首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10?15 S cm?1 (neat PVDF) to 7.1×10?7 S cm?1 of the PVDF composite with 10 wt% hybrid filler.  相似文献   

2.
High thermal conductive polymer composites have recently attracted much attention, along with the quick development to the electronic devices toward higher speed. The addition of high thermal conductive fillers is an efficient method to solve this problem. Here, we introduced superfullerene (SF), a novel zero-dimensional carbon-based filler, and incorporated into PVDF by a solution method. The effects of SF filler on the thermal conductivity of PVDF composites were systematically investigated. It was found that PVDF composites exhibited an improvement in thermal conductivity at a low SF loading. PVDF composites with only 5 wt% SF filler present the thermal conductivity value of 0.365 Wm-1K-1, which is as much as 121 % enhancement in comparison with that of neat PVDF. In view of the excellent thermal transport performance, the composites may enable some applications in thermal management in the future.  相似文献   

3.
A novel in-situ nano hybrid technique combined with industrialized wet phase inversion coating-forming process was developed for the modification of polyurethane (PU) leather coating with nano-SiO2. During the wet phase inversion process, nano-SiO2 particles were in-situ generated synchronously as polyurethane resin coagulated. Scanning electron microscope analysis indicated that when the SiO2 concentration was limited within 1.5 wt%, the size scale of in-situ generated nano-SiO2 ranged from 70 to 150 nm, which were well-separated and dispersed uniformly throughout the PU coating. After nano hybridization, extra mesopores were detected in the PU coating by nitrogen adsorption/desorption experiment. These mesopores were correlated with enhanced water vapor and gas (hydrogen, nitrogen, and oxygen) permeability, which could improve the breathability or wear comfort of PU leather. In spite of extra mesopores, the hybrid PU coating maintained comparable hydrostatic pressure to control. Nevertheless, when the SiO2 concentration was increased up to more than 1.5 wt%, micro-SiO2 particles and agglomerates dominated throughout the PU coating, which obstructed mass transportation and lowered the breathability of the coating. Without disturbing established wet phase inversion coating-forming process in PU leather industry, the novel in-situ nano hybrid technique developed in this study may be of great potential for producing PU leather with improved breathability on an industrial scale.  相似文献   

4.
Based on the situ preparation of silica nanoparticles (SiO2) on the surface of Graphene nanoplatelets (GNPs) in the previous work, these unique three dimensional (3D) materials were introduced into epoxy resin to study the reinforcing and toughening synergy effect on the composites. Firstly, the tensile tests showed that Graphene/SiO2 hybrid materials attached with different size of SiO2 particles exhibited different reinforcing and toughening effect on the composites. With the increasing of the diameter of SiO2 particles, the toughness and strength properties of the composites firstly improved and then decreased, and when the average diameter was 0.14 μm, the elongation reached the max.. Meanwhile, the fractured surfaces presented on SEM images were consistent with the results of the tensile tests, which further explained the hybrid materials increased the interfacial adhesion between the fillers and matrix, leading to significant improvement in mechanical properties. Moreover, the DSC curves demonstrated that Graphene/SiO2 hybrid materials accelerated the curing process of epoxy resin due to the cross-link structure between fillers and matrix. Lastly, the crack propagation modes were built to clarify the synergy effect mechanism of reinforcing and toughening on nanoparticles/epoxy resin composites.  相似文献   

5.
The graphene oxide (GO) sheets are chemically grafted with γ-etheroxygentrimethoxysilane (KH560) and liquid crystalline epoxy (LCE) is synthesized from 4,4′-bis(2-hydroxyhexoxy)biphenyl (BP2) and epichlorohydrin before being incorporated into epoxy matrix. Then we present a novel approach to the fabrication of advanced polymer composites from epoxy matrix by incorporation of two modifiers, which are grafted GO (g-GO) and LCE. The mechanical properties of epoxy composites are greatly improved by incorporating LCE/g-GO hybrid fillers. For instance, the addition of 3 wt% hybrid filler (2 wt% g-GO and 1 wt% LCE) into the epoxy matrix resulted in the increases in impact strength by 132.6 %, tensile strength by 27.6 % and flexural strength by 37.5 %. Moreover, LCE/g-GO hybrid fillers are effective to increase thermal decomposition temperature, glass transition temperature, and storage modulus by strong affinity between the fillers and epoxy matrix.  相似文献   

6.
We have manufactured poly(vinylidene fluoride) (PVDF)-based nanocomposite films with different graphene contents of 0.1~10.0 wt% by ultrasonicated solution-mixing and melt-compression. As a reinforcing nanofiller, graphene sheets are prepared by rapid thermal expansion of graphite oxide, which are from the oxidation of natural graphite flakes. Graphene sheets are characterized to be well exfoliated and dispersed in the nanocomposite films. X-ray diffraction data confirm that the α-phase crystals of PVDF are dominantly developed in the nanocomposite films during the meltcrystallization. DSC cooling thermograms show that the graphene sheets serve as nucleating agents for the PVDF α-form crystals. Thermal stability of the nanocomposite films under oxygen gas atmosphere is noticeably improved, specifically for the nanocomposite with 1.0 wt% graphene. Electrical volume resistivity of the nanocomposite films is substantially decreased from ~1014 to ~106 W cm, especially at a critical graphene content between 1.0 and 3.0 wt%. In addition, mechanical storage modulus is highly improved with increasing the graphene content in the nanocomposite films. The increment of the storage modulus for the nanocomposite film at 30 °C with increasing the graphene content is analyzed by adopting the theoretical model proposed by Halpin and Tsai.  相似文献   

7.
A series of CNTs/SiO2/thiazole dye hybrid materials prepared via the sol-gel process is synthesized from carbon nanotubes (CNTs) and tetraethoxysilane with heteroaryl 4-phenyl-2-amino-thiazole dyes. Heterocyclic 4-phenyl-2-aminothiazole dyes are processed with the hydrolysis-condensation reaction at a constant ratio of vinyltriethoxysilane and tetraethoxysilane condensed with modified CNTs in appropriate proportion under a catalyst. The structures of the CNTs/SiO2/thiazole dye hybrid materials are characterized by Fourier transform infrared spectroscopy (FTIR). Polytrimethylene terephthalate (PTT) fabrics are used to evaluate the morphology structure by scanning electron microscopy (SEM). SEM images show that a uniform dyeing on the PTT fabrics to confirm the reaction of hybrid materials with PTT fabrics. The washing fastness, color evenness, water contact angle, air permeability, electric conductivity, and weatherability of PTT fabrics dyed with CNTs/SiO2/thiazole dye hybrid materials are evaluated, with results indicating improved conductivity and water-repellent.  相似文献   

8.
The interface of fiber-reinforced composites has remained a vexing problem that limits the use of the excellent properties of carbon fiber (CF) in composite applications. In the present study, waterborne polyurethane (WPU) hybrid sizing agents were prepared to improve the performances of CFs and the interface strength of CF/PA6 composites. The structural and mechanical properties of the single-CF and CF/PA6 composites were systematic investigated. The results showed that the mechanical properties of the CF/PA6 composites were significantly improved by adding of WPU hybrid sizing agent. The tensile and flexural strengths of the WPU/SiO2/Al2O3 hybrid sizing agent treated CF/PA6 composites were increased by 24.0 % and 25.7 % than those of no-sizing treated CF/PA6 composites, respectively.  相似文献   

9.
The nanofiber membrane prepared by electrospinning has been widely applied in lithium-ion batteries. A powerful strategy for designing, fabricating and evaluating Poly-m-phenylene isophthalamide (PMIA) nanofiber membrane with SiO2 nanoparticles was developed by electrospinning in this paper. The morphology, crystallinity, thermal shrinkage, porosity and electrolyte uptake, and electrochemical performance of the SiO2/PMIA nanofiber membranes were investigated. It was demonstrated that the nanofiber membrane with 6 wt% SiO2 possessed notable properties, such as better thermal stability, higher porosity and electrolyte uptake, resulting in higher ionic conductivity (3.23×10-3 S·cm-1) when compared with pure PMIA nanofiber membrane. Significantly, the SiO2/PMIA nanofiber membrane based Li/LiCoO2 cell exhibited more excellent cycling stability with capacity retention of 95 % after 50 cycles. The results indicated that the SiO2-doped PMIA nanofiber membranes had a potential application as separator in high temperature resistance lithium-ion batteries.  相似文献   

10.
PP/POSS and PP/SiO2 composite non-woven fabrics filled with polyhedral oligomeric silsesquioxanes (POSS) and SiO2 respectively using a convenient blending method were prepared through melt-blown process with corona charging. The morphology of the composite fibers and the distribution of POSS and SiO2 nanoparticles in PP matrix were investigated by field-emission scanning electron microscope (FSEM) and transmission electron microscope (TEM), respectively. POSS and SiO2 can act as nucleating agent and accelerate the crystallization process during nonisothermal cooling. The shear storage modulus G??, loss modulus G??, and complex viscosity ??* of non-woven fabric reduce when 1 wt % POSS was added and increase for PP5/POSS composite non-woven fabric compared with pure PP non-woven fabrics. However, all G??, G?? and ??* of PP/SiO2 non-woven fabric decrease with increasing SiO2 content owing to plasticization by SiO2. Both stress and elongation at break of the PP/POSS melt-blown non-woven fabrics are improved compared with PP non-woven fabrics, however decrease when SiO2 was added, as compared to the neat PP non-woven fabric. The onset temperature of decomposition for both the PP/POSS and PP/SiO2 composite non-woven fabrics is higher (5?C10 °C) than pure PP and char content is increased with increasing POSS and SiO2.  相似文献   

11.
In this study, we synthesed two kind of TiO2 nanomaterial (nanoparticles and nanofiber) for photocatalitic degradation of methyl orange (MO) as pollutant. TiO2 nanoparticles were synthesized by sol-gel technique using titanium (IV) isopropoxide as precursor. Polyvinyl acetate (PVAc)/TiO2 hybrid nanofibers were fabricated by combining sol-gel process with electrospinning technology, which consisted of PVAc as organic segment and TiO2 as inorganic part. Crystalline phase of TiO2 nanomaterials was investigated by X-ray diffraction (XRD). The XRD results show that the TiO2 nanomaterials crystallize in anatase with some rutile phase and these consist of titanium dioxide nano-crystals. The surface structures of TiO2 nanomaterials were examined using scanning electron microscopy (SEM). SEM scanning revealed that the nanoparticle and nanofibrous structure was formed. Fourier transform infrared spectroscopy (FTIR) was employed to analyze the chemical structures of the PVAc/TiO2 hybrid nanofibers. The FTIR analysis indicated the newly formed associated hydrogen bond because of the hybrid effect between PVAc and TiO2 sol. Finally, The photooxidative decomposition of methylene blue by using the titania nanomaterials was examined and compared.  相似文献   

12.
A novel sulfamic acid intercalated MgAl-LDH (SA-LDH) was prepared by intercalating NH3SO3? into MgAl-layered double hydroxides (LDH), and it was then introduced into poly(lactic acid) (PLA) resin in association with intumescent flame retardant (IFR) by melt blending to prepare a flame-retardant biodegradable PLA composite. The effects of SA-LDH on the flame retardancy of PLA composites were characterized by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test (CONE). The results showed that the composite sample containing 19.0 wt% IFR and 1.0 wt% SA-LDH achieved the maximal LOI value of 48.7 %, passed the UL-94 V-0 rating, and significantly decreased the peak heat release rate from 306.3 kW/m2 of neat PLA to 58.1 kW/m2. Thermogravimetric analysis showed that both the thermal stability and the char formation were enhanced. The char morphology observation revealed that SA-LDH was beneficial to form dense and compact char layers. It was demonstrated that there existed a synergistic effect between IFR and SA-LDH in promoting the char formation and enhancing the fire resistance. The mechanical and crystallization properties were also tested and discussed.  相似文献   

13.
The ligno-cellulose natural fabric from the polyalthia cerasoides tree was analyzed by FTIR, chemical, X-ray and thermo gravimetric methods. The morphology of the fibers was studied by scanning electron and polarized optical microscopic methods. The tensile properties were also studied. The effect of alkali treatment on the properties of the fabric was studied. The FTIR and chemical analyses indicated lowering of hemi-cellulose and lignin content on alkali treatment of the fabric. The tensile properties were found to increase on alkali treatment. The x-ray diffraction revealed an increase in crystallinity of the fabric on alkali treatment. The thermal stability of the fabric was also found to increase on alkali treatment. The properties of this fabric were compared with those of two natural fabrics reported in the literature. This uniaxial fabric has sufficient tensile modulus and can be used as reinforcement in the development of green composites.  相似文献   

14.
We investigated the effect of ethylene and vinyl acetate (20/80 mole ratio) copolymer (EVAc80) content in poly(vinylidene fluoride) (PVDF/EVAc80) blends and also varying isothermal crystallization temperatures on the crystalline structure and morphology, and surface topography using different spectroscopic and microscopic techniques. As crystallization temperature increases for the same blend composition, the lamellar splay type spherulite is changed to the concentric ring-banded spherulite, and then to the spiral-ringed spherulite with further increasing temperature. With increasing EVAc80 content in the PVDF/EVAc80 blends, the temperature range, where spiral-ringed spherulites and lamellar splay typeγ-spherulites are present predominantly, becomes much broader. Furthermore, the non-textured spherulite was observed more at highest crystallization temperature with increasing EVAc80 content. The band spacing between bright and dark zone and periodicity between ridge and valley increase with increasing amorphous EVAc80 content.  相似文献   

15.
Titanium dioxide/polyvinylidene fluoride (TiO2/PVDF) composite was prepared by electrospinning process to enhance the dielectric properties for application as a gate insulator in organic thin-film transistors (OTFTs). Scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction were employed to characterize the as-prepared samples, and then their dielectric constants were investigated by impedance analysis. The impedance results show that the dielectric constant of the electrospun TiO2/PVDF nanofibers is higher than those of other samples, demonstrating that electrospun TiO2/PVDF composite can be a proper candidate for gate insulators in OTFTs.  相似文献   

16.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

17.
The miscibility and crystallization behavior of the blends of poly(vinylidene fluoride) (PVDF) and ethylene/vinyl acetate(20/80) copolymer (EVAc80) have been studied using a differential scanning calorimeter and a polarizing microscope equipped with a heating stage. From the melting point depression, the values of interaction energy densityB were calculated to be −1.3004 (cal/cm3) and the Flory-Huggins interaction parameterχ 12 was found to be −0.0818 at 445.6 K. With increasing concentration of EVAc80, the radial growth rate of spherulite was reduced drastically. The FT-IR analysis of samples quenched from the melt to various temperatures showed increasing content ofβ-phase with increasing amount of blended EVA80 along with lower quenching temperature.  相似文献   

18.
Jute fabrics reinforced thermoset composites were prepared with different formulations using urethane acrylate oligomer, methanol, and benzyl peroxide. Jute fabrics were soaked in the prepared formulations and fiber content in the composites was optimized with the extent of mechanical properties. Among all the resulting composites, 55 wt% jute content at oligomer:methanol:benzyl peroxide=75:24.5:0.5 (w/w/w) ratio showed best mechanical properties. The optimized jute fabrics were cured under UV radiation at different intensities and their mechanical properties were measured. Jute fabrics were treated with potassium permanganate (KMnO4) solution of different concentrations (0.01, 0.02, 0.03, and 0.05 wt%) for different soaking times (1–5 min) before the composite fabrication. Optimized jute fabrics (jute fabrics treated with 0.02 wt% KMnO4 for 2 min soaking time) were soaked in the optimized formulation and cured under UV radiation at different intensities and measured their mechanical properties. Scanning electron microscopic investigation showed that surface modification improves fiber/matrix adhesion. Water uptake and soil degradation test of the treated and untreated composite samples were also performed.  相似文献   

19.
Hybrid composites of epoxy novolac reinforced with short bagasse fibres and short coir fibres were prepared. The mechanical and dynamic mechanical properties of these bagasse-coir hybrid fibres reinforced epoxy novolac composites were investigated with reference to different layering patterns of the composites. The tensile properties of the tri-layer composites are recorded higher than those of the bi-layer composites, whereas the flexural properties of the tri-layer composites are lower than bi-layer composites. The tensile strength of the intimate mix composite is comparable with trilayer composite having bagasse as skin material. The effect of layering pattern on storage modulus (E′), damping behavior (tan δ), and loss modulus (E″) was studied as a function of temperature and frequency. The E′ values of the bi-layer composites are recorded lower than those of tri-layer (bagasse/coir/bagasse) and intimately mixed hybrid composites. The minimum E′ value is obtained for the composites made with coir as skin layer. Bi-layer composite shows maximum damping property. The theoretical modeling showed good correlation with experimental results at above glass transition temperature (T g ), while theoretical model deviates experimental data at lower T g . The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites.  相似文献   

20.
试验以26个不同杂交种F1作为研究材料,测定其后代(S1)果穗单粒重和含油率,并对这两个重要性状进行相关分析,采用X2拟合优度检验和经验分布拟合优度检验对每个S杂交种S1(F2)子粒含油率分布的正态性进行了验证。结果表明,所有供试材料平均单粒重为0.29~0.45 g,变异系数为4.4%~19.4%,含油率为4.52%~10.50%,其后代相对变异程度较高,变异系数较大(11.02%~27.9%)。只有材料4053-2 S1子粒含油率分布,无论用哪种方法进行正态分布检验都符合正态分布,其它材料S1子粒含油率的分布不符合正态分布,含油率与单粒重呈极显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号