共查询到18条相似文献,搜索用时 78 毫秒
1.
基于不同时相遥感的冬小麦种植面积的提取 总被引:2,自引:0,他引:2
卫星遥感技术能够快速、准确、大面积对农作物生长进行监测,多时相遥感监测可克服单时相遥感监测的不足,利于实现对农作物生长变化的动态监测。以江苏省大丰市为研究区域,选用拔节期和抽穗期两景环境(HJ)卫星遥感影像进行不同地物光谱信息识别与种植面积提取研究。首先,在分析两景HJ星影像植被光谱信息的基础上,提取出各自影像的归一化差值植被指数(NDVI)影像,并对两景NDVI影像分别进行加运算和减运算,得到另外两景NDVI合成影像。其次,通过对提取到的四景NDVI影像光谱信息进行比较分析,最终选用植被光谱信息特征较为明显的加运算合成影像进行冬小麦种植面积提取。最后,基于影像不同地物的NDVI阈值划分,并叠加GPS样点信息校正,提取到大丰市冬小麦种植面积数据及其空间分布信息。结果显示,大丰市遥感提取冬小麦种植面积为78 712.13 hm2,精度为92.51%。在该市20个乡镇(或农场)冬小麦种植面积提取精度中,精度大于95%有9个乡镇(或农场),精度在90%至95%之间的有7个乡镇(或农场),仅有4个乡镇(或农场)提取精度在80%至90%之间。说明,利用不同时相遥感合成运算方法得到的合成影像,能明显增强冬小麦光谱信息与其他植被信息特征区别,有利于实现高精度提取冬小麦种植面积的目的。 相似文献
2.
本研究提出一种应用遥感数据与气象学中的积温数据,结合植被指数获取区分不同作物最佳时相的新模型,达到减小提取贺兰山东麓葡萄种植面积误差的目标。选取2016年宁夏地区时间分辨率高的MODIS 250 m数据定点提取NDVI指数,构建不同作物的NDVI时间曲线,找出葡萄与其他作物的NDVI差值最大时相并确定为当年最佳时相;结合气象学中的积温数据,构建最佳时相判断模型,反推其他年份的最佳时相。试验结果表明由NDVI差值测得的最佳时相可用,即能够获取分类效果最好的最佳时段内遥感图像,为后续作物分类工作打下良好的基础。 相似文献
3.
4.
基于OLI影像的县域冬小麦种植面积提取 总被引:2,自引:0,他引:2
以河南省虞城县为研究区域,筛选冬小麦分蘖期至拔节期内的3期(分蘖期、越冬期、拔节期)高质量OLI遥感影像,进行辐射定标及FLAASH大气校正,以便将影像DN值转算为地表反射率,并利用全色波段进行影像融合处理以提高空间分辨率。以归一化差异水体指数(NDWI)、归一化差异建筑指数(NDBI)、归一化差异植被指数(NDVI)为基础,结合外业调查数据构建决策树模型,3期影像中NDWI大于0的像元为水体,NDBI大于0的像元为居民地,NDVI分别大于0.59、0.52、0.65的像元为冬小麦纯净像元,NDVI分别小于0.49、0.44、0.56的像元为其他地物,剩余部分为冬小麦混合像元,通过实地调研确定将混合像元面积折算为冬小麦实际种植面积的权重为0.46,最后计算虞城县冬小麦的实际种植面积。结果表明,冬小麦分蘖期至拔节期是遥感监测冬小麦种植面积的最佳时期,3期影像提取的2014年虞城县冬小麦种植面积分别为76 238.79 hm2、77 406.65 hm2、77 397.82 hm2,与往年统计数据和样地实测数据相比,精度达到了99%。 相似文献
5.
【目的】 文章旨在探讨基于高分辨率多光谱遥感影像进行冬小麦种植面积早期快速提取、冬小麦空间分布情况快速制图与精度验证的方法,为山东省冬小麦高产、优质种植和农艺肥水的处方决策提供全局性信息。【方法】 (1)对Sentinel-2遥感影像数据进行预处理,然后采用历史种植分布数据自动提取与人工选取相结合方式构建冬小麦识别样本库,将样本分为小麦、林地、水体、建筑和道路及其他作物五大类;(2)采用随机森林算法计算机自动分类与影像人工解译相结合的方式,提取研究区冬小麦种植面积,绘制冬小麦种植空间分布图,并进行精度验证。【结果】 (1)解译得到研究区冬小麦种植面积为54.41万hm2,冬小麦种植面积的总体分布精度为97.05%,kappa系数为0.94,解译效果良好;(2)该文提出的方法可实现冬小麦种植面积高精度提取以及快速制图。【结论】 早期精准掌握冬小麦种植面积及空间分布信息,能够为地方政府和农业部门指导农事活动提供科学依据。 相似文献
6.
【目的】 利用2018—2019年冬小麦生长季的雷达数据对河南省驻马店市上蔡县、正阳县、平舆县、汝南县的冬小麦种植面积进行提取,为雷达数据在冬小麦种植面积提取研究提供参考。【方法】 文章在对冬小麦生长关键物候期多时相Sentinel-1A SAR(Synthetic Aperture Radar,合成孔径雷达)数据中VV极化和VH极化影像的后向散射系数进行分析的基础上,利用最大似然法开展了河南省驻马店市上蔡县、正阳县、平舆县、汝南县4个“产粮大县”的冬小麦种植面积提取研究,并通过统计年鉴数据对VV极化和VH极化的冬小麦提取结果进行了初步评价。利用2018年12月22日,2019年3月28日和2019年4月21日的SAR时间序列影像数据进行冬小麦分类提取。【结果】 从整个研究区来看VV极化方式的提取结果为4 461.14 km2,VH极化的结果为4 277.22 km2,与统计数据相比,VV极化的误差为13.17%,VH极化的误差为8.51%,VV极化的提取误差要大于VH极化的提取误差。各个县的结果显示,VH极化的提取误差均小于VV极化的结果,误差最小的为利用VH极化提取的正阳县的结果,误差仅为1.85%,误差最大的为利用VV极化提取的平舆县的结果,误差为19.72%。【结论】 基于冬小麦生长关键物候期多时相Sentinel-1A的后向散射系数,能够实现较高精度的冬小麦种植面积提取。 相似文献
7.
冬小麦是我国北方主要农作物之一,及时掌握冬小麦面积信息及长势情况,能够快速地为农业生产管理者以及财政部门提供决策依据,有利于小麦增产、提高农民收入。本文以山东省滨州、东营市为研究区,通过主成分分析、监督及非监督分类结合的方法提取ETM+遥感影像的冬小麦信息,以SPSS聚类分析法估测滨州市冬小麦长势,用距离加权法构建相邻轨道图像的植被长势分级模型并估测东营市的冬小麦长势。结果显示:小麦提取平均精度约为93.79%,冬小麦分布呈现“西多东少,南多北少”的特征,一般小麦分布较多的地区长势也较好。基于重叠区距离加权法构建的植被长势分级模型,能够在一定程度上消除相邻轨道遥感图像的时间差异,实现大区域的植被长势分析。 相似文献
8.
为了快速、准确地获取作物分布信息,探索使用主动遥感影像(Sentinel-1A)和被动遥感影像(Sentinel-2)提取冬小麦空间分布的可行性。首先,根据冬小麦的物候特征,合成冬小麦全生育期的Sentinel-1A影像;并依据各类地物的NDVI(归一化植被指数)时序曲线合成一期高质量的冬小麦越冬后Sentinel-2影像。其次,设计Sentinel-1A影像、Sentinl-2影像和融合Sentinel-1A与Sentinl-2主被动遥感影像3种分类方案,然后在Google Earth Engine(GEE)云平台上基于随机森林算法对冬小麦进行分类。结果表明,基于全生育期Sentinel-1A影像的冬小麦用户精度和生产者精度分别为83.15%和86.44%,提取结果中存在较多的“椒盐”噪声;基于冬小麦越冬后Sentinl-2影像的冬小麦用户精度和生产者精度分别为87.98%和84.75%,提取精度较使用全生育期Sentinel-1A影像有所提高,但分类结果受“异物同谱”的影响,产生许多错分;融合主被动遥感影像的冬小麦用户精度和生产者精度分别为96.57%和95.48%,相较于仅使用单... 相似文献
9.
【目的】冬小麦种植面积的提取对保障粮食安全和估产工作具有重要意义,已有冬小麦面积监测方法存在的所需数据量多、时间滞后等问题亟待解决。【方法】基于入冬前的2017年11月21日(分蘖期)和2017年12月24日Landsat8 OLI影像,将MIR、NIR和RED波段进行HSV变换,并计算地物的NDVI;利用全国土地利用图提取耕地与非耕地两类地物,统计分析两类地物NDVI值、H波段值的关系并设置阈值,初步提取疑似小麦种植区;利用小麦两个时相S值增大的特点准确提取小麦种植区域。【结果】利用多时相遥感数据中NDVI、H和S差别提取的试验区冬小麦种植面积,与地面调查、县区统计年鉴数据有较高的一致性。【结论】HSV阈值划分方法适用于冬小麦种植面积提取,能够提高小麦面积估算的时效性。 相似文献
10.
11.
[目的]建立2009年安徽省冬小麦和一季稻面积提取模型和作物长势监测模型。[方法]通过分析2009年安徽省冬小麦和一季稻的种植结构、物候历特征及其生物学特性和时序NDVI曲线特征确定模型。[结果]时间上,2009年安徽省冬小麦和一季稻长势均呈"前期较好,中期变差,后期恢复"的趋势;空间上,安徽北部地区冬小麦全年长势较多年平均稍差,而一季稻长势较差的地区主要是滁州等地。[结论]该研究为中国农业遥感监测系统大尺度业务化运行作物种植结构提取了有效的方法。 相似文献
12.
遥感技术目前在农业方面得到了广泛的应用,冬小麦作为我国重要粮食作物,农业部先后2次在全国范围内组织开展了冬小麦遥感本底调查工作。该研究介绍了2015年安徽省冬小麦遥感本底调查的遥感数据选择、数据预处理、解译方法,并对调查结果进行了分析,总结了省域冬小麦种植面积遥感本底调查方法和经验。 相似文献
13.
利用TM影像更新研究区的土地利用数据,提取冬小麦可能出现的区域作为掩膜限定识别范围,从而可以减少其他植被类型信息的干扰;通过选取冬小麦样点,在时间序列NDVI数据中提取纯冬小麦的时序曲线,根据曲线特征构建时相识别模型;在限定的范围内根据识别模型提取冬小麦,进而将两个尺度数据进行综合处理和面积统计,冬小麦面积为268.65×10~3 hm~2;利用统计年鉴数据和随机抽样两种方法进行精度分析,结果显示面积精度为91.56%,位置精度为87.46%。与实地调查和人工解译相比,大大提供了工作效率,减少了工作量,适用于大面积区域尺度的冬小麦监测。 相似文献
14.
MODIS遥感数据具有探测周期短、覆盖面积广、数据开放等优点,适合大尺度、动态的农业遥感监测应用。结合了MODIS遥感数据资源的特点和农作物物候特征,提出了基于MODIS的农作物面积遥感监测方法,并根据黄淮地区冬小麦种植面积提取的应用需求,选用地理空间数据云平台提供的3种MODIS数据产品进行了农作物面积提取。结果表明,使用5 d合成数据产品的提取精度较高。 相似文献
15.
精确、快速估算冬小麦叶片氮含量,对冬小麦长势监测及田间管理指导具有重要的研究意义。为精确反演冬小麦叶片氮含量(leaf nitrogen content , LNC),该文利用遥感方法,依托不同氮处理水平冬小麦试验,基于获取的高光谱遥感数据和LNC地面实测数据,对比分析光谱指数与随机森林算法(random forest , RF)反演冬小麦叶片氮含量的精度和稳健性。结果表明,以敏感波段496 nm、604 nm为自变量,利用随机森林算法构建的LNC回归模型精度较光谱指数法有了大幅提高,模型的建模精度为R2=0.922,RMSE=0.290,验证精度为R2=0.873,RMSE=0.397,并且相对分析误差RPD值为2.22,表明将敏感波段与随机森林算法组合构建的反演模型能较好反演对冬小麦LNC。 相似文献
16.
冬小麦条锈病生理变化及其遥感机理 总被引:9,自引:0,他引:9
对不同处理条件下的冬小麦条锈病进行 (病情指数 ) (DI)调查 ,并进行同步的光谱测定及田间取样 ,在室内测试了对病情指数有重要影响的几个参数因子 ,叶绿素含量及上叶含水量 ,并且将其与光谱反射率进行统计分析。研究结果表明 ,这些参数因子与反射率数据在 5 5 0~ 70 0和 70 0~ 1160nm范围内与DI有着相似的高相关性 ,说明条锈病害的DI变化可以通过叶绿素含量、上叶含水量参数直接的变化在光谱上得到响应 ,从而证明遥感监测DI是可行的 ,同时解释了遥感监测机理。选出与叶绿素含量、上叶含水量相关性最强的波段与DI作多元回归 ,建立的模型能很好地反演冬小麦条锈病的病情指数 ,正确率达到 75 %以上 相似文献
17.
基于高光谱遥感的冬小麦叶水势估算模型 总被引:2,自引:0,他引:2
【目的】采用高光谱技术,建立快速、无损与准确获取冬小麦叶水势的估算模型,为小麦灌溉的精确管理提供科学依据。【方法】利用不同水分处理的大田试验,于小麦主要生育期同步测定冠层光谱反射率、叶水势、土壤水分等信息,并探讨高光谱植被指数与冬小麦叶水势之间的定量关系。通过相关性分析、回归分析等方法,基于不同水分处理,构建4种植被指数与冬小麦叶水势的估算模型。【结果】不同水分处理和不同生育期的冬小麦,其冠层光谱反射率具有显著的变化特征。在可见光波段,冬小麦冠层反射率随着水分含量的增加而逐渐降低,而在近红外波段,其冠层反射率则随着土壤水分含量的增加而升高。随着小麦生育期的推进,在近红外波段,抽穗期的冠层反射率比拔节期的高,在灌浆期之后,红波段(670 nm)、蓝波段(450 nm)的反射率上升加快;4种植被指数与叶水势显著相关(P0.05),相关系数|r|均在0.711以上,四者均可用于冬小麦叶片水势的定量监测。在充分供水条件下(70%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.75和0.771)均低于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.808和0.896),而在重度水分亏缺条件下(50%FC),植被指数OSAVI和EVI2与叶水势的相关系数|r|(分别为0.857和0.853)均高于植被指数NDVI和RVI与叶水势的相关系数|r|(分别为0.711和0.792);所建模型对45个未知样的预测结果与实测值相似度较高,其回归模型R~2、验证模型MRE、RMSE的范围分别为0.616—0.922、-17.50%—-12.52%、0.102—0.133。在70%FC水分处理下,基于EVI2(enhanced vegetation index)所得叶水势估算模型的R~2最高,为0.922,而在60%FC和50%FC水分处理下,由于考虑了土壤背景的影响,基于OSAVI所建模型的R~2最高,分别为0.922和0.856。【结论】4种植被指数均可用于冬小麦叶水势的定量监测。但是,在构建不同水分处理的叶水势估算模型时,应考虑土壤背景对冠层光谱的影响。研究结果可以为小麦精准灌溉管理提供技术依据,为星载数据的参数反演提供模型支持。 相似文献
18.
地膜穴播冬小麦播期、密度效应 总被引:5,自引:1,他引:5
1996-1997年,在山西省临汾应用裂区设计法就各小麦地膜穴话的播期、密度进行了研究。结果表明,主因子播期A2(9月28日)与播期A1(9月21日)、播期A3(10月5日)的产量存在5%显著差异;副因子播量4个水平均存在5%显著差异;播期和播量间存在互作效应,以A2(9月28日)B2(297万位/hm2)组合产量最高,达4900.5kg/hm2。同时,对同一播期下、不同播量的土壤耗水规律及子粒灌浆速度进行了研究,为地膜冬小麦合理选择播期、密度提供了理论依据。 相似文献