首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is the irreversible change of mechanical, physical, and chemical properties of materials; the main objective of this work was to study the photochemical degradation and structural changes of three major Algerian wood species. For this, we evaluated the photodegradation mechanism for Maritime Pine (Pinus pinaster), zeen oak (Quercus canariensis), and afares oak (Quercus afares) by accelerated aging in a Xenon test chamber. Degradation of the samples was established by an initial color change (after 30 h exposure), followed by roughening and cracking (120 h exposure) as translated by scanning electron microscopy and Fourier transform infrared spectroscopy. The discoloration of irradiated wood samples was primarily related to the decomposition of lignin which is the key structure in wood photodegradation. As expected, a decrease in mechanical properties was observed; for all samples, the modulus of elasticity decreased after aging, indicating that the wood specimens loss some of their stiffness.  相似文献   

2.
The study investigated and compared the behaviour of four wood species, originating from Europe and China, in terms of temperature-induced artificial ageing. It was conducted at 100 °C for a total period of 288 h. Ageing effects were evaluated by colour measurements in the CIE Lab system and by FTIR analysis. Colour changes were then related to chemical changes in the wood. The investigated wood species were European ash (Fraxinus excelsior), European walnut (Juglans regia), Chinese ash (Fraxinus mandshurica) and Chinese walnut (Juglans mandshurica). Colour changes were maximum for European ash and minimum for Chinese ash, while European walnut and Chinese walnut evolved quite similarly. Main chemical changes due to temperature ageing were reduction of hydroxyl groups, increase of the unconjugated carbonyl groups and an apparent slight increase of lignin, more evident for European ash and delayed for European walnut. Formation of aromatic carbonyl conjugated groups as quinoid structures as a result of oxidative reactions was revealed especially for European ash. The different behaviour of the studied wood species may be explained by their different chemical composition, especially hemicelluloses, lignin and extractives content.  相似文献   

3.
The lignin chemical structures of eight species of the Selaginella family, which are primitive vascular plants, were characterized by alkaline nitrobenzene oxidation, acidolysis, and ozonation. Selaginella involvens, Selaginella tamariscina, and Selaginella remotifolia were collected from the University Forest in Chiba, the University of Tokyo, Japan, and Selaginella biformis, Selaginella pennata, S. involvens, Selaginella chrysorrhizos, and unidentified Selaginella species (Selaginella sp.) were collected from northern Thailand. Lignin of all Selaginella species examined in this study was rich in syringyl nuclei. It was confirmed that a considerable portion of syringyl nuclei of Selaginella lignin formed syringylglycerol-β-aryl ether intermonomer linkages. The major diastereomer of arylglycerol-β-aryl ether intermonomer linkages of Selaginella lignins was the erythro-form exhibiting angiosperm lignin characteristics. In addition, lignins of S. involvens, S. tamariscina, and S. remotifolia collected from the University Forest in Chiba, the University of Tokyo, Japan, were isolated according to Björkman’s procedure, and structural features of the lignins were spectrometrically analyzed. It was confirmed that lignin of Selaginella species, which are primitive pteridophytes, was typical guaiacyl-syringyl type as well as being similar to angiosperm lignin.  相似文献   

4.
In this work, pretreatment of wood meals using a recycled ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate ([Emim]Ac), enhanced glucose liberation by enzymatic saccharification, without dissolution of cellulose and lignin. In contrast, previous studies on IL pretreatment have mostly focused on lignocellulosic dissolution to regenerate cellulose and removing lignin. Softwood (Cryptomeria japonica) was pretreated with [Emim]Ac at 60–100 °C for 2–8 h without collecting regenerated cellulose. The pretreatment did not have a strong effect on wood component dissolution (weight of residues: 91.7–98.8%). The residues contained relatively high amounts of lignin (26.6–32.6%) with low adsorption of [Emim]Ac (0.9–2.7%). Meanwhile, the crystallinity index (C r I) of cellulose in the wood was significantly reduced by pretreatment, from 50.9% to 28.4–37.1%. In spite of the high lignin contents in the residues, their glucose liberation values by enzymatic saccharification using a cellulase mixture were 3–16 times greater than that of untreated wood. A good correlation was found between the saccharification effectiveness of pretreated samples and the C r I. Although lignin dissolved in [Emim]Ac continued to accumulate after repeated use of [Emim]Ac, the pretreatment was found to be effective for three consecutive cycles without the need to remove the dissolved materials.  相似文献   

5.
Trochodendron aralioides Sieb. et Zucc. and Chloranthus glaber (Thunb.) Makino [Sarcandra globra (Thunb.) Nakai] belong to primitive angiosperms, and are characterized by the absence of vessels. Ephedra sinica Stapf, which is classified in the gymnosperms, contains vessel elements and fiber together with tracheids. Podocarpus macrophyllus (Thunb. Ex Murray) D. Don var. macrophyllus is reported to give a weak positive Mäule test, although it is classified as a gymnosperm. Podocarpus macrophyllus gave only vanillin on alkaline nitrobenzene oxidation, while E. sinica, T. aralioides, and C. glaber gave both vanillin and syringaldehyde. The molar ratio of syringyl to guaiacyl nuclei (S/V ratio) of C. glaber was significantly low (S/V = 0.08) in comparison with the value for T. aralioides (S/V = 1.56). The erythro form is the predominant diasteromeric form of β-O-4 intermonomer linkages of T. aralioides and E. sinica [molar ratio of erythro to threo forms (E/T ratio): 1.93 and 1.67, respectively]; however, P. macrophyllus and C. glaber lignins, of which S/V ratios were 0 and 0.08, gave approximately equal amounts of erythro and threo forms (E/T ratio: 1.01 and 1.14). Results from 1H NMR spectroscopy agree well with S/V ratios of alkaline nitrobenzene oxidation and E/T ratios of ozonation products. In conclusion differences in guaiacyl lignin and guaiacyl-syringyl lignin do not exactly reflect taxonomical differences, as reported in previous articles. It was found that guaiacyl-syringyl lignin is not necessarily linked to the presence of vessels.  相似文献   

6.
Thermoplastic processing of lignin is restricted by its high glass transition temperature (T g). In this study, lignin was modified with polyethylene glycol (PEG) during steam explosion to improve its thermoplastic properties, and the effects of steam explosion and PEG on the chemical structure and thermal properties of lignin were investigated. Structure characterization using Fourier transform infrared spectroscopy showed that hydroxyl and ether functional groups increased and the activity of lignin was improved by steam explosion. In addition, steam explosion treatment was more effective than heat treatment for promoting the reaction of PEG with lignin. Solid-state 13C NMR revealed that PEG was grafted onto lignin. The T g of raw lignin was 164.1 °C; after steam explosion, lignin exhibited more than one T gs. The T g of lignin was reduced when the steam explosion temperature increased and decreased further, to around 60 °C, when PEG was used to modify lignin. Therefore, this work provides an effective approach to reducing the high T g of lignin.  相似文献   

7.
Natural regeneration of windthrow areas is an important issue when planning forestry measures after forest disturbances. Seedling recruitment was investigated in storm-damaged hemiboreal mixed forests in eastern Estonia. The establishment and growth of seedlings from natural regeneration was registered for tree species in soil pits and in mounds of uprooted trees in stands that were either heavily or moderately damaged. Seedling growth is expected to be better in large but shallow soil pits created by uprooted Norway spruce [Picea abies (L.) Karst.] and poorer in small but deep pits created by the hardwoods in the area, silver birch (Betula pendula Roth.) and European aspen (Populus tremula L.). The most abundant regenerating species was birch. Pits hosted larger seedling numbers than mounds, due to soil instability in mounds. Rowan (Sorbus aucuparia L.) showed significantly faster growth than the other seedling species. Norway spruce pits were preferred to pits of other species by both birch and spruce seedlings. Black alder [Alnus glutinosa (L.) J. Gaertn.] did not show a preference for pits of a certain species of uprooted tree. Both spruce and rowan preferred hardwood mounds over spruce mounds. Storm severity also affected species composition: birch predominantly occurred on pits and mounds in heavily disturbed areas, while spruce was more abundant in the moderately damaged areas. The effects of advance regeneration and surrounding stands on seedling microsite preferences should be considered in future research and subsequent management recommendations.  相似文献   

8.
Non-woody biomass species have high-energy potentials, which could be used for bioenergy production. Invasive species are species spreading into areas, where they are not native, consequently causing environmental and economic problems. Therefore, the present study evaluated the proximate, ultimate, chemical, and fuel characteristics of wood and charcoal of three invasive non-forest tree species in Saudi Arabia: Calotropis procera, Rhazya stricta, and Phragmites australis, which were compared with the wood of Acacia tortilis, a preferable local fuelwood. All these data were discussed to investigate the possibility of using the invasive plants for energy production. The thermal behavior of wood was analyzed using thermo-gravimetric and derivative thermo-gravimetric methods. Overall, compared with the wood of A. tortilis, the woods of R. stricta and P. australis are suitable for energy production. The charcoal produced from P. australis emitted less nitrogen (N) oxide than that of R. stricta.  相似文献   

9.
Transmittance and reflectance of visible light by sugi wood (Cryptomeria japonica) were investigated in the longitudinal (L) and tangential (T) directions. Transmittance was the highest in the L direction and reflectance was the highest in the T direction, suggesting that structural anisotropy influences transmittance and reflectance. Intra-ring variations observed with a microspectrometer indicated that T transmittance was higher for latewood than for earlywood, but there was no such trend in for L transmittance in which the highest levels occurred near the annual ring boundaries, on either the earlywood or latewood side, and the lowest at the transition from earlywood to latewood. Dependence of L transmittance on wavelength also showed variations according to the intra-ring position. The increasing of transmittance of earlywood at wavelengths?<?500 nm with increasing wavelength was observed, but this was not confirmed for latewood because of absorption by lignin. These observations supported a previously published finding, which was based on measurements in the radial direction, that the number of internal cell wall reflections, rather than density, determines wood lightness. Indeed, in the L direction, most of the incident light passes through lumens in earlywood and through cell walls in latewood, while it is subjected to numerous internal reflections at the interface between lumens and cell walls. This was further confirmed by the transmittance of earlywood being greatly decreased by radial compression.  相似文献   

10.
Wood samples of apitong (Dipterocarpus grandiflorua) and ilang-ilang (Ilang-Ilang C. dadloyi) and feces of termites [Cryptotermes brevis (Walker)] fed on these woods were collected from University of the Philippines, Los Baňos. Lignin of each sample was isolated by Björkman’s procedure. There was no significant difference in 1H nuclear magnetic resonance (NMR) spectra or in the methoxyl content between Björkman lignins from original woods and termite feces. Differences were detected in the contents of aliphatic and unconjugated phenolic hydroxyl groups, suggesting minor structural changes of lignin during digestion by termites. In addition, the ratio of syringyl to guaiacyl nuclei of Björkman lignin from termite feces determined by 1H NMR spectra was higher than those from the original woods. The molar ratio of syringyl to guaiacyl nuclei of termite feces was higher than those from the original woods as determined by alkaline nitrobenzene oxidation. These results suggest that the structural changes of lignin in the termite gut are due to the insignificant formation of C-C linkages in guaiacyl nuclei. It was concluded that there were minor changes in the structural features of lignin under mostly anaerobic conditions, in contrast to the significant changes that occur through biological modification under aerobic conditions.  相似文献   

11.

Key message

Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

Context

Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

Aims

Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

Methods

Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

Results

Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

Conclusion

Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
  相似文献   

12.
Pathogen occurrence was studied in 16?099 adult specimens of 10 different bark beetle species, which live associated on Norway spruce (Picea abies (L.) Karst.). Beetles (mainly Ips typographus L. and Pityogenes chalcographus L.) were collected from 6 different localities in Austria (4 secondary spruce stands and 2 natural forest type stands, 9 sampling plots in total) in elevations between 400?m and 1600?m. Various viral, protozoan, and fungal pathogens could be diagnosed with a light microscope in the examined beetles. Numerous pathogen species were known from former studies, some pathogens were totally new or could be found in a new host species beside their type host. The most dominant pathogen species were Protozoa, Gregarina cf. typographi, Malamoeba cf. scolyti, and Chytridiopsis cf. typographi. Over the whole investigation period, the highest pathogen diversity with eight pathogen species was found in I. typographus. Differences were observed in the pathogen complex of each beetle species from the different collection sites and in different years of investigation. Several species showed an overlapping in their host range and infected various bark beetle species. Furthermore, pathogen occurrence and prevalence differed in bark beetles from 4 different sampling plots in an area (one locality) within a distance of a few kilometres.  相似文献   

13.
Forest tree species in the eastern US such as American chestnut (Castanea dentata (Marsh.) Borkh) and oaks (Quercus spp.) have been negatively impacted by forest changes over the past century. Many mature, introduced pine (Pinus spp.) plantations exist in the Midwest US following establishment 50–60 years ago yet have little economic and ecological value. As oak and chestnut have similar site preferences to pines, these stands may be ideal sites for hardwood restoration plantings. We sought to determine optimal management strategies for converting pine plantations by manipulating their canopies. We underplanted hybrid American chestnut and northern red oak (Quercus rubra L.) seedlings into three canopy treatments (control, shelterwood, clearcut) and included an open field treatment. For each of two growing seasons, 0, 30, or 60 g 19N–6P–12K of controlled-release fertilizer (CRF) were also applied to seedlings. Soil chemical parameters and leaf nutrients were analyzed throughout the study. Chestnut and oak seedlings had significantly greater height after two growing seasons in the clearcut and shelterwood than the control and open field, and chestnut had significantly greater diameter as well. Chestnut height and RCD growth were threefold that of oak after two growing seasons. In general, fertilization increased seedling growth more in the clearcut and open field than shelterwood and control for both species. Soils had significantly higher pH, K, and S in the open field than in pine stands. Results suggest that pine plantations may serve as target sites for restoration of these hardwood species. Shelterwoods and clearcuts are both favorable conversion options for oak and chestnut, and addition of CRF may augment further growth increase, especially in open environments.  相似文献   

14.
The influence of moisture content (MC) on the orthotropic viscoelasticity of Chinese fir wood (Cunninghamia lanceolata [Lamb.] Hook.) has been examined in low temperature environment. Storage modulus E′ and loss modulus E″ of wood with six different levels of MC ranging from 0.6 to 22.0% were determined from ??120 to 40 °C and at multi-frequency range of 0.5, 1, 2, 5, and 10 Hz using a TA instruments® Dynamic Mechanical Analyzer (DMA 2980). The results showed that a distinct moisture dependency is exhibited by the orthotropic viscoelastic behaviour of Chinese fir wood. With the exception of some apparent activation energy (ΔE) for β-relaxation process, the E′ decreased and the E″ peak temperatures moved towards lower temperature and the ΔE for α-relaxation process became lower with MC increasing in all orthotropic directions, whereby individual decline of E′ and the E″ peak temperatures were affected by MC to different degrees. Besides, a little E″ peak at around 0 °C was only seen in L direction, which could be attributed to the melting of frozen water. Furthermore, the dynamic viscoelastic behavior of wood is also dependent on the measurement frequency. The findings suggest that the orthotropic structure and moisture content have an important influence on the viscoelastic performance in low temperature environment.  相似文献   

15.
16.
During June 2013 to March 2014, several visits were made to the truffle-bearing areas of Kermanshah province, Iran. In this study, two specimens associated with roots of oak (Quercus brantii Lindl.) were identified as Tuber aestivum Vittad based on morphological and cytological characteristics. Internal transcribed spacer (ITS) region was amplified by PCR using primer pair ITS1/ITS4 and the sequences were analyzed. Phylogenetic trees constructed based on ITS sequences revealed that all Iranian specimens were in the same branch in a clade with T. aestivum reported from others. All T. aestivum sequences, including Iranian specimen, showed an average of 97 % similarity (ranged from 96 to 100 %). The results of physico-chemical analyses on soil samples collected from oak forest indicated that T. aestivum was prevalent in the sandy soil with rather low phosphorus concentration, low in organic matter, and high CaCo3. To our knowledge, this is the first report of T. aestivum and its host plant from Iran.  相似文献   

17.
The natural resistance of Erythrophleum fordii Oliver wood to degradation by Phanerochaete sordida and Phanerochaete chrysosporium white-rot fungi was investigated. In this study, Fagus crenata Blume (Japanese beech) was selected as reference species. The results showed that both fungi caused less than 2% mass loss in E. fordii wood, while the degradation of beech wood produced by P. chrysosporium and P. sordida was approximately 12 and 14%, respectively. Microscopic observations revealed high structural rigidity of E. fordii timber. Hyphae were only observed in the lumen of vessels and parenchymal cells, while the fibers were not affected. The E. fordii wood fiber consisted of highly lignified thick-walled fibers with the fiber lumina almost completely closed. Two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance evaluation revealed the E. fordii wood to have a highly condensed-lignin structure that reflected by the durability classes. These unique parameters are likely to be critical for the high natural resistance of E. fordii.  相似文献   

18.
In this study, to summarize the changes of thermal-softening behaviors of wood and acetylated wood due to differences in the kinds of swelling liquids, the following measurements were conducted. Untreated and acetylated wood samples were swollen by various liquids and the temperature dependences of the dynamic viscoelastic properties were measured after the heating and cooling histories were unified among the samples. The results obtained are as follows. Untreated samples swollen by high-polarity liquid had lower peak temperature of tanδ, however acetylated samples had higher peak temperature of tanδ than those of untreated wood. On the other hand, untreated wood samples swollen by low-polarity liquid had higher peak temperature of tanδ, however acetylated samples had lower peak temperature of tanδ than those of untreated wood. The amount of swelling is determined by interaction between wood and liquid due to proton-accepting power and molar volumes of liquid and so on, therefore the peak temperature of tanδ and degree of reduction in dynamic elastic modulus () with increasing temperature were corresponded to the amount of swelling.  相似文献   

19.
Effect of severe thermal treatment on spruce and beech wood lignins   总被引:1,自引:0,他引:1  
  • ? The structure, proportion and mode of assembly of lignin, celluloses and hemicelluloses have marked effects on the reaction mechanisms during thermal treatment and therefore have a strong influence on the quality of the final product. The effect of treatment conditions, including severe conditions (up to 553 K) and treatment duration (up to 8 h) on the structure of native spruce and beech lignins was studied.
  • ? Lignin content was determined by the Klason method and lignin structure was evaluated by thioacidolysis.
  • ? The results highlighted the strong reactivity of the native spruce and beech lignins towards severe heat treatments. The distinct susceptibility of syringyl (S) and guaiacyl (G) units towards thermal treatment is confirmed by comparing the data for beech and spruce samples. The most severe treatment of spruce wood (280 °C) induced a dramatic enrichment in lignin content together with the almost complete disappearance of G lignin units, whereas a more moderate treatment substantially changed lignin structure by degradation reactions that affect the p-hydroxyphenyl (H) and G lignin units similarly.
  • ? Thioacidolysis revealed that the thermal treatment induces the appearance of vinyl ether structures in spruce lignins. The decreased yield of the G and S thioacidolysis monomers reflects the progressive disappearance of G and S lignin units only involved in β-O-4 bonds and the formation of condensed linkages in proportions related to treatment severity. In severe conditions, β-O-4 linked S units are more degraded than their G homologues.
  •   相似文献   

    20.
    Niche differentiation, in terms of time and space, has been reported within a community of ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) in a tree trunk. Two platypodid ambrosia beetles, Platypus quercivorus (Murray) and Platypus calamus Blandford, utilize a similar height range with respect to the Quercus serrata Murray (Fagaceae) trunk. The sapwood and heartwood (i.e., wood types) are known to differ in their physical and chemical characteristics. The objective of this study was to determine the differences among ambrosia beetles, in terms of wood type preferences, in a Q. serrata tree trunk. We analyzed the horizontal distribution patterns of ambrosia beetles within two mature Q. serrata tree trunks. Platypus calamus and the other ambrosia beetles [P. quercivorus, Ambrosiodmus lewisi (Blandford), Ambrosiophilus atratus Eichhoff, and Xyleborus sp.] showed different horizontal distribution patterns within the wood. The former tended to utilize the heartwood, whereas the latter utilized the sapwood. These results suggest that the wood type can be regarded as one of the niche dimensions of ambrosia beetles in a Q. serrata trunk.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号