首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical changes in steam-pressed kenaf core binderless particleboard   总被引:4,自引:0,他引:4  
The effects of chemical changes in kenaf core binderless particleboards on the bonding performance and thickness swelling of boards were investigated by chemical and spectroscopic analyses. Mild steam-injection treatments (0.6–1.0MPa) caused significant degradation of hemicelluloses, lignin, and cellulose. Conventional hot pressing caused a lower degree of degradation of the chemical components. The hot-pressed kenaf core board without any binders showed poor bonding performance. Thus, it was found that partial degradation of the three major chemical components of the kenaf core by mild steam-injection treatment increased the bonding performance and dimensional stability of the binderless boards, and gave better quality binderless boards than those made by hot-pressing treatments.Part of this report was presented at the 4th International Wood Science Symposium, Serpong, Indonesia, September 2002; and at the 53rd Annual Meeting of The Japan Wood Research Society, Fukuoka, March 2003  相似文献   

2.
Binderless particleboards were successfully developed from kenaf core using the steam-injection press. The effects of board density, steam pressure, and treatment time on the properties of the board were evaluated. The target board densities were relatively low, ranging from 0.40 to 0.70g/cm3. The properties [i.e., moduli of rupture (MOR) and elasticity (MOE) in both dry and wet conditions, internal bonding strength (IB), and water absorption (WA)] of the boards increased linearly with increasing board density. Steam pressure and treatment time also affected the board properties. The bending strength and IB were improved with increased steam pressure. A long steam treatment time contributed to low thickness swelling (TS) values and thus better dimensional stability. The appropriate steam pressure was 1.0MPa, and the treatment time was 10–15min. The properties for 0.55g/cm3 density boards under optimum conditions were MOR 12.6MPa, MOE 2.5GPa, IB 0.49MPa, TS 7.5%, and wet MOR 2.4MPa. Compared with the requirement of JIS 5908, 1994 for particleboard, kenaf binderless boards showed excellent IB strength but relatively poor durability.Part of this report was presented at the 19th Annual Meeting of the Japan Wood Technological Association, Tokyo, October 2001  相似文献   

3.
Binderless boards were prepared from finely ground powders of kenaf (Hibiscus cannabinus L.) core under varying manufacturing conditions. This research was designed to investigate their mechanical properties and evaluate the various manufacturing conditions: pressing temperature and time, pressing pressure, board density, board thickness, grain size of raw materials, and addition of furfural. The mechanical properties (i.e., modulus of rupture and elasticity, internal bonding strength) of boards increased with increasing board density and met the requirement for 15 type medium-density fiberboard (MDF) by JIS A 5905-1994. Thickness swelling and water absorption of boards exceeded the maximum permitted levels for 15 type MDF and S20 grade hardboard by JIS A 5905-1994, which indicates the low water-resistant property of binderless boards. In contrast to that in usual wood-based materials, internal bonding strength showed significant correlations with other board properties: modulus of rupture and elasticity, thickness swelling, and water absorption. We confirmed experimentally that the best manufacturing conditions proved to be as follows: pressing temperature 180°C, time 10min; pressing pressure 5.3MPa; board thickness 5mm; board density 1.0g/cm3; average grain size 53µm; and powder with no furfural content.Part of this paper was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

4.
Abstract Binderless boards were prepared from kenaf core under various manufacturing conditions and their water resistance properties were evaluated. The board properties evaluated were retention ratios of modulus of rupture (MOR) and modulus of elasticity (MOE), internal bonding strength after water treatment (IB), thickness swelling (TS), water absorption (WA), and linear expansion (LE). These values were then compared with those of boards bonded with urea-formaldehyde (UF), urea melamine formaldehyde (UMF), and phenol-formaldehyde (PF) resins, and their water resistance properties were assessed. We found that pressing temperature was one of the most important conditions for the improvement of water resistance properties. The retention ratios of MOR, MOE, and IB of kenaf core chip binderless boards (pressing temperature 200°C, target density 0.8g/cm3, and the three-step pressing of 6MPa for 10min, then 4MPa for 3min, and 2MPa for 3min) were 37.1%, 49.9%, and 55.7%, respectively, compared with values for UMF-bonded boards of 22.5%, 27.1%, and 40.7%, and values for PF-bonded boards of 42.8%, 41.8%, and 54.1%, respectively. The results showed that the water resistance properties of binderless boards were higher than those of UMF-bonded boards and almost as high as those of PF-bonded boards. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

5.
Low-density binderless particleboards from kenaf core were successfully developed using steam injection pressing. The target board density ranged from 0.10 to 0.30g/cm3, the steam pressure used was 1.0MPa, and the steam treatment times were 7 and 10min. The mechanical properties, dimensional stability, and thermal and sound insulation performances of the boards were investigated. The results showed that the low-density kenaf binderless particleboards had good mechanical properties and dimensional stability relative to their low board densities. The board of 0.20g/cm3 density with a 10-min treatment time produced the following values: modulus of rupture 1.1MPa, modulus of elasticity 0.3GPa, internal bond strength 0.10MPa, thickness swelling in 24h water immersion 6.6%, and water absorption 355%. The thermal conductivity of the low-density kenaf binderless particleboards showed values similar to those of insulation material (i.e., rock wool), and the sound absorption coefficient was high. In addition, the boards are free from formaldehyde emission. Kenaf core appears to be a potential raw material for low-density binderless panels suitable for sound absorption and thermally resistant interior products.Part of this report was presented at the 52th Annual Meeting of the Japan Wood Research Society, Gifu, Japan, April 2002  相似文献   

6.
An outdoor exposure test was conducted on kenaf core binderless boards (pressing temperatures 200°, 180°, and 160°C; pressing pressure 3.0 MPa, time 10 min, target board thickness 5 mm, target board density 0.8 g/cm3) to estimate their bond durability. Modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness change, weight loss, Fourier transform infrared (FTIR) spectra, and color difference (ΔE*) by the CIE L*a*b* system were measured at various outdoor exposure periods up to 19 months. These values were then compared with those of a commercial medium-density fiberboard (MDF; melamine-urea-formaldehyde resin; thickness 9.0 mm, density 0.75 g/cm3). Generally, dimensional stability and the retention ratios of MOR, MOE, and IB after the outdoor exposure test increased with increased pressing temperature of binderless boards. The MOR retention ratio of the kenaf core binderless boards with a pressing temperature of 200°C was 59.5% after 12 months of outdoor exposure, which was slightly lower than that of the MDF (75.6% after 11 months of outdoor exposure). Despite this, the bond durability of the kenaf core binderless boards should be viewed as favorable, especially when considering the fact that the retention ratio of 59.5% was achieved without binder and without obvious element loss. Part of this report was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27-30, 2005, Yokohama, Japan  相似文献   

7.
A two-cycle accelerated aging boil test was conducted on kenaf core binderless boards to estimate their bond durability. This is one of the methods to estimate the bond quality of kenaf core binderless boards, as stipulated by Notification 1539 of the Ministry of Land, Infrastructure, and Transport, October 15, 2001, for the Building Standard Law of Japan. Generally, retention ratios of modulus of rupture (MOR), modulus of elasticity (MOE), and internal bond (IB) strength after the boil test increased with increased pressing temperature. In particular, the MOR retention ratio of boards with a pressing temperature of 200°C (average 106.4%) was higher than that of a commercial medium-density fiberboard (MDF) (melamine-urea-formaldehyde resin) (average 72.7%), and the value sometimes exceeded 100%. The durability of kenaf core binderless boards with a pressing temperature of 200°C compared favorably with that of the commercial MDF (melamine-urea-formaldehyde resin), having almost the same retained strength values after the boil test. Part of this article was presented at the International Symposium on Wood Science and Technology, IAWPS2005, November 27–30, 2005, Yokohama, Japan  相似文献   

8.
Kenaf composite panels were developed using kenaf bast fiber-woven sheets as top and bottom surfaces, and kenaf core particles as core material. During board manufacture, no binder was added to the core particles, while methylene diphenyldiisocyanate resin was sprayed to the kenaf bast fiber-woven sheet at 50 g/m2 on a solids basis. The kenaf composite panels were made using a one-step steam-injection pressing method and a two-step pressing method (the particleboard is steam pressed first, followed by overlaying). Apart from the slightly higher thickness swelling (TS) values for the two-step panels when compared with the one-step panels, there was little difference in board properties between the two composite panel types. However, the two-step pressing operation is recommended when making high-density composite panels (>0.45 g/cm3) to avoid delamination. Compared with single-layer binderless particleboard, the bending strengths in dry and wet conditions, and the dimensional stability in the plane direction of composite panels were improved, especially at low densities. The kenaf composite panel recorded an internal bond strength (IB) value that was slightly low because of the decrease of core region density. The kenaf composite panel with a density of 0.45 g/cm3 (one-step) gave the mechanical properties of: dry modulus of rupture (MOR) 14.5 MPa, dry modulus of elasticity (MOE) 2.1 GPa, wet MOR 2.8 MPa, IB 0.27 MPa, TS 13.9%, and linear expansion 0.23%.  相似文献   

9.
To provide basic information on self-bonding in kenaf core binderless boards, a series of chemical analyses was conducted on binderless boards and their chemical changes during hot pressing were examined in our previous study. In this study, binderless boards were manufactured under conditions that may accelerate the supposed chemical changes to investigate their effect on the board properties. First, to investigate the influence of the chemical bonds formed by carbonyl compounds on self-bonding, the influence of acetic acid addition prior to board manufacturing was studied and the effect of methanol extractives (containing the carbonyl compounds) was also examined. Second, the influence of the condensation reaction in lignin was discussed from the viewpoint of board density. Last, to examine the influence of thermal softening of lignin, the influences of temperature condition and moisture content, as well as those of microwave pretreatment, were investigated. As a result, the estimated chemical changes were suggested to influence the binderless board properties.  相似文献   

10.
Self-bonding is the main factor of the performance expression of binderless boards, and therefore its clarification is considered to be an important issue. For this purpose, a series of chemical analyses were conducted on kenaf core binderless boards and their chemical changes during the hot-pressing process are discussed in this article. First of all, binderless boards were prepared from kenaf core powder at different pressing temperatures (without steam-explosion process) and were used for chemical analyses after they were reduced into powders and extracted with methanol. To investigate their chemical changes, lignin, holocellulose, and neutral sugar contents were determined, Fourier transform infrared (FTIR) spectra were recorded, and the nitrobenzene oxidation procedure was applied. As a result, it was found that parts of lignin and hemicelullose were decomposed during the hot-pressing process; however, the contribution of the resulting fractions to selfbonding was not observed. In addition, progress of condensation reactions in lignin and the formation of chemical bonds by low molecular weight conjugated carbonyl compounds in methanol extractives were observed. Thermal softening of lignin is also suggested to play an important role in the expression of board performance.  相似文献   

11.
Manufacture of plywood bonded with kenaf core powder   总被引:3,自引:0,他引:3  
Kenaf (Hibiscus cannabinus L.) core powder was used as a binder to manufacture three-ply plywoods of sugi (Cryptomeria japonica D. Don) by conventional hot pressing under various manufacturing conditions: hot-pressing conditions (pressure, temperature, and time) and powder conditions (grain size, spread volume, and moisture content). The adhesive shear strength and wood failure of plywoods were measured in accordance with the Japanese Agricultural Standard (JAS) for plywood. The result showed that fine kenaf core powder played a role as an effective binder when plywoods were pressed at high pressure, which caused extreme compression of veneer cells. In addition, the adhesive shear strength of plywoods in dry conditions was high regardless of pressing temperature and time, but it was sensitive to pressing temperature and time in wet conditions. The highest adhesive shear strength was obtained from plywoods manufactured with kenaf core powder (grain size 10 μm, spread volume 200 g/m2, moisture content 8.6%) under hot-pressing conditions (pressure 5.0 MPa using distance bars 4 mm thick, temperature 200°C, time 20–30 min). However, the plywood could not meet the requirement for the second grade of plywood by JAS because of its low water-resistance properties. Part of this article was presented at the 58th Annual Meeting of the Japan Wood Research Society, Tsukuba, March 2008, and the 10th World Conference on Timber Engineering, Miyazaki, June 2008  相似文献   

12.
We investigated optimum self-bonding conditions of kenaf core composites manufactured by steam treatment, and discussed on the roles of cinnamic acids in the self-bonding mechanism. The presence of cinnamic acids in the kenaf core and its composites were analyzed by pyrolysis gas chromatography-mass spectrophotometry in the presence of tetramethyl ammonium hydroxide (TMAH/Py-GC-MS). The results showed that the optimum bonding properties of kenaf core composites were achieved under these conditions: steam pressure of 0.8–1.0 MPa and pressing time of 10–15 min were able to provide shear strength of 0.40–0.42 MPa while having 2–5% of weight loss. Lignin analysis showed that steam-treated kenaf core composites had a lower proportion of syringyl- to guaiacyl-derived moieties and also cinnamic acids to guaiacyl-derived moieties than its native counterpart. The results indicated that some parts of the ester-linked cinnamic acids were also cleaved due to the degradation of hemicelluloses and lignin during steam treatment. Based on these results, it was concluded that in addition to three main components, the cinnamic acid was also suggested to participate in the self-bonding mechanism of non-wood lignocellulosic binderless boards.  相似文献   

13.
The bast and core of kenaf,Hibiscus cannabinus L., have markedly different chemical components and alkaline cooking responses. The bast had about double the hot-water extractives content and only about half the lignin content of the core. The core contained a large amount of hemicellulose, mostly composed of xylan. The lignin structures of bast and core were also quite different: The former had a significant abundance of syringyl structures. Evidence showed that the bast was much more easily delignified than the core. When the bast and core were cooked together in alkaline condition, the pulp yields at the same kappa number were higher than those of the individual pulpings of bast and core. The bast-core pulping gave a positive effect on the yield of bast pulp in the sodaanthraquinone and kraft pulpings. On the other hand, kenaf was abundant in the hot water extractives. These extractives consumed alkali during cooking to a relatively large extent but acted as a protector of hemicellulose and slightly increased the pulp yields.Part of this paper was presented at the 48th and 49th Annual Meetings of the Japan Wood Research Society, Shizuoka, April 3–5, 1998 and Tokyo, April 3–5, 1999  相似文献   

14.
The development of oriented fiberboards made from kenaf (Hibiscus cannabinus L.) and their suitability as a construction material has been investigated. Three different types of boards consisting of five layers with individual orientations were prepared using a combination of low molecular weight and high molecular weight phenol-formaldehyde (PF) resin for impregnation and adhesion purposes. Additional boards with the same structure were prepared using high molecular weight PF resin only. The mechanical properties of the boards have been examined as well as their resistance against fungal decay and termite attack. All kenaf fiberboards showed elevated mechanical properties compared with medium-density fiberboard made from wood fibers, and showed increased decay and termite resistance. Differences in the decay and termite resistance between the board types were caused by the presence of the low molecular weight PF resin for the impregnation of the fibers. No significant difference was found for the mechanical properties. The effect of the PF resin for impregnation was much clearer in fungal decay resistance than for termite resistance; however, fiber orientation had no effect on both decay and termite resistance of the specimens.  相似文献   

15.
蒸爆法棉秆无胶纤维板热压工艺初探   总被引:3,自引:0,他引:3  
以棉秆为原料,经过蒸爆解纤处理后热压制成无胶纤维板.研究了密度为0.85g/cm3、板厚为4mm的无胶纤维板热压工艺.结果表明:在试验范围内较优的热压工艺为:板坯含水率12%、热压温度210℃、热压时间60s/mm.  相似文献   

16.
17.
Binderless boards were prepared from steam-exploded fiber of oil palm(Elaeis guineensis Jacq.) frond at six levels of explosion conditions. Their properties were investigated and evaluated. The mechanical properties (i.e., modulus of rupture, modulus of elasticity, and internal bonding strength) of the boards increased linearly with increasing board density as the usual hardboard. The boards made from fibers treated under a steam explosion condition of 25 kgf/cm2 (steam pressure) and 5 min (digestion period) exhibited the maximum strength. These boards at a density of 1.2 g/cm3 met the requirement of S-20 grade of JIS A 5905 — 1994 (fiberboard). Thickness swelling of the boards ranged from 6% to 14% under the JIS A 5908 — 1994 (particleboard) test condition and showed no significant changes with increasing board density. The main bonding strength of the board is believed to be due to a ligninfurfural linkage. Considering the chemical components of oil palm frond, which is rich in hemicellulose, there seems to be a good possibility for producing binderless boards using steam-exploded fibers of oil palm frond.This study was presented in part at the 2nd International Wood Science Seminar, Serpong, Indonesia, November 1998  相似文献   

18.
Agronomic properties (whole stalk yield, fiber length distribution, chemical composition) and whole stalk kraft pulp characteristics (total pulp yield, pulp fiber length distribution, pulp sheet strengths) were examined for kenaf (variety Zhehong 8310) at four plant populations, ranging from 135 000 to 405 000 plants/ha on arid hillside land at Anji, Zhejiang, China. For agronomic properties, the final whole stalk yield was higher as the plant population increased and as the altitude of the location on the slope decreased. Average fiber lengths of bast and core showed maxima at 225 000 plants/ha. Cellulose content increased as the plant population increased. For the kraft pulp characteristics of kenaf whole stalk, the total pulp yield was lower as the plant population increased, with the maximum difference about 1.3%. Sheet strengths and average fiber length attained maxima at around 225000–315000 plants/ha. The largest pulp strengths (breaking length, burst index, and folding endurance) were seen at a plant population of 225000 plants/ha, and the largest tear index was seen at a plant population of 315 000 plants/ha. When the agronomic properties and whole stalk kraft pulp characteristics were combined, a plant population between 225 000 and 315 000 plants/ha, which is a little higher than that of kenaf bast production for textiles, was selected as the optimum cultivated kenaf plant population for whole stalk kraft pulp and papermaking on arid hillside land in China.  相似文献   

19.
冷等离子体处理对棉秆无胶纤维板性能影响   总被引:3,自引:0,他引:3  
以棉秆为原料,通过冷等离子体预处理纤维,采用干法纤维板生产工艺制备棉秆无胶纤维板。研究了处理时间对棉秆纤维表面自由基数量以及无胶纤维板性能的影响。研究结果表明:棉秆纤维经冷等离子体处理后表面相对自由基数量显著提高,用其制成的无胶纤维板强度有明显提高,但吸水率却有一定程度增加。随着处理时间的延长,纤维表面自由基数量增加不明显,板材强度变化亦不明显,因此,处理时间不宜过长。  相似文献   

20.
研究密度为1.0g/cm~3、厚度为8mm的无胶纤维板制造工艺,结果表明其较优工艺为:板坯含水率10%,热压压力3.0MPa,热压温度200℃,板坯芯层温度140℃。以此工艺在MDF生产线上进行的试验结果表明:板材的物理力学性能达到LY/T1611—2003普通型地板基材用纤维板指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号