice production, was not statistically different between 25 % biomass recycling ratio and the control but significantly increased with increasing application rates. Conclusively, the biomass recycling ratio at 25 % of combined barley and vetch cover crops as green manure might be suitable to sustain rice productivity without increasing CH4 emission impact in mono-rice cultivation system.  相似文献   

15.
Nutrient deficiency, high rate of evapotranspiration, and insufficient and erratic rainfall are the critical challenges for crop production in the dryland areas (DLAs) of Sub-Saharan Africa, including Tanzania, where 61% of arable land is prone to drought. In addressing these challenges, field trials were conducted in central Tanzania to evaluate the interactive effects of ripping and tie-ridges with organic (FYM) and inorganic fertilizers (N) on the mitigation of the critical period of soil moisture stress (CPSMS) for sorghum yield performance. Both in situ rainwater harvesting techniques (IRWHT) and flat-cultivated land were integrated with 8 Mg FYM ha–1, 70 Kg N ha–1, and a combination of 35 Kg N ha–1 and 4 Mg FYM ha–1 (N+ FYM). Among the IRWHT, tie-ridges stored a significant water volume of 577 and 457 m3 ha–1, which mitigated the CPSMS by the maximum of 95% and 37% for the above-average rainfall and below-average rainfall season, respectively. However, it only registered the highest grain yield (2.02 Mg ha–1) and biomass (3.46 Mg ha–1) in a below-average rainfall season. The highest overall grain yield (5.73 Mg ha) and biomass (12.09 Mg ha–1) were harvested in ripping with combined fertilizer treatments in an above-average rainfall season, while the lowest grain yield (0.5 Mg ha–1) and biomass (1.2 Mg ha–1) were registered in the flat-cultivation control in the below-average rainfall season. In the latter season, IRWHT increased the mitigation potential in the order; flat cultivation < ripping < tie-ridges; and sorghum yield, highly correlated with drought mitigation index. The results showed that sorghum grain yield and final biomass performance depend on the influence of IRWHT applied, rainfall amount, soil moisture level, integrated fertilizer, and length of the CPSMS. In the above-average rainfall seasons, fertilizers mask the influence of the IRWHT. The opposite is true in the below-average rainfall season. Although ripping N+ FYM resulted in the highest overall yield, the study recommends practicing tie-ridges integrated with N+ FYM due to regular occurrences of low and unreliable rainfall in the dryland areas.  相似文献   

16.
Though mineral N application impaired nodulation initiation and function, it improves the productivity of common bean. The effect of inorganic application on common bean productivity, however, is dependent on the availability of plant nutrients including nitrogen (N) in the soils. Therefore, multilocation field experiments were conducted at Babillae, Fedis, Haramaya, and Hirna to evaluate the effect of inherent soil fertility status on responsiveness of common bean to different rates of N fertilizer application and its effect on nodulation, yield, and yield components of common bean. The treatments were six levels of N fertilizer (0, 20, 40, 60, 80, and 100 kg N ha?1) laid out in randomized completed block design with three replications. The result revealed that 20 kg N ha?1 application significantly improved the nodule number (NN) and nodule dry weight (NDW) except Hirna site, in which reduction of NN and NDW was observed. Although the remaining investigated yield and yield components were significantly improved due to N fertilizer in all study sites, 40 kg N ha?1 application resulted in significantly increased GY of common bean at Fedis, Haramaya, and Hirna site, while 60 kg N ha?1 at Babillae site. The highest total biomass yield (7011.6 kg ha?1) and GY (2475.28 kg ha?1) of common bean were recorded at Hirna and Haramaya sites, respectively, indicating the importance of better fertile soil for good common bean production. Hence, it can be concluded that the effect of inorganic N on common bean was irrespective of soil fertility rather the total amount of N in soil would affect the need of different rate of inorganic N.  相似文献   

17.
Four factorial trials were conducted with yam (Dioscorea rotundata Poir.) at Ibadan, Nigeria from 2013 to 2015, investigating effects of (1) tillage (2) fertilizer (3) intercropping (4) yam plant densities. Yam tuber yields varied between years (2013: 16.44 Mg ha?1; 2014: 10.08 Mg ha?1; 2015 26.61 Mg ha?1). In 2013 neither tillage nor fertilizer affected tuber yields. In 2014 tillage increased yields (+25.4%, P < 0.0001), fertilizer reduced yield (?10.5%; P = 0.0046). In 2015 tillage increased tuber yields by 8.1% (ns), fertilizer application increased yield (+17.5%, P = 0.0017). Across the years, tuber yields increased (P < 0.01) with increasing yam density with a constant increase in 2013 up to the highest density, yet yields leveled out above 14,815 plants ha?1 in 2014 and 2015. Intercropping with maize (66,667 plants ha?1) reduced tuber yield by 42.62% in 2013, 44.52% in 2014 and 30.68% in 2015 (P < 0.01 all years) across all yam densities. Maize grain yield was higher in sole crop in 2 years. Fertilizer increased yields in all years (P < 0.0001). Maize yield had no response to the yam densities. Ridging had a negative effect on grain yield in 2015 (?0.3 Mg ha?1, P = 0.0002). Increasing plant density appears a safe measure to increase yam yields.  相似文献   

18.
FORECAST, an ecosystem simulation model, was calibrated for aspen (Populus tremuloides Michx) and white spruce (Picea glauca (Moench) Voss) stands using data collected in the Boreal White and Black Spruce biogeoclimatic zone in northeastern British Columbia and published data. Simulations were undertaken to examine the effects of initial density of aspen on yield of white spruce in an aspen and spruce mixedwood stand, and to compare the predicted stemwood biomass yields of aspen, white spruce and mixedwood stands. Results of the simulations suggest that mixedwood management regimes on the same medium quality site should have higher stemwood yield compared to pure white spruce stand. Simulated stemwood biomass yield of pure aspen stands over 240 years on medium site varied from 682.5 Mg ha?1 to 239.1 Mg ha?1 for different rotation lengths (30 to 120 years). Repeated rotations of monoculture white spruce produced much less stemwood biomass, simulated yields over 240 years ranging from 877.3 Mg ha?1to 248.4 Mg ha?1 for rotation lengths of 60 to 240 years. Simulated aspen and white spruce mixedwood stands produced higher stemwood biomass yields than the pure white spruce stands, but less than the pure aspen stands; from 217.4 Mg ha?1 to 292.8 Mg ha?1 over 240 years. Variations in initial densities of aspen did not affect spruce stemwood biomass yield over the simulation period. This model shows potential for comparing the relative effects of different management strategies on harvestable volume and variety of other ecosystem variables. A calibrated version of the model should be useful as both a management simulator and a research tool. However, shortcomings in the representation of the canopy architecture of mixed species stands suggested the need to develop an individual tree version of this ecosystem management model for application to mixed species stands.  相似文献   

19.
The optimum dose of nitrogen (N) and phosphorus (P) for Withania somnifera was determined by utilizing graded levels of 0, 30, 45 and 60 kg ha?1 N and 0, 13, 26 and 40 kg ha?1 P in two separate simple randomized pot experiments. Soil-application of 45 kg N ha?1 and 26 kg P ha?1 proved the best dose for increasing shoot and root length, leaf area, fresh and dry weight of shoot and root, total chlorophyll and leaf-N, P, and potassium (K) content, nitrate reductase, and carbonic anhydrase activity, total alkaloid content, seed-yield per plant, root- yield per plant and berries per plant. While 30 kg N ha?1 proved best for root length, fresh and dry weights, as well as root-yield per plant. However, the effect of N and P fertilizers on carotenoid content, seeds per berry and 100-seed weight were insipid. Leaf- P remained unaffected by nitrogen application.  相似文献   

20.
This research was carried out to determine the effects of potassium [0, 40, 80, 120 kg potassium oxide (K2O) ha?1] and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO) ha?1) applied into soil separately and together on the grain yield and yield components of sunflower for oil grown in two farmer fields in the semi-arid Central Anatolia in 2009 and 2010. The experiments were set as factorial experiment design in randomized blocks and 4 replicates. Potassium and Mg-fertilizers were used in the single time into base in the sowing. According to the results, K application in the increasing doses increased yield components more than that of Mg. Together giving of the K and Mg in certain combinations took the yield components to maximum levels. The highest grain yields were obtained by the K40Mg40 in the first year (7313 kg ha?1) and by the Mg60 in the second year (6510 kg ha?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号