首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
华北地区夏玉米田马唐治理的生态经济杀除阈期研究   总被引:1,自引:1,他引:1  
作者于1992~1994年研究夏玉米田马唐(Digitaria sanguinalis L.)治理的生态经济阈期,借助计算机进行数学模拟,建立夏玉米的相对产量与马唐的相对干扰生长时间、相对出苗时间的函数关系。苗后马唐干扰生长的相对时间即相对天数(Xu)与夏玉米相对产量(Yu)的关系式为: Yu=101.5/{1.0 0.01756EXP[—(—0.0876Xu 0.0004888Xu~2)]}…………(1)苗后马唐出苗的相对时间与玉米相对产量的关系式为: Yd=100.73/{1.0 0.96EXP[—(0.06346Xd-0.00006859Xd~2)]}……………(2) 根据生态经济杀除阈期的定义和(1)、(2)两公式计算可知:夏玉米田马唐防除的生态经济杀除阈期的始期应从夏玉米苗后生育期总天数的11.8%开始,结束于夏玉米苗后生育期总天数的53.9%。例如华北地区夏玉米全生育期总天数一般是95天,夏玉米苗后生育期总天数(T)约为88天,故夏玉米田马唐防除的生态经济杀除阈期约在夏玉米苗后10.6—47.5天之间。  相似文献   

2.
Maize production trials carried out in eastern middle of Germany from 1999–2007 were used for statistical analysis of the optimum date for silage maize ripeness, quality and yield potential as well as choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond almost with the physiological ripeness of silage maize and are close to the grain dry matter content of 60 to 65%, to the dry matter content of stover under 24% and a ripeness index from 2,5 and higher. Only under these conditions it is possible to reach the optimal ripeness of 30 to 35% in the whole plant silage maize. In dependence on the Silage maize Ripeness Index (SRZ) parameters of silage and energy maize were created differential ripeness optimum, quality and yield potential. The aims of silage and energy maize are similar. The vitality of stover has a greater importance for energy maize. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize for the harvesting time. SRI is also suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   

3.
Maize production trials carried out in Germany from 1999–2004 were used for statistical analysis of the optimum date for silage maize ripeness. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper as well as less material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum almost correspond to the physiological ripeness of silage maize and are close to the grain dry matter content of 60–65%, to the dry matter content of stover under 24% and a ripeness index from 2.5 and higher. Recently, the silage maize harvest depends on dry matter content of maize plants. This can result in grain ripening rates less than 55 % and low starch as well as energy contents. The dry matter content of the silage maize is at a certain ripeness of grain and/or of starch only expression of aging of the stover. The stover has, together with the grain, a strong influence on the dry matter content of the whole plant maize. On these locations the crop should be harvested before reaching the optimum of ripeness and yield maximum. Therefore only hybrids with a long harvesting time, high starch storage and displaying a high digestibility of plant cell wall with slow drying of the stover, should be grown in the future. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of maize. SRI is also suitable for use in scientific trials as a standard for the harvesting time and for better “stay green” characteristic. It is a strong correlation between the Silage maize Ripeness Index (SRI) and Silage maize Nutrient Index (SNI) or Silage maize Quality Index (SQI), respectively, as indicator for the physiological reaction of starch and metabolised energy in the rumen as well as for the choice of a hybrid.  相似文献   

4.
Abstract

Natural enemy abundance and impact on fall armyworm, Spodoptera frugiperda (J. E. Smith), populations were compared in sugar-treated and water-treated maize fields in Honduras. Counts of natural enemy abundance were made immediately after and also 1 week following sugar applications. Higher numbers of natural enemies were found in sugar-treated maize than in maize treated with water alone. The most abundant species were Solenopsis geminata (F.) (Hymenoptera; Formicidae), Lespesia archippivora (Riley) (Diptera; Tachinidae) and Doru taeniatum (Dorhn) (Dermaptera; Forficulidae). Of these species, S. geminata and L. archippivora showed consistently higher numbers in sugar-treated maize than in water-trated maize. Coccinellids were also consistently concentrated in sugar-treated maize, although they were not as abundant as either S. geminata and L. archippivora . In sugartreated maize, average leaf area damaged by fall armyworm was reduced by 35% and average fall armyworm infestation rates were 18% lower. These findings suggest that applications of sugar to maize can concentrate natural enemies and that these natural enemies reduce fall armyworm populations and damage.  相似文献   

5.
Characterization of maize streak virus: description of strains; symptoms   总被引:1,自引:1,他引:0  
Twenty-four isolates of maize streak virus (MSV) derived from maize, sugarcane and grasses were compared to a maize isolate of the virus (M(N)M) from Nigeria, using symptoms, gel diffusion and ELISA. Fourteen isolates were identified as maize strains, eight other isolates were serologically related to M(N)M but were distinct. In most cases the maize strain could be identified by the symptoms in Zea mays cv. Golden Bantam but symptom expression in grasses was not always sufficient to identify the economically important maize strain. In general, however, symptoms were similar in both grass and maize hosts. Identification by symptoms alone was further complicated by the possibility that some isolates were mixtures. There was no evidence that adaptation to grass hosts occurred, as all isolates could be transmitted to maize. It was not possible to transmit certain strains to the host species from which they were derived, even though they were transmissible to other hosts. This was assumed to be related to vector feeding behaviour. Insect toxin was responsible for certain stunting symptoms, leaf curling and vein enations often associated with MSV.  相似文献   

6.
采用常规分离培养和琼脂块拮抗性测定法,研究了西北旱作农业区不同覆盖条件和根系对玉米田土壤中拮抗性放线菌分布的影响。结果表明:(1)玉米田土壤拮抗性放线菌比率随覆盖方式而异。在GA培养基上,休闲和覆膜模式高于常规对照,覆草和补灌条件下较低;在SDSA培养基上,覆盖(覆膜和覆草)和休闲模式高于常规对照。(2)玉米根系生长和分泌物对拮抗性放线菌比率有显著影响。覆膜处理中,玉米根系可使抗细菌、抗真菌拮抗菌比率较根外分别降低59.7%、45.2%;覆草处理中,玉米根系可使抗细菌及抗真菌拮抗菌比率较根外分别提高84.5%及106.4%;种植玉米后,拮抗菌比率低于休闲土壤。(3)多重比较结果显示,玉米根系对拮抗性放线菌比率的影响大于栽培模式的影响。  相似文献   

7.
Maize production trials carried out in eastern middle of Germany from 1999–2008 were used for statistical analysis of the optimum date for silage maize ripeness. The Knowledge about difference in ripeness between grain and residual plants at the harvest were used for exactly choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of residual plants) is more suitable for the leading of plant development, the determination of harvest date and the choice of cultivar as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming with a better financially results in food-, milk- and methane production in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond with the physiological ripeness of silage maize and are close to the grain dry matter content of 64%, to the dry matter content of starch of 33% and a ripeness index from 2.55 to 2.9 for parameter of quality and quantity. Only under these conditions it is possible to reach the optimal ripeness of 33 to 35% in the whole plant silage maize. But under suboptimal conditions the harvest is carried out, if SRI had a maximal value. In dependence on the Silage maize Ripeness Index (SRZ) and (SRI) parameters of silage and energy maize were predicted differential development of ripeness and yield. The aims of silage and energy maize are similar. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of residual plants are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize at the harvesting time. SRI is also universal suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   

8.
Abstract

Surveys of maize for virus and mycoplasma-like diseases were conducted in Peru in 1978 and 1980. The following pathogens were discovered and identified: aphid-borne maize dwarf mosaic virus, beetle-borne maize chlorotic mottle virus, Peregrinus maidis-borne maize mosaic and maize stripe viruses, and Dalbulus maidis-borne maize rayado fino virus, corn stunt spiroplasma (CSS) and maize bushy stunt mycoplasma (MBSM). Some of these insect-borne pathogens are important constraints to maize production in Peru. Maize chlorotic mottle in the department of Lima and Cajamarca and ‘puca poncho’, a disease caused by CSS and/or MBSM, in Ayacucho significantly limit maize yields. As a result of these surveys, we believe that the principal maize virus and mycoplasma-like diseases in Peru have been identified, an accomplishment unrealised in other Latin American countries at present.  相似文献   

9.
The expression of glutathione S-transferase (GST) activity in wheat and maize shoots was investigated in response to treatments with the herbicide safeners benoxacor, cloquintocet-mexyl, fenchlorazole-ethyl, fenclorim, fluxofenim and oxabetrinil. These safeners significantly enhanced the GST activity towards 1-chloro-2,4-dinitrobenzene (CDNB) as a 'standard' substrate, with the exception of oxabetrinil in maize. The enhancements of GST (CDNB) activity were found to be concomitant with increases in V(max) (the reaction rate when the enzyme is fully saturated by the substrate) in wheat following cloquintocet-mexyl and fenchlorazole-ethyl treatments, and in maize following fenchlorazole-ethyl treatment. Otherwise, decreases in V(max) were observed in wheat and maize following fenclorim and fluxofenim treatments. With the exception of oxabetrinil, all the safeners significantly reduced the apparent K(M) (the substrate concentration required for 50% of maximum GST activity) of both wheat and maize GST. The V(max) and K(M) variations following safener treatments are discussed in terms of an increased expression of GST enzymes and an increased affinity for the CDNB substrate. The activity of wheat and maize GST was also assayed towards butachlor and terbuthylazine respectively; the results indicate the ability of cloquintocet-mexyl, fenchlorazole-ethyl and fluxofenim to enhance the enzyme activity in wheat and of benoxacor and fenchlorazole-ethyl to do so in maize.  相似文献   

10.
为明确玉米褪绿斑驳病毒 (maize chlorotic mottle virus, MCMV)对我国玉米生产的经济损失,通过收集、整理玉米产量、种植面积、市场价格以及MCMV潜在地理分布、危害和防控等相关数据,基于随机模型利用@RISK软件分别预测MCMV在不防控和防控场景下对我国玉米产业造成的潜在经济损失。结果表明,在不防控场景下, MCMV对我国玉米产业造成的潜在经济损失总量的90%置信区间为329.44亿~508.96亿元;而在防控场景下, MCMV对我国玉米产业造成的潜在经济损失总量的90%置信区间为51.62亿~76.23亿元,可挽回潜在经济损失的90%置信区间为278.38亿~437.93亿元。说明MCMV严重威胁我国玉米生产,建议有关部门加强检疫阻截防控工作,保障我国玉米产业安全。  相似文献   

11.
为明确草地贪夜蛾对小麦的产卵选择性及其是否对小麦安全生产构成威胁,本研究以玉米和小麦作为测试寄主,比较分析了草地贪夜蛾对两种作物不同部位的产卵选择性,并利用两性生命表方法研究了取食小麦、玉米对其生命参数的影响。结果表明:草地贪夜蛾更喜欢在玉米上产卵,其在玉米、小麦叶片、玉米和小麦茎秆上的产卵量存在显著差异(df=102,F=15.593,P<0.05),以玉米叶片背面卵块数量(7.11±1.55)块/笼最高;草地贪夜蛾取食小麦可以完成生活史,但幼虫存活率、化蛹率、羽化率和世代存活率低于取食玉米。取食玉米的幼虫发育历期为(16.31±0.15)d,显著高于取食小麦的(14.66±0.12)d,蛹期、蛹重、产卵前期、成虫寿命和世代周期无显著差异。取食小麦羽化出的雌虫寿命、平均单雌产卵量显著高于取食玉米,分别为(16.39±0.40)d、(976.31±57.21)粒和(14.64±0.32)d、(831.57±30.55)粒。生命表参数显示取食玉米的净增殖率为363.14,显著高于小麦的258.63,但内禀增长率、周限增长率和平均世代周期无显著差异。研究结果为草地贪夜蛾在小麦上的预测预报和有效防控提供了基础数据。  相似文献   

12.
Bt玉米已在美洲广泛种植20多年,成功控制了欧洲玉米螟Ostrinia nubilalis、草地贪夜蛾Spodoptera frugiperda等玉米重大害虫为害。然而,近年来相继报道在波多黎各、巴西、阿根廷因草地贪夜蛾产生抗性而导致一些Bt玉米抗虫性丧失。尤其是在热带和亚热带地区,多数Bt玉米品种商业化种植仅3年就丧失了对草地贪夜蛾的抗性。本文分析了草地贪夜蛾的生物学和生态学、对Bt杀虫蛋白抗性遗传特征和交互抗性特性、种群抗性基因频率等内因对抗性演化的影响,以及Bt玉米种植的生态环境、耕作栽培制度、Bt玉米种类、抗性治理策略实施情况等外部环境因素对抗性演化的影响。根据我国玉米种植的生态格局,提出了"整体布局,源头治理"的抗性治理对策。即在草地贪夜蛾周年繁殖区要谨慎种植Bt玉米,尤其是避免种植表达Cry1Ab杀虫蛋白的Bt玉米,以避免源头产生抗性而危及温带玉米主产区。遵循差异化(不同杀虫作用机理)选择Bt玉米品种原则,制定精准抗性监测计划,以高剂量-庇护所为抗性治理基本策略,在Bt玉米资源有限的情况下,落实好庇护所尤为重要。  相似文献   

13.
陕西玉米病毒病及流行因素研究   总被引:5,自引:0,他引:5  
 研究结果表明:陕西玉米病毒病毒原主要有玉米矮花叶病毒B株系(MDMV-B)、玉米粗缩病毒(MRDV)和大麦黄矮病毒(BYDV)。用血清鉴定225份病株样品中,MDMV-B、MRDV和BYDV侵染分别占40%、23%、4.5%。MDMV-B和MRDV复合侵染占23.5%。在田间自然条件下,MDMV-B主要通过玉米蚜和禾谷缢管蚜以非持久性传播,MRDV则由灰飞虱以持久传播。MDMV-B、MRDV和BYDV的粒子大小分别为735~755 nm×17 nm、70~75 nm和23~30 nm。随着玉米生育成熟,侵染逐渐降低,为害亦趋减轻。研究认为,玉米品种、播种期、播量、田间传毒介体数量及发生早晚和地膜覆盖等是影响玉米病毒病流行的主要因素。  相似文献   

14.
国产Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾的抗性测定   总被引:1,自引:0,他引:1  
草地贪夜蛾Spodoptera frugiperda(J.E.Smith)是世界性重大农业害虫。种植转基因Bt作物是主要的防治手段之一。我们利用室内生物测定方法评价了国产Bt-Cry1Ab玉米(转化体C0030.3.5)和Bt-(Cry1Ab+Vip3Aa)玉米(转化体DBN3601和DBN3608)对草地贪夜蛾1~4龄幼虫的毒力。结果显示,供试两种转基因玉米共6个品种皆可高效表达目标杀虫蛋白并对草地贪夜蛾具有很强的毒杀作用,对1龄幼虫的致死率达到59%~100%,存活幼虫的生长发育亦受到显著抑制。表明国内研发的Bt-Cry1Ab玉米和Bt-(Cry1Ab+Vip3Aa)玉米对草地贪夜蛾具有良好的控制效果,其中Bt-(Cry1Ab+Vip3Aa)玉米的防治效果显著优于Bt-Cry1Ab玉米,两种转基因玉米皆具有较好的商业化应用前景。  相似文献   

15.
16.
为研究茉莉酸(jasmonic acid, JA)信号途径在玉米响应玉米褪绿斑驳病毒(maize chloroticmottle virus, MCMV)侵染中的作用,利用外源喷施茉莉酸甲酯 (methyl jasmonate, MeJA)方法,采用病毒诱导的基因沉默技术以及玉米原生质体过表达探究JA信号途径是否参与玉米抗MCMV侵染。结果表明,相比于对照, MCMV在外源喷施MeJA的玉米植株上引起的褪绿和花叶症状明显减轻, MCMV基因组RNA积累水平下降了69%,外壳蛋白 (coat protein, CP)积累水平下降了43%,表明MeJA处理提升了玉米植株对MCMV的抗性。在沉默JA信号途径抑制基因 ZmJAZ5的玉米植株上,相比于对照植株, MCMV引起的褪绿及花叶症状也明显减轻, MCMV的基因组RNA积累水平下降了71%, CP积累水平下降了56%。在玉米原生质体中过表达ZmJAZ5后,与对照相比, MCMV基因组RNA积累水平上升了1.58倍, CP积累水平上升了1.34倍。表明JA信号途径在玉米抵抗MCMV侵染过程中发挥着关键作用。  相似文献   

17.
18.
Maize production trials carried out in eastern middle of Germany from 1999 to 2009 were used for statistical analysis of the optimum date for silage maize ripeness. The knowledge about difference in ripeness between grain and residual plants at the harvest were used for exactly choice of cultivar under drought conditions for silage and energy maize: The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of residual plants) is more suitable for the leading of plant development, the determination of harvest date and the choice of cultivar as the dry matter content of the whole plant. The analysis is cheaper as well as not so material and time-consuming with the better financially results in feed-, milk- and methane production in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Basically, the harvest of silage maize to be carried out at the maximum possible ripeness index in all years, on every site, regardless of the variety to perform their silage maize ripeness number (SRZ), the heat sum and the calendar. The requirements for the varieties in the silo and energy maize are identical. The phenological ensilage optimum and yield maximum correspond with the physiological ripeness of silage maize and are close to the grain dry matter content of 63% and a ripeness index from 2.6 to 2.9 depending on quality and yield parameters. The maximum ripeness on the basis of SRI from greater than 2.9 at physiological ripeness grain to be exceeded. Only under these conditions it is possible to reach the optimal ripeness of 30–35% in the whole plant silage maize (22–24% dry matter in the stover). The wide ripeness ratio between grain and stover is multifunctional guarantor for the better plant health, for example with regard to the zearalenone and carotene content, the resource efficiency of fertilizer-N in accordance with the yield-related N denials and soil stocks in N as well as basic product safety and sustainability of the procedure of silage maize. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Silage maize Ripeness Number (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in relation with the dry matter of residual plants are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize at the harvesting time. SRI is also universal suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence universally appropriate and multifunctional.  相似文献   

19.
Data from the Central German variety trials was evaluated, to with the Silage maize Ripeness-Index (SRI) the off-ripe-specific type in its significance and impact on selected parameters of the quality, the yield of silage and energy maize, as well as the appropriate feeding of ruminants with rations of higher maize proportions. The characterization of the ripe type on the basis of SRI is closely associated with statements to maize ripening, reproducibility of variety performance, site suitability and environmental conditions of production in the context of the Dynamic Ripening and Analysis system (DRA). The environmental stability of maize varieties characterizes the type of variety that exerts a dominant role over the ripeness level on the production of silage maize. The difference between type and productivity as well as feed value was demonstrated. For a location and physiological ruminant feeding of maize in relation to the type are been conclusions in the field of plant health, ground feeding uptake, structure impact and physiological grain hardness. As a result of this evaluation a comprehensive advantage of the environment stable variety type with slow ripening maize (residual) plant is to determine which cannot be evidenced and used with the present system of ripeness of use-specific classification.  相似文献   

20.
玉米纹枯病研究进展   总被引:14,自引:0,他引:14  
玉米纹枯病已成为我国玉米生产上一种重要病害,且有逐年加重的趋势。本文系统介绍了玉米纹枯病症状、病原菌、致病机理、发病规律、防治措施以及玉米纹枯病抗性遗传等方面的研究进展,并从实际出发,提出了抗玉米纹枯病育种的分子标记辅助选择策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号