首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
壳聚糖对盐胁迫下小麦种子萌发及幼苗生理特性的影响   总被引:1,自引:0,他引:1  
以小麦品种偃展08231和小偃986为材料,在150 mmol·L~(-1)Na Cl胁迫处理下,研究了不同浓度的外源壳聚糖(CTS)对小麦种子萌发及幼苗生理特性的影响。结果表明:盐胁迫下,0.1%~0.5%CTS浸种预处理的小麦种子具有较高的发芽势、发芽率、发芽指数、活力指数和ɑ-淀粉酶活性,两个品种均以0.3%的CTS处理效果最佳,与对照相比偃展08231和小偃986的发芽势、发芽率、发芽指数和活力指数分别提高27.84%和25.33%、9.94%和19.95%、38.49%和32.30%,72.72%和82.83%;0.1%~0.5%CTS处理小麦幼苗具有较高的株高、鲜重和干重,其超氧化物歧化酶(SOD)、过氧化物酶(POD)的活性和脯氨酸含量以及根系活力均较高,而丙二醛(MDA)含量较低,其中以0.3%CTS处理效果最好,与对照相比偃展08231和小偃986的株高、鲜重和干重分别提高32.60%和36.74%、26.08%和38.77%、24.05%和35.87%。CTS对小偃986盐胁迫的缓解作用强于对偃展08231的作用。说明一定浓度的外源CTS浸种可促进盐胁迫下小麦种子萌发和幼苗生长,减缓盐胁迫伤害。  相似文献   

2.
以中棉所4l号和中棉所49号为试验材料,通过盆栽试验,研究外源水杨酸(SA)对盐胁迫下棉花幼苗激素水平和生长特性的影响。结果表明:(1)0.6%Na Cl胁迫条件下,棉花幼苗叶片中ABA含量增加,CTK、GA和IAA含量减少,在0.05 mmol·L~(-1)SA浸种+0.2 mmol·L~(-1)叶面喷施复合处理下,中棉所41号和中棉所49号幼苗中ABA含量分别降低了59.14%和76.71%,CTK、GA、IAA含量分别提高了55.39%、21.05%、22.39%和17.08%、12.5%、18.20%,说明SA处理可有效缓解盐胁迫的伤害;(2)ABA/IAA+GA、CTK/IAA和ABA/CTK值在0.6%Na Cl胁迫处理下分别为增高、降低和增高,0.05 mmol·L~(-1)SA浸种+0.2 mmol·L~(-1)叶面喷施复合处理下,中棉所41号和中棉所49号幼苗中ABA/IAA+GA和ABA/CTK值分别降低了63.40%、74.03%和71.66%、79.99%,CTK/IAA值分别增加了28.41%和21.18%,说明SA可使幼苗体内激素恢复动态平衡,促进幼苗的生长发育;(3)0.6%Na Cl胁迫处理下棉花幼苗的株高、根鲜重、茎鲜重和叶鲜重都表现为降低,在不同浓度外源SA浸种和喷施处理下都有所恢复,幼苗根表现最为明显,用0.05 mmol·L~(-1)SA浸种+0.2 mmol·L~(-1)叶面喷施处理0.6%Na Cl胁迫下,两品种棉花幼苗单株鲜重分别增加了24.20%和22.39%。SA能通过调控棉花幼苗激素含量从而提高棉花幼苗的耐盐性,其中以0.05 mmol·L~(-1)SA浸种+0.2 mmol·L~(-1)叶面喷施对缓解棉花幼苗盐胁迫的伤害效果明显。  相似文献   

3.
采用溶液培养方式,研究不同浓度(0、25、50、100 mg·L~(-1)和200mg·L~(-1))5-氨基乙酰丙酸(ALA)对PEG胁迫条件下栀子幼苗有机渗透调节物质含量、光合生理及抗氧化系统等生理生化指标。结果表明,栀子幼苗PEG胁迫14 d,地上和地下部分干重、苗高、根长、相对含水量、光合色素含量、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和水分利用率(WUE)下降;脯氨酸、丙二醛(MDA)、过氧化氢(H_2O_2)含量和相对电导率显著上升,而抗氧化酶(SOD、POD、CAT)活性明显下降,一定浓度ALA处理降低了PEG引起栀子幼苗生理上的压力,50 mg·L~(-1)的外源ALA处理可以显著缓解PEG诱导生长抑制,与单独PEG胁迫处理相比,叶绿素a和叶绿素b含量、净光合速率、SOD、POD、CAT活性、相对含水量和脯氨酸的积累分别提高了25.35%、31.85%、228.68%、41.92%、27.26%、41.50%、170.26%、31.01%,MDA含量、H_2O_2含量和相对电导率分别降低39.00%、31.18%、45.56%。相反,200 mg·L~(-1)ALA处理则可能加剧干旱胁迫伤害。  相似文献   

4.
选用南瓜品种银辉2号为材料,以PEG模拟水分胁迫,采用砂培法研究了不同浓度外源亚精胺(Spd)对南瓜幼苗生长、活性氧代谢、抗氧化酶活性及非酶抗氧化剂和渗透调节物质含量的影响。结果表明:0.9、1.2mmol·L~(-1)外源Spd处理,使渗透胁迫下南瓜幼苗的生物量分别增加了43.40%和36.69%,根系O·2生成速率和膜脂过氧化产物MDA的积累量下降了56.33%、43.50%;0.6、0.9 mmol·L~(-1)Spd处理,不同程度诱导增强了根叶抗氧化酶活性,尤其以0.9 mmol·L~(-1)Spd处理效果最佳,根系和叶片超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性分别为渗透胁迫下的2.00倍、1.83倍和5.47倍、2.40倍,过氧化氢酶(CAT)、过氧化物酶(POD)活性分别提高了410.89%、300.50%和276.25%、331.18%,叶片中脯氨酸(Pro)和可溶性糖含量提高了1.76倍、1.71倍,可溶性蛋白的积累量达渗透胁迫的1.49倍,维持了较高的渗透缓冲和调节能力,根系抗坏血酸(ASA)和谷胱甘肽(GSH)含量升高了2.88倍和2.41倍;渗透胁迫下0.9 mmol·L~(-1)外源Spd处理,抑制了活性氧(ROS)的生成,减轻了由此导致的氧化损伤,抗氧化酶活性的响应和ASA-GSH循环,保护了生物膜系统的稳定,渗透调节物质的含量变化,既维持了细胞与环境的渗透平衡,又增加了光合碳同化产物和蛋白质的积累。表明0.9 mmol·L~(-1)外源Spd维持了渗透胁迫下南瓜幼苗碳氮代谢的正常进行,减轻了胁迫对南瓜苗期的氧化伤害。  相似文献   

5.
以‘陇油8号’油菜为试验材料,研究了不同浓度(1、10、25、50、100μmol·L~(-1))外源ATP预处理对盐胁迫下油菜种子萌发及幼苗生物量、H_2O_2和·OH含量、抗氧化酶活性、膜损伤程度、渗透调节物质及相关基因表达的影响。结果表明,与对照(不用ATP或NaCl处理)相比,用不同浓度的外源ATP处理,可不同程度地提高油菜种子的发芽率和发芽势,25μmol·L~(-1)的ATP处理表现较为显著,发芽率和发芽势分别提高了26.9%和17.2%。25μmol·L~(-1)的ATP+NaCl处理相比较于单独NaCl胁迫处理,油菜种子的发芽率和发芽势分别提高了13.7%和15.0%,油菜幼苗的生物量(根长、株高、鲜重)、2种抗氧化酶活性(CAT、POD)、可溶性糖和脯氨酸含量及相关基因(MAPK3和MAPK6、SOS1和NHX1)的表达量均显著增加,其中根长、株高、鲜重分别增加了23.6%、27.3%、28.6%,CAT、POD活性、可溶性糖和脯氨酸含量分别增加了10.3%、27.0%、15.9%、41.0%;而H_2O_2和·OH含量、丙二醛(MDA)含量及相对电导率分别显著降低了13.6%、6.3%、27.6%、20.5%。以上结果表明,外源ATP浸种能够促进NaCl胁迫处理下油菜的种子萌发,显著提高幼苗的生物量、抗氧化能力及相关基因的表达,降低其膜损伤,增强油菜幼苗的耐盐性。  相似文献   

6.
为了探究外源甜菜碱(GB)提高玉米萌发期和苗期耐寒性的响应机制及比较外源GB对不同玉米时期低温伤害的缓解效果,采用不同浓度外源GB处理耐寒性不同的6份玉米自交系,研究10℃低温胁迫下外源GB对玉米种子萌发及幼苗生理特性的影响。结果表明,低温胁迫能明显抑制玉米种子萌发,其平均发芽势、发芽率、胚芽长、胚根长、胚芽鲜重和胚根鲜重分别降低了55.2%、45.4%、64.6%、61.3%、57.7%和71.0%;幼苗叶片明显受到伤害,其平均相对电导率、丙二醛含量、脯氨酸含量、可溶性糖含量、SOD活性、POD活性和CAT活性分别升高了282.7%、150.1%、140.6%、124.7%、374.4%、209.7%和211.3%。萌发期和苗期分别添加20μmol·L~(-1)和10μmol·L~(-1)外源GB对低温胁迫下玉米的缓解效果最佳,其能明显促进玉米种子萌发及减轻幼苗生理伤害,除相对电导率(42.4%)和丙二醛含量(30.5%)显著降低外,脯氨酸、可溶性糖含量及抗氧化酶活性均显著升高(12.6%~324.9%)。在此最佳低温缓解外源GB浓度下,以萌发和幼苗生理性状的低温缓解指数作为低温缓解评价指标,采用隶属函数法综合评价两时期不同自交系的低温缓解效果,发现萌发期外源GB对玉米的缓解效果(0.585)优于苗期(0.454)。  相似文献   

7.
以旱敏感玉米自交系TS141为试材,在苗期以20%PEG模拟干旱胁迫处理,添加5种不同浓度外源甜菜碱(GB)或脯氨酸(Pro),以蒸馏水和干旱胁迫分别作为正向(CK+)、负向(CK-)对照处理,筛选得到对玉米苗期干旱胁迫缓解效果最佳的处理浓度:30μmol·L~(-1) GB或400μmol·L~(-1) Pro。以最佳浓度外源GB或Pro对干旱胁迫下的耐旱玉米自交系昌7-2和旱敏感玉米自交系TS141幼苗进行处理,比较分析两种耐旱性不同玉米自交系的生长参数、生理特性、气孔特性及叶片解剖结构。结果表明:外源GB或Pro可有效缓解玉米幼苗干旱胁迫损伤,恢复生理生化代谢稳态,外源GB对干旱胁迫的缓解效应强于外源Pro;TS141在添加外源GB后各生长参数均显著升高且叶片细胞结构明显恢复并排列整齐,而添加外源Pro后苗长并未出现显著变化且叶片细胞结构未发现明显差异;昌7-2在添加外源GB后脯氨酸含量、SOD、POD、CAT活性分别下降47.01%、26.33%、15.00%、66.08%,但添加外源Pro后只分别下降27.74%、17.65%、11.45%、44.32%。此外,外源GB或Pro对旱敏感玉米自交系缓解效果更明显:在添加外源GB或Pro后TS141各生长参数均显著升高,而昌7-2只有根长出现显著性差异;添加外源GB后TS141的脯氨酸含量、SOD、POD、CAT活性分别降低46.22%、16.58%、35.24%、60.52%,而昌7-2其值分别降低47.01%、26.33%、15.00%、66.08%,均低于TS141。干旱胁迫下玉米自交系叶片通过减小木质部导管直径,降低导管系统水势,诱导气孔开度降低,减少水分丧失;干旱胁迫下花环型结构变形,维管束鞘细胞和韧皮部细胞的散乱排列,导致了玉米自交系对干旱胁迫的耐受性降低。  相似文献   

8.
为明确硫化氢对盐胁迫下加工番茄种子萌发的缓解作用,用Na Cl半致死浓度为85 mmol·L~(-1)的KT-63(耐盐性弱)和半致死浓度为120 mmol·L~(-1)的KT-18(耐盐性强)为材料,用各自的半致死浓度与不同浓度的NaHS(0.2,0.4,0.6,1.0 mmol·L~(-1))分别配成混合液处理种子。结果表明,随着NaHS浓度的增加,种子的发芽率、发芽势、发芽指数、活力指数、SOD、POD、CAT活性呈先上升后下降的趋势,其中与盐胁迫单独处理相比,用0.4mmol·L~(-1)NaHS处理,种子的发芽率、发芽势、发芽指数、活力指数、SOD、POD、CAT活性在KT-63中分别提升70%、250%、120%、130%、6.7%、150%和180%,在KT-18中分别提升50%、250%、60%、80%、4.3%、160%和200%,而MDA的含量显著降低,并且对KT-63的缓解效应强于KT-18。综上所述,H2S(0.4 mmol·L~(-1))有效缓解了加工番茄萌发过程中盐胁迫的抑制作用,促进了种子的萌发。  相似文献   

9.
以郑单958玉米(Zea mays)为试验对象,采用盆栽试验方法,分别用0.01、0.05、0.1、0.5 mmol·L-1和1.0 mmol·L-1的外源一氧化氮(NO)供体硝普钠(Sodium nitroprusside,SNP)对干旱胁迫下玉米幼苗进行浇灌处理,研究外源NO对干旱胁迫下玉米幼苗膜脂过氧化的影响。结果表明,适当浓度(0.05 mmol·L-1)的外源NO可缓解干旱胁迫对玉米幼苗造成的损伤,与单独干旱胁迫相比,显著提高超氧化物歧化酶(SOD)和过氧化氢酶(CAT)等保护酶活性,分别增加了23.89%和87.78%;脯氨酸、可溶性糖、可溶性蛋白和叶绿素的含量分别增加23.89%、87.78%、43.44%、39.84%、41.33%和21.45%;MDA含量和质膜透性分别下降11.76%和51.17%。说明适当浓度的外源NO可以缓解干旱胁迫对玉米幼苗生长的抑制效应。  相似文献   

10.
外源硫化氢对干旱条件下玉米幼苗抗氧化特性的影响   总被引:1,自引:0,他引:1  
采用10%PEG模拟干旱胁迫的方法,研究了外源硫化氢对干旱条件下玉米幼苗根系和叶片抗氧化酶活性(SOD、POD、CAT和APX)、膜脂过氧化指标(MDA和膜透性)及叶片非酶抗氧化物质类胡萝卜素含量等抗氧化指标的影响。结果表明:与单独干旱处理相比,0.01、0.1、0.3、0.6 mmol·L-1和1.0 mmol·L-1Na HS使干旱条件下叶片类胡萝卜素含量分别增加了33.3%、63.3%、96.6%、80.0%和26.6%,使叶片POD活性分别增加了14.5%、36.6%、50.3%、91.1%和80.1%。此外,0.01、0.1 mmol·L-1和0.3 mmol·L-1Na HS均能显著提高叶片SOD、CAT、APX活性及根POD、APX活性,并显著降低根叶细胞质膜透性和MDA含量。0.6 mmol·L-1Na HS则使叶片SOD和CAT活性及根POD活性分别提高了7.4%、16.3%和45.0%,并使叶MDA含量及根细胞质膜透性分别降低了12.0%和18.0%。1.0 mmol·L-1Na HS却使根叶APX活性分别降低了13.3%和34.9%,并使叶细胞质膜透性及根MDA含量分别提高了130.1%和10.5%。以上结果说明,低浓度外源硫化氢可以有效提高干旱条件下玉米幼苗的抗氧化能力,尤其是0.3 mmol·L-1Na HS处理效果最好。  相似文献   

11.
以10叶龄的新疆野苹果(M.sieversii(Ledeb)Roem.)实生苗为研究材料,采用盆栽控水的研究方法,于中度水分胁迫(含水量为土壤最大持水量的45%~55%)条件下,外源喷施一氧化氮(NO),测定净光合速率(Pn)等光合特性指标、SOD等抗氧化酶活性以及Pro等渗透胁迫物质含量,探讨外源一氧化氮对水分胁迫下苹果砧木生理特性的影响。结果表明:相比于对照,外源NO处理(180~210μmol·L-1)减缓了水分胁迫下新疆野苹果叶片中MDA和Pro含量、电导率、胞间二氧化碳浓度以及POD活性的升高趋势,并能延缓净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、SOD与CAT酶活性的下降速率,且具有明显的浓度效应;190μmol·L-1的NO处理效果最佳,相比于对照,Pn、Gs、Tr、SOD及CAT活性分别上升了28.73%、32.94%、33.33%、14.24%、25.38%;Ci、POD活性、Pro含量、REC及MDA含量分别下降了18.68%、40%、78.72%、49.06%、26.47%;适当浓度NO处理能够激活水分胁迫下新疆野苹果幼苗的抗氧化酶系统,并可以保护细胞膜系统,增强细胞光合性能,从而提高其耐旱性。  相似文献   

12.
利用盆栽试验,用不同浓度的外源NO处理低温胁迫下的玉米幼苗,研究外源NO对玉米幼苗抗低温胁迫的影响。结果表明:低温明显抑制了玉米幼苗的生长,与常温对照相比,玉米幼苗叶片相对含水量下降了46.7%,叶绿素含量降低了19.19%,细胞膜的通透性增大,相对电导率增加了44.2%,丙二醛(MDA)含量增加了35.1%,可溶性蛋白含量下降了22.0%,可溶性糖含量下降了72.3%;适当浓度的外源NO可缓解低温胁迫造成伤害,其中浓度为0.10 mmol·L-1SNP处理效果最明显,与低温对照相比,MDA含量和相对电导率分别减少了24.4%和11.1%,相对含水量、叶绿素含量、可溶性蛋白和可溶性糖含量分别增加了40.2%、11.0%、19.25%、123.0%;外源NO能有效改善低温胁迫下玉米幼苗的光合作用,其净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)均较低温胁迫条件下未加NO处理有明显的增加,细胞间隙CO2浓度(Ci)则明显下降。表明适当浓度的外源NO可以缓解低温胁迫对玉米幼苗生长的抑制效应。  相似文献   

13.
为探讨外源NO对Na_2CO_3胁迫下南瓜幼苗碳氮代谢过程的影响,以银辉2号南瓜品种为材料,采用盆栽法研究了80μmol·L-1SNP对60 mmol·L-1Na_2CO_3胁迫下南瓜幼苗生长、叶绿体色素含量、碳氮代谢相关酶活性及代谢产物量的变化规律。结果表明:Na_2CO_3胁迫12 d,南瓜幼苗地上和地下部分干重、相对生长量、根冠比、Rubisco羧化活力、光合色素含量和氮代谢相关酶活性均不同程度下降;Rubisco氧化活力、游离氨基酸总量和蛋白水解酶活性显著上升。80μmol·L-1SNP外源处理能明显缓解Na_2CO_3胁迫对南瓜幼苗生长及光合作用的抑制,增加了干物质的积累和光合色素的含量。与Na_2CO_3胁迫处理相比,干物质积累量、相对生长量、叶绿素和类胡萝卜素(caro)含量、硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、Rubisco羧化酶、淀粉酶(AMY)活性和可溶性蛋白含量分别提高了26.72%、30.45%、17.69%、46.15%、46.43%、30.70%、38.75%、70.0%、65.37%;Rubisco加氧酶、蛋白水解酶活性和游离氨基酸总量分别降低了18.29%、31.76%、28.57%。外源NO通过促进淀粉酶和Rubisco羧化活性的提高和氧化活性的下降,维持了可溶性总糖含量的稳定;通过增强NR、GS和谷氨酸合酶(GOGAT)活性、抑制蛋白水解酶和谷氨酸脱氢酶(GDH)活性,降低叶片中游离氨基酸含量,增加了蛋白质的积累。本研究结论:碱性盐胁迫下,80μmol·L-1的SNP通过增强南瓜幼苗的光合碳代谢,促进了酮酸转化为氨基酸。通过提高氮代谢相关酶NR、GS、GOGAT活性,促使碳流由光合碳代谢转向氮代谢,维持了盐害下南瓜幼苗碳氮代谢的正常进行,增强了南瓜幼苗抵御Na_2CO_3胁迫的能力。  相似文献   

14.
为探讨外源调节剂包衣对低温胁迫棉花幼苗耐寒性的调控效应,通过室内砂培试验,研究了外源调节剂包衣处理对低温下棉花种子萌发的影响,分析了5℃低温胁迫下以及恢复常温后外源调节剂包衣对棉花幼苗耐寒性的生理响应。结果表明:低温胁迫下棉花种子的萌发和幼苗生长受到抑制,水杨酸以及外源调节剂复配包衣处理均能显著提高低温胁迫下棉花种子的发芽势、发芽率、发芽指数和活力指数,其中发芽指数和活力指数达到极显著水平,增幅分别为41.2%~44.4%和51.2%~63.9%;外源调节剂包衣处理叶片的相对电导率(REC)和MDA含量显著降低,可溶性蛋白和可溶性糖等渗透调节物质的含量显著提高,SOD、POD和CAT等抗氧化酶的活性也显著增强;5 mmol·L-1水杨酸+45 mmol·L-1氯化钙+60 mg·L-1亚硒酸钠复配包衣处理的叶片REC、MDA含量显著低于其它包衣处理,可溶性蛋白含量及其增幅显著高于其它包衣处理。说明水杨酸、氯化钙和亚硒酸钠三元复配包衣在缓解棉花幼苗低温逆境中具有协同效应,可以缓解低温胁迫对棉花种子萌发及幼苗生长的抑制作用,提高植物的耐寒性。  相似文献   

15.
利用20%的PEG6000模拟干旱胁迫,同时用不同浓度(0、0.5、1.0、1.5、2.0 mmol·L-1)的水杨酸(SA)喷施幼苗,研究了不同浓度水杨酸处理对干旱胁迫下野生龙葵幼苗生长的影响。结果表明:干旱胁迫下,龙葵幼苗植株变矮、鲜重降低、根长缩短,叶绿素和可溶性蛋白含量减少,抗氧化酶活性、游离脯氨酸和丙二醛含量增加;经SA处理干旱胁迫下龙葵幼苗株高、根长和鲜重都有明显增加,特别是1.5 mmol·L-1 SA处理组分别增加20.8%、28.0%和29.7%,1.5 mmol·L-1 SA处理组龙葵幼苗叶绿素含量提高31.9%、脯氨酸含量提高65.4%,可溶性蛋白含量提高42.8%,超氧化物歧化酶(SOD)、过氧化物酶(POD)与过氧化氢酶(CAT)活性达到最高,与对照相比分别增加了30.2%、87.8%和50.3%;SA处理使丙二醛(MDA)含量降低了37.8%。综合来看,适当浓度的SA可以缓解干旱对龙葵幼苗造成的伤害,并以1.5 mmol·L-1外源SA缓解效果最好。  相似文献   

16.
为探讨Pb胁迫下外源一氧化氮(NO)对玉米幼苗伤害的缓解作用,利用室内盆栽试验研究了外源NO供体硝普钠(SNP)对铅(Pb)处理下玉米(Zea mays)幼苗生长及生理特性的影响。结果表明:与对照相比,1.0 mmol·L-1 Pb处理明显抑制了玉米幼苗的生长,减缓了玉米幼苗可溶性蛋白和可溶性糖含量的积累,抗氧化酶活性下降,叶绿素含量减少,丙二醛(MDA)含量增加、质膜透性增大;添加0.1 mmol·L-1的SNP明显缓解了Pb胁迫对玉米幼苗生长的抑制作用,提高Pb胁迫下超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,增加了幼苗叶绿素和脯氨酸含量,促进了可溶性糖和可溶性蛋白的积累,降低了MDA含 量、细胞质膜的透性。外源NO对Pb胁迫下玉米生长有一定的缓解作用,可以增强玉米幼苗对Pb毒害的抗性。  相似文献   

17.
为探讨燕麦新品种定莜6号在低、高浓度盐碱胁迫下的生理响应机制,采用盆栽试验研究了25 mmol·L-1和75 mmol·L-1混合盐碱胁迫对幼苗生长、矿质离子吸收和光合特性的影响。结果表明,25 mmol·L-1混合盐碱胁迫10 d并未引起燕麦幼苗干重的明显改变,但75 mmol·L-1混合盐碱胁迫显著降低了幼苗干重。25 mmol·L-1混合盐碱胁迫下,燕麦根系和地上部K+/Na+、Ca2+/Na+和Mg2+/Na+显著降低,根系选择吸收K+、Ca2+、Mg2+及由根系向地上部运输K+、Ca2+的能力明显增强,但由根系向地上部运输Mg2+的能力下降,从而使地上部K+/Na+、Ca2+/Na+高于根系,而Mg2+/Na+低于根系;75 mmol·L-1混合盐碱胁迫下的上述变化大于25 mmol·L-1。25 mmol·L-1混合盐碱胁迫使燕麦幼苗叶片总叶绿素含量下降,叶绿素a/b和类胡萝卜素含量提高,而净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)和气孔限制值(Ls)变化不大;与25 mmol·L-1混合盐碱胁迫相比,75 mmol·L-1混合盐碱胁迫下燕麦叶片总叶绿素和类胡萝卜素含量、Pn、Gs、Tr、Ls明显下降,Ci显著提高,而叶绿素a/b无明显差异。25 mmol·L-1混合盐碱胁迫下,燕麦幼苗叶片最大光化学效率(Fv/Fm)和非光化学猝灭系数(NPQ)明显下降,保护性热耗散(ΦNPQ)显著提高,而初始荧光(Fo)、实际光化学效率(ΦPSII)、光化学猝灭系数(q L)、非调节性能量耗散(ΦNO)、光系统I和光系统II之间激发能分配的不平衡性(β/α-1)和叶绿体Hill反应活性无显著变化;与25 mmol·L-1混合盐碱胁迫相比,75 mmol·L-1混合盐碱胁迫下Fo、ΦNO、β/α-1显著提高,Fv/Fm、ΦPSII、q L、NPQ、ΦNPQ和叶绿体Hill反应活性明显下降。上述结果表明调控矿质离子吸收和运输以保持地上部K+/Na+、Ca2+/Na+高于根系是燕麦适应盐碱的重要机制,高浓度盐碱胁迫造成PSⅡ反应中心受损是燕麦Pn降低的主要因素,而过剩光能耗散是保护光合机构的重要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号