首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A 2-yr study was conducted at 2 locations to determine if supplementing beef heifers with dried distillers grains (DDG) as an energy source affected growth or reproduction. Spring-born crossbred heifers (n = 316) were blocked by age or sire and age and assigned randomly to DDG or control (dried corn gluten feed, whole corn germ, urea) supplement. Heifers received prairie hay in amounts sufficient for ad libitum intake and 0.59% of BW DDG or 0.78% of BW control supplement (DM basis). Supplements were formulated to be isocaloric, but protein degradability differed. Supplemental undegradable intake protein intake from DDG averaged 267 g/animal daily and reached 318 g/animal daily; control supplemental undegradable intake protein intake averaged 90 g/animal daily and peaked at 107 g/animal daily. Initial pubertal status was determined by 2 blood samples collected 10 d apart, and monthly BW were collected from November through January; then biweekly BW and blood samples were collected from February until May yearly. Heifers were synchronized with 2 injections of PGF2alpha 14 d apart; estrus was detected and heifers were artificially inseminated for 5 d and placed with bulls 10 d later. Conception and pregnancy rates were determined via transrectal ultrasonography. Initial age, BW, and BCS did not differ (P > 0.92) for control and DDG heifers. Final BW, ADG, and final BCS also were not affected (P > 0.31) by supplementation. Estimated age and BW at puberty did not differ (P > 0.23) between treatments, and the proportions of pubertal heifers did not differ at the initiation of the experiment (P > 0.82), at the beginning of the 14-d sampling intervals, or before synchronization. Estrus synchronization rate (75.9%), time of estrus, and overall pregnancy rate (89.5%) were not affected (P > 0.14) by treatment. However, a greater proportion (P = 0.008) of DDG than control heifers conceived to AI (75.0 vs. 52.9%), resulting in greater (P = 0.07) AI pregnancy rates for DDG heifers (57.0 vs. 40.1%). Body weight or BCS at pregnancy diagnosis did not differ (P > 0.52) between DDG and control heifers. Supplementing beef heifers with DDG during development did not affect age at puberty but improved AI conception and pregnancy rates compared with an isocaloric control supplement.  相似文献   

2.
Crossbred heifers (n = 120; 265 kg, SD = 37) were fed individually (84 d) to determine the effect of supplement type, concentration, and frequency on intake and performance and to estimate the energy value of dry distillers grains plus solubles (DDGS) in a high-forage diet. Treatments were arranged in a 3 x 2 x 2 factorial, with 3 supplements, 2 concentrations, and 2 frequencies of supplementation. Supplements including dry-rolled corn (DRC), DRC with corn gluten meal (DRC + CGM), and DDGS were fed at 0.21% (LOW) or 0.81% (HIGH) of BW daily and were provided daily (DAILY) or 3 times weekly (ALT). Heifers were fed to consume grass hay (8.7% CP) ad libitum. Individual DMI, diet composition, BW, and ADG were used to calculate energy values for DDGS and DRC. Supplement type, concentration, frequency, and interactions were tested using the MIXED procedure of SAS, with BW included as a covariate. Supplement x concentration interactions for gain (P = 0.01) and G:F (P < 0.01) were detected. At the LOW concentration, heifers supplemented with DDGS gained more and were more efficient (P /= 0.22) between DDGS and DRC + CGM in HIGH treatments, although both improved (P 相似文献   

3.
Ten ruminally cannulated heifers (BW = 416 kg; SD = 24) were used to test the effect of the form and frequency of supplemental energy on forage DMI and digestibility. Five treatments were arranged in a replicated, 5 x 4 Latin rectangle (n = 8), and included no supplement (control), dry-rolled corn (DRC) fed daily, DRC fed on alternate days (DRC-A), dried distillers grains plus solubles (DDGS) fed daily, and DDGS fed on alternate days (DDGS-A). Supplements fed daily were fed at 0.40% of BW, whereas alternate day-fed supplements were fed at 0.80% of BW every other day. Chopped grass hay (8.2% CP) was fed to allow ad libitum DMI, and the intake pattern was measured. Control heifers had greater (P < 0.01) hay DMI than supplemented heifers (1.88 vs. 1.66% of BW daily, respectively), although total DMI was lower (P < 0.01) for control. Hay DMI did not differ (P = 0.45) between DRC and DDGS, and tended to be lower (P = 0.08) by heifers on DDGS-A and DRC-A than by heifers supplemented daily. Hay intake was lower (P < 0.01) on supplementation days for DDGS-A and DRC-A than on nonsupplemented days. Heifers in alternate-day treatments had fewer (P < 0.01) and larger (P < 0.01) meals and spent less (P < 0.01) time eating than those supplemented daily. Average rumen pH was greater (P = 0.05) for control than supplemented heifers (6.30 vs. 6.19). Control heifers had greater (P = 0.04) rates and extents of NDF disappearance than supplemented heifers. Rate of hay NDF disappearance was lower (P = 0.02) for DRC than for DDGS. Supplementation decreased hay DMI and changed digestion kinetics. Supplementation frequency affected amount and pattern of DMI. Rate of hay NDF disappearance was greater for DDGS than DRC.  相似文献   

4.
A 2-yr study was conducted to determine the first limiting nutrient for gain in nursing calves grazing native range in southeastern North Dakota. Thirty-two calves (20 steers, 12 heifers) in Trial 1 (169 +/- 5 kg initial BW) and 31 (16 steers, 15 heifers) in Trial 2 (214 +/- 5 kg initial BW) grazed common pastures. Calves were blocked by sex and stratified by weight. Calves were stratified by age of dam in Trial 1 and by pretrial milk intake (MI) in Trial 2. Treatments were nonsupplemented control (CON); energy supplement (ENERGY; 100% soyhulls); degradable intake protein supplement (DIP; 68% soyhulls, 32% SBM); and degradable with undegradable intake protein supplement (DIP+UIP; 80% sulfite-liquor treated SBM, 16% feather meal, 4% blood meal). In Trial 2, 5% molasses was added to all supplements with the ratios of other ingredients held constant. Supplements were formulated to be similar in NE. The DIP and DIP+UIP supplements supplied equal amounts of degradable protein. Supplemented calves were fed individually, with similar supplement DMI. Weight and MI were measured in July, August, and September. Forage intake (FI) was measured in July, August, and September of Trial 1 and July and August of Trial 2. Gain data were analyzed as a randomized complete block and MI and FI as a split-plot in time. Orthogonal contrasts were used to separate means and included CON vs supplemented, ENERGY vs protein, and DIP vs DIP+UIP. No trial effect or trial x treatment interactions (minimum P-value = 0.30) were detected for ADG. Supplemented calves gained faster than CON (P = 0.06). No other contrast differences were observed (minimum P-value = 0.50). Treatment did not affect FI (P > or = 0.55). Forage intake was lower (P < 0.001) in Trial 1 than in Trial 2. A linear increase (P = 0.0001) in FI (kg OM/d and percentage BW) occurred over time. Calves in Trial 2 consumed more (P = 0.004) fluid milk than calves in Trial 1, though no difference (P = 0.28) was observed relative to BW. No treatment or period differences were detected for fluid MI (minimum P-value = 0.23). Relative to BW, MI declined linearly (P = 0.0001) with successive periods. Energy may be limiting weight gain of nursing calves grazing native range in southeastern North Dakota.  相似文献   

5.
To determine the influence of three levels of undegradable intake protein (UIP) supplementation on metabolic and endocrine factors that influence reproduction, 23 yearling crossbred heifers (body condition score = 4.5 +/- 0.5; initial BW = 362 +/- 12 kg) were stratified by BW and assigned randomly to one of three supplements: 1) low UIP (1,135 g x heifer(-1) x d(-1); 30% CP, 115 g UIP, n = 7); 2) mid UIP (1,135 g x heifer(-1) x d(-1); 38% CP, 216 g UIP, n = 8); or 3) high UIP (1,135 g x heifer(-1) x d(-1); 46% CP, 321 g UIP, n = 8). Heifers were estrually synchronized before initiation of supplementation. Supplement was individually fed daily for 30 to 32 d, at which time heifers were slaughtered (d 12 to 14 of the estrous cycle) and tissues collected. Heifers were fed a basal diet of sudan grass hay (6.0% CP) ad libitum. On d 28 of supplementation (d 10 of the estrous cycle), no differences were observed (P > 0.10) in serum insulin or IGF-I among treatments. At slaughter (d 10 to 12 of the estrous cycle), treatments did not influence corpus luteum weight, cerebral spinal fluid leptin, or IGFBP; serum estradiol-17beta, progesterone, leptin, IGF-I, and IGFBP; or anterior pituitary content of IGFBP (P > 0.10). Follicular fluid IGFBP-2 and IGFBP-4 were greater in high-UIP heifers than low- or mid-UIP heifers on d 12 to 14 of the estrous cycle (P < 0.05). Basal serum LH concentrations and LH area under the curve (every 15 min for 240 min) did not differ (P > 0.10) following 28 d of supplementation (d 10 of the estrous cycle); however, basal serum FSH concentrations were greater (P = 0.06) in low- and mid- vs. high-UIP heifers (5.2 and 5.2 vs. 4.6 ng/mL, respectively), and FSH area under the curve was greater (P = 0.03) in low- vs. high-UIP heifers. At slaughter (d 12 to 14 of the estrous cycle), anterior pituitary LH and FSH content and steady-state mRNA encoding alpha, LHbeta, and GnRH receptor did not differ (P > 0.10) among treatments. However, FSHbeta mRNA was increased approximately twofold (P = 0.03) in mid vs. low UIP. In summary, low and mid levels of UIP supplements fed to estrous cycling beef heifers seemed to enhance pituitary expression and/or secretion of FSH relative to high levels of UIP. Moreover, high-UIP supplementation was associated with increased low-molecular-weight IGFBP compared with supplementation of low and mid levels of UIP. These data suggest that differing levels of UIP supplementation may alter pituitary and ovarian function, thereby influencing reproductive performance in beef heifers.  相似文献   

6.
Two trials were conducted to evaluate intake restriction, energy, and protein source on the performance and carcass merit of heifers limit-fed corn gluten feed. Trial 1 crossbred heifers (n = 140) were allotted to ad libitum wet corn gluten feed (WCGF)-hay, ad libitum WCGF-corn, WCGF-corn continuously limit-fed to achieve a gain of 1.1 kg/d or WCGF-corn fed in the following sequence: 70% of ad libitum for 20 d, ad libitum for 20 d, and 2 d common intake during the 84-d growing period. One-half of these restricted-refed heifers received a rumen-undegraded protein supplement, and the other half received a rumen degraded protein supplement. Heifers were fed a common finishing diet ad libitum subsequent to the growing period. Heifers offered ad libitum WCGF-hay and WCGF-corn were slaughtered at a common compositional fat end point. Heifers limit-fed WCGF-corn were slaughtered at the same time as heifers offered ad libitum WCGF-corn, regardless of subcutaneous fat cover. Limit-feeding WCGF-corn diets to growing heifers reduced ADG (P < or = 0.01) but did not compromise feed efficiency. Method of intake restriction, continuous or ad libitum-interrupted, and supplemental protein source did not affect combined growing-finishing performance. However, when fed for a common length of time, the average of the limit-fed heifers had lighter carcass weights (P < or = 0.01) and lower (P = 0.04) marbling scores. Heifers offered ad libitum WCGF-hay gained slower (P < or = 0.01) and less efficiently (P < or = 0.01) than heifers offered WCGF-corn. Trial 2 crossbred heifers (n = 222) were allotted to dry corn gluten feed (DCGF)-corn ad libitum or restricted to 80% of ad libitum for 42, 84, or 126 d; or ad libitum corn silage or DCGF-corn silage at 80% of ad libitum for 84 d. Feed efficiency (P = 0.07) and ADG (P = 0.08) tended to behave quadratically, being poorer for heifers limit-fed for 126 d during the growing period. Heifers limit-fed DCGF-corn gained more efficiently (P = 0.05) than heifers grown on ad libitum corn silage. Limit-feeding CGF-corn to growing beef heifers can be used to achieve moderate rates of gain without compromising feed efficiency. However, limit-feeding during the growing period may result in lighter weight carcasses with lower quality grades if not fed to the same fat end point as heifers grown with free access to concentrate.  相似文献   

7.
Growth and digestion trials were conducted to determine the efficacy of supplemental fat for developing beef heifers consuming a bromegrass hay-based diet. In Exp. 1, Angus x Gelbvieh heifers were allotted to one of three treatments in a randomized complete block design experiment for 2 consecutive yr (yr 1: n = 88, BW = 263.6 ± 0.6 kg; yr 2: n = 56, BW = 276.8 ± 3.1 kg). Supplemental treatments included a hand-fed corn- and soybean meal-based supplement (CRN), a hand-fed corn- and soybean meal-based supplement containing 15% soybean oil (OIL), or a self-fed tub supplement containing 16.7% (as fed) soapstocks (TUB). Heifers were inseminated and diagnosed for pregnancy following the conclusion of the feeding period. For Exp. 2, IVDMD and volatile fatty acids (VFA) were determined using the proportions of hay and supplement that heifers consumed in Exp.1, yr 1. Treatment differences for Exp. 1 and 2 were evaluated using the single degree of freedom orthogonal contrasts, CRN + OIL vs TUB and OIL vs TUB. Total feed intake tended to be less (P=0.09) for heifers on the TUB treatment in Exp. 1, yr 1; however, hay intake was greater (P=0.02) for heifers on the TUB treatment than for hand-fed heifers. In both years, hand-fed heifers had greater ADG (P≤0.02) and BW gain efficiencies (P≤0.005) than did heifers on the TUB treatment. Average daily gain and gain efficiency were also greater (P≤0.02) for heifers on the OIL treatment than for heifers on the TUB treatment in yr 1 and 2. Overall pregnancy rate was greater (P≤0.03) for heifers on CRN and OIL than for heifers on the TUB treatment (93.2% vs 72.4%) in yr 1. In yr 2, however, overall pregnancy rates were similar (P=0.30) among all treatment groups. In Exp. 2, IVDMD was greater (P=0.002) for hand-fed diets than for the TUB diet. Total VFA were not different (P=0.34) among supplement treatments; however, the acetate:propionate ratio was less (P=0.0001) for the CRN and OIL treatments compared with the TUB treatment. Less than projected intake of TUB supplement and, thus, an overall lower plane of nutrition contributed to decreased growth in both years and poorer reproductive performance in yr 1 for heifers on the TUB treatment compared with heifers that were hand-fed a supplement.  相似文献   

8.
Six hundred ten crossbred-yearling heifers (347 +/- 5 kg of initial BW) were obtained and used in a randomized complete-block design finishing study. Finishing diets were based on steam-flaked corn and ground alfalfa hay. The control (CONT) treatment contained no distillers grains with solubles (DGS), the second diet was formulated to contained 13% (DM basis) dried corn DGS derived from a traditional dry-grind ethanol process (TRAD), and the third diet was formulated to contained 13% (DM basis) dried corn DGS derived from a partial fractionation dry-grind process (FRAC). Dry matter intake, ADG, and gain efficiency were not different (P >/= 0.48) for yearling heifers fed CONT when compared with heifers fed DGS. Heifers fed TRAD consumed more (P = 0.01) feed than heifers fed FRAC. However, ADG and feed efficiency were not different (P >/= 0.07) for heifers fed DGS. Moderate inclusion levels of DGS in finishing flaked corn diets yielded satisfactory performance. Growth performance was not different for heifers fed DGS originating from either ethanol processing method.  相似文献   

9.
Two 60-d experiments were conducted to evaluate the effects of supplementing degradable (DIP) and(or) undegradable (UIP) intake protein on the performance of lactating first-calf heifers. Diets were formulated to meet the requirements for either DIP, metabolizable protein (MP), or both when diets contained low-quality grass hay and an efficiency of microbial protein synthesis estimate of 10%. In Exp. 1, 32 individually fed first-calf heifers (avg 395 kg) were allotted to a 2 x 2 factorial arrangement of treatments (main effects of DIP, MP, and DIP x MP interaction) 1 d after calving. Cows consumed a basal diet of chopped crested wheat grass hay (4.3% CP, 67% DIP) ad libitum. Supplemental DIP and UIP were supplied by varying the ratios of soybean meal (75% DIP) and a heat-treated, protected soybean meal (70% UIP). Cow weight gain was better (P < 0.01) when adequate DIP was supplied than when DIP was deficient. However, calf weight gain was not increased by supplementing the cow with DIP. Supplemental UIP did not (P > 0.40) improve cow or calf weight gain. Blood urea N levels were higher (P < 0.01) for cows receiving supplemental DIP and UIP. However, milk production estimates were similar among treatments, as were digestibilities of OM and ADF. Nitrogen digestibility was greater when supplemental DIP was fed, but providing additional UIP did not (P = 0.15) change N digestibilities. Experiment 2 evaluated similar supplements using the same experimental design to determine changes in cow and calf weight gain, body condition score, and pregnancy rate. Seventy-two first-calf heifers (avg 441 kg) were allotted to supplement treatments 1 d after calving and were fed grass hay (5% CP, 53% DIP, 10% microbial efficiency) for ad libitum consumption for 60 d. Supplements were individually fed three times/week. Varying the ratios of soybean meal, heat-treated soybean meal, and corn gluten meal provided additional DIP and UIP. Unlike in Exp. 1, supplemental UIP improved (P < 0.05) cow weight gain. Calves from dams supplemented with DIP gained 5 kg more weight after 60 d than calves from dams deficient in DIP. Pregnancy rates in the fall were similar (P = 0.90) among treatments. These data suggest that DIP was more limiting in Exp. 1 than was UIP. Supplementing UIP in Exp. 2 improved cow weight gains but did not improve calf gains. Data suggest that the efficiency of microbial protein synthesis for this forage-based diet was probably less than 10%.  相似文献   

10.
Three experiments were conducted to evaluate the response of supplementing primiparous heifers based on the metabolizable protein (MP) system during pregnancy and lactation. In Exp. 1, 12 pregnant, March-calving heifers (432 +/- 10 kg) grazing Sandhills range were randomly allotted to one of two treatments: supplementation based on either the MP system (MPR) or the CP system (CPR). Supplements were fed to individual heifers from October to February and no hay was offered. Grazed forage organic matter intake (FOMI) was measured in November, January, and February. In Exp. 2, 18 heifers (424 +/- 8 kg) were randomly allotted to one of three treatments: 1) supplementation based on the MP system with hay fed in January and February (average 2.0 kg/d; MPR/hay), 2) supplementation based on the CP system, with hay fed in January and February (CPR/hay), or 3) supplementation based on the MP system, with no hay fed (MPR/no hay). Supplements were fed from October to February, and FOMI was measured in December and February. In Exp. 3, lactating 2-yr-old cows (394 +/- 7 kg) maintained on meadow hay were supplemented to meet either 1) MP requirements (LMPR) or 2) degradable intake protein requirements (LDIPR). Body weight (BW) and body condition score change, hay intake, and milk production were measured. In Exp. 1, grazed FOMI decreased (P = 0.0001) from 1.9% of BW in November to 1.2% in February, but no differences among treatments were detected for FOMI or BW change. In Exp. 2, grazed FOMI declined (P = 0.0001) from 1.7% of BW in December to 1.1% in February, with no differences among treatments. Heifers on the MPR/hay and CPR/hay treatments had higher (P = 0.0018) total intake (grazed forage + hay intake) in February (1.7% BW) than the MPR/no hay heifers (1.1% BW). Heifers on the MPR/no hay treatment had a lower weight (P = 0.02) and tended (P = 0.11) to have a lower BCS than heifers on other treatments. In Exp. 3, the LMPR cows had higher (P = 0.02) ADG than LDIPR cows (0.41 and 0.14, respectively), but treatment did not affect milk production. Organic matter hay intake averaged 2.4% of BW. We conclude that supplementation to meet MP requirements had little benefit to heifer performance during gestation, but increased weight change during lactation. Because grazed forage intake decreased from 1.9 to 1.1% of BW with advancing gestation, supplemental energy is necessary to reduce weight and condition loss of gestating hefiers grazing dormant Sandhills range.  相似文献   

11.
The objectives of this study were to evaluate the effects of pre- and postpartum undegraded intake protein (UIP) supplementation on body condition score (BCS), BW, calf weight, milk production, serum IGF-I concentrations, and postpartum interval in primiparous beef heifers (n = 44). Heifers were maintained on endophyte-free stockpiled tall fescue (11.7% CP, 38% ADF) and individually fed supplement daily beginning 60 d prepartum. Pre- and postpartum supplements provided 19.3% CP, 83.4% TDN (UIP); 14.1% CP, 84.1% TDN (Control); 21.5% CP, 81.5% TDN (UIP); and 14.6% CP, 81.4% TDN (Control); respectively. Blood meal (146 g/d) was the source of UIP. Six heifers were removed from the study due to calf loss unrelated to treatment; therefore, postpartum measurements are based on 19 animals per treatment. Statistical analyses using ANOVA and a split-plot design revealed no effects of treatment (P > 0.2) on BCS, BW, calf weight, milk production, or postpartum interval. There tended to be a treatment x time interaction on BCS (P < 0.09) with UIP heifers having higher BCS than Control at wk 5, 7, and 9 postpartum. There was a treatment x time interaction on serum IGF-I (P < 0.06) during the first 35 d postpartum. In UIP heifers, serum IGF-I was greater at calving compared with Control heifers (117.5 vs 92.4 ng/mL, respectively); however, these differences were not related to changes in BCS or BW. Although serum IGF-I concentrations were increased at calving in heifers receiving UIP, there were no treatment effects on postpartum interval (P > 0.7). During the first 30 d postpartum, IGF-I differed (P < 0.01) among heifers with postpartum intervals defined as short, < 50 d (128.9 ng/mL); medium, 51 to 65 d (115.2 ng/mL); and long, 66 to 130 d (52.9 ng/mL). When analyzed as a regression, a 1 ng/mL increase in IGF-I (UIP and Control heifers) at calving (P < 0.05) and throughout the postpartum period (P < 0.01) corresponded to a decrease in postpartum interval of 0.13 d. Based on the results of this study, the inclusion of UIP in diets for primiparous heifers and its effects on postpartum interval warrant further evaluation.  相似文献   

12.
Two studies utilizing 1,862 yearling heifers were conducted to determine the effects of a fenbendazole oral drench in addition to an ivermectin pour-on (SG+IVPO), compared with an ivermectin pour-on (IVPO) or a doramectin injectable (DMX) alone, on parasite burden, feedlot performance, and carcass merit of feedlot cattle. In the first study, heifers receiving the SG+IVPO had fewer (P = 0.02) cattle retreated for disease and 73% fewer (P = 0.06) worm eggs per fecal sample 98 d after treatment than heifers treated with IVPO. Heifers treated with SG+IVPO consumed more DM, had greater ADG, were heavier at slaughter, and had heavier carcasses than IVPO-treated heifers (P < 0.05). Heifers treated with SG+IVPO also had more (P = 0.07) carcasses grading USDA Prime or Choice than IVPO-treated heifers. In the second study, heifers treated with SG+IVPO had fewer (P < 0.01) worm eggs per fecal sample 35 d after treatment and had fewer numbers of adult and larval Cooperia and Trichostrongylus spp. in the small intestine at slaughter (P < 0.10) compared with heifers treated with DMX. Heifers treated with SG+IVPO consumed more DM, were heavier at slaughter, and had heavier carcasses than DMX-treated heifers (P < 0.01). The SG+IVPO-treated heifers also had greater ADG (P < 0.10). The broad-spectrum effectiveness of a combination of a fenbendazole oral drench and an ivermectin pour-on reduced parasite burden and increased feed intake, ADG, and carcass weight in feedlot heifers compared with treatment with an endectocide alone.  相似文献   

13.
An experiment was conducted to determine the relationship between feeding ractopamine and different amounts of MP on growth and carcass characteristics of feedlot heifers. Seventy-two crossbred heifers (475 kg of initial BW) were fed individually a diet based on steam-flaked corn for ad libitum intake for 29 d. Heifers were implanted with 140 mg of trenbolone acetate and 14 mg of estradiol-17beta 60 d before the experiment. Treatments were arranged as a 2 x 3 factorial and included 0 or 200 mg of ractopamine-HCl (23 ppm)/ d, and urea, solvent soybean meal, or expeller soybean meal (ESBM) as the predominant protein supplement. The amounts of MP supplied by the urea, solvent soybean meal, and ESBM diets were 688, 761, and 808 g/ d, respectively, calculated according to level 1 of the NRC model. Body weights were obtained 1 d before ractopamine feeding and at slaughter. Blood samples were obtained 1 d before starting the experiment and 13 d later. Ractopamine improved ADG, efficiency of gain, carcass-adjusted ADG, and carcass-adjusted efficiency of gain (P < 0.01). For ADG, heifers demonstrated a ractopamine x protein source interaction (P < 0.05); heifers not fed ractopamine had greater ADG when fed ESBM than when fed urea, whereas for heifers fed ractopamine there were no differences (P > or = 0.10) among protein supplements. This interaction was not observed for carcass-adjusted ADG (P = 0.60). Final live weights (P = 0.02) and carcass weights (P = 0.01) were greater with ractopamine feeding. Carcass marbling scores and yield grades were not affected by ractopamine or protein source (P > or = 0.39). Plasma total alpha-amino N and glucose concentrations decreased more from pretreatment concentrations when heifers were fed ractopamine (P < 0.05). Feeding ractopamine to heifers for 28 d before slaughter improved ADG and efficiency of gain without any large effects on carcass characteristics. The MP supply does not need to be increased from that provided by finishing diets based on steam-flaked corn with urea as the primary N supplement to allow the maximal response to ractopamine by finishing heifers.  相似文献   

14.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

15.
Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics.  相似文献   

16.
Ninety crossbred beef heifers averaging 260 kg were blocked by weight and allotted randomly to 15 pens of six heifers each, with three replicates per treatment. The treatments were spayed heifers (S); intact heifers (I); S + Synovex-H7 (SH); I + Synovex-H (IH); and S + Synovex-S7 (SS). The heifers were spayed vaginally with a Willis instrument; intact heifers were rectally palpated for reproductive soundness. Heifers were fed a growing diet (55 d), re-implanted and subsequently fed a finishing ration (73 or 101 d). All heifers were observed for estrus daily at approximately 0600 and 2000 until d 69. A jugular vein blood sample was obtained from each heifer on d 48, 55, 62 and 69 for blood progesterone analysis. Results of blood progesterone analysis and reproductive tract examination indicated that two spayed heifers were incompletely spayed, a 96% success rate. The SH and SS heifers continued to exhibit estrous behavior despite being successfully spayed. Heifers implanted with Synovex-H had greater (P less than .01) ADG and were more efficient (P less than .03) than nonimplanted heifers. The SS heifers had greater ADG (P less than .05) during the finishing phase than SH heifers, but no advantage of SS over SH was apparent during the growing phase. The overall ADG response to implantation was fourfold greater (P less than .07) in the spayed heifers than in the intact heifers (32 vs 8%). Heifers implanted with Synovex-H had greater adjusted hot carcass weight (P less than .02) and ribeye area (P less than .002) than nonimplanted heifers. For adjusted live weight and ribeye area, the response to implantation was approximately threefold greater in the spayed heifer than the intact heifer. These results demonstrate that spaying and implanting heifers can increase rates and efficiency of gain even though behavioral estrus is not eliminated.  相似文献   

17.
Thirty-six Angus x Hereford heifers (365 +/- 60 kg) were used to determine the effects of supplemental dietary lipid sources on fatty acid composition of i.m., perianal (p.a.), and s.c. lipid depots. Lipid was supplied to diets as either corn oil or a rumen-protected conjugated linoleic acid (CLA) salt for two specific treatment periods of either the final 32 or 60 d on feed. Following an initial 56-d feeding period, heifers were fed one of three dietary treatments (DM basis): 1) basal diet containing 88% concentrate and 12% grass hay (CON), 2) basal diet plus 4% corn oil (OIL), or 3) basal diet plus 2% rumen-protected CLA salt (RPCLA) containing 31% CLA. The trans-10, cis-12 CLA concentration was greatest (P < 0.05) for heifers fed RPCLA and OIL diets and least (P < 0.05) for CON, regardless of time on dietary treatment. Heifers fed supplemental RPCLA had greater (P < 0.05) total CLA content than either CON- or OIL-fed heifers. Adipose tissue concentration of trans-11 vaccenic acid (TVA) was less (P < 0.05) for CON than OIL or RPCLA, which did not differ (P > 0.05). Percentages of C18:1 trans-10 were least (P < 0.05) in i.m. lipid compared with p.a. and s.c., which did not differ (P > 0.05). Following 60 d of lipid supplementation, heifers fed OIL and RPCLA had lower (P < 0.05) concentrations of oleic acid and total monounsaturated fatty acids (MUFA) compared with CON. The ratio of cis-9, trans-11 CLA:TVA was higher (P < 0.05) for heifers fed 60 vs. 32 d, but did not differ (P > 0.05) between adipose depots. Feeding OIL increased (P < 0.05) adipose concentration of C18:2 fatty acid, whereas feeding RPCLA increased (P < 0.05) total CLA isomers by 22%. Intramuscular lipid contained the lowest (P < 0.05) percentage of cis-9, trans-11 CLA, total CLA, C18:1 cis-9, C18:1 trans-10, and TVA. Total CLA and cis-9, trans-11 CLA isomers were increased (P < 0.05) in p.a. and s.c. adipose depots, whereas i.m. adipose tissue contained increased (P < 0.05) amounts of total PUFA. Results from this study indicate that short-term lipid supplementation to feedlot cattle can increase adipose tissue CLA concentrations, but only marginally (8.3 to 17.5%). Moreover, observed decreases in oleic acid and total MUFA concentrations of adipose tissues from heifers fed rumen-protected CLA or corn oil suggest that lipid supplementation may decrease delta9 desaturase activity in adipose tissues, which in turn would lower the conversion of TVA to cis-9, trans-11 CLA isomer.  相似文献   

18.
Angus × Gelbvieh rotationally crossbred yearling heifers (n = 99, yr 1; n = 105, yr 2) were used in a 2-yr randomized complete block design experiment with repeated measures to determine the effect of feeding camelina biodiesel coproducts (meal and crude glycerin) on serum concentrations of triiodothyronine, thyroxine, insulin, β-hydroxybutyrate, and glucose, as well as on growth and reproductive performance. Heifers were assigned to 1 of 15 pens, and pens were assigned initially to receive 7.03 k·?heifer(-1)·d(-1) of bromegrass hay plus 0.95 kg·heifer(-1)·d(-1) of 1 of 3 supplements for 60 d before breeding: 1) control (50% ground corn and 50% soybean meal, as-fed basis); 2) mechanically extracted camelina meal; or 3) crude glycerin (50% soybean meal, 33% ground corn, 15% crude glycerin, 2% corn gluten meal; as-fed basis). Preprandial blood samples were collected via the jugular vein on d 0, 30, and 60 of the feeding period. A 2-injection PGF(2α) protocol (d 60 and 70 of the study) was used to synchronize estrus. Heifers were artificially inseminated 12 h after estrus was first detected. Heifers not detected in estrus within 66 h received a GnRH injection and were artificially inseminated. Dietary treatment × sampling period interactions were not detected (P = 0.17 to 0.87). Dietary treatment did not affect BW (P = 0.44 to 0.59) or serum concentrations of thyroxine (P = 0.96), β-hydroxybutyrate (P = 0.46), glucose (P = 0.59), or insulin (P = 0.44). Serum concentrations of triiodothyronine were greater (P = 0.05) in heifers fed camelina meal. Additionally, dietary treatment did not affect the percentage of heifers detected in estrus before timed AI (P = 0.83), first-service pregnancy rates of those heifers detected in estrus (P = 0.97), or overall first-service pregnancy rates (P = 0.58). Heifers fed camelina meal, however, had greater (P = 0.05) first-service pregnancy rates to timed AI than did heifers fed the control and crude glycerin supplements. The cost per pregnancy was similar for heifers fed the crude glycerin or the control supplement, whereas the cost per pregnancy was the least for heifers fed camelina meal. We conclude that camelina coproducts can replace conventional corn-soybean meal supplements in the diets of developing replacement beef heifers.  相似文献   

19.
Two hundred ninety-nine Angus-based, nulliparous heifers (253 ± 2 kg initial BW) from 3 production years were utilized to compare traditional postweaning dry lot (DL) development with a more extensive winter grazing system utilizing a combination of corn residue and winter range (EXT). Heifers developed in the DL were offered a common diet after the weaning period for 208 d in yr 1, 194 d in yr 2, and 150 d in yr 3 until breeding. Heifers developed in EXT grazed corn residue for 135 d in yr 1, 106 d in yr 2, and 91 d in yr 3, and then fed in the DL until breeding (yr 1) or grazed dormant winter grass for approximately 60 d before being fed in the DL (yr 2 and 3). All 3 years, heifers were estrus synchronized, with timed AI performed in yr 1. In yr 2 and 3, estrus was detected and those detected in estrus were artificially inseminated approximately 12 h later. Heifers were exposed to bulls 10 d after the last AI for 60 d while grazing summer pasture. During the winter grazing period, EXT heifers gained less (P = 0.01) BW than DL heifers and EXT heifers had lighter (P = 0.02) BW at breeding. Fewer (P < 0.01) EXT heifers reached puberty before breeding. Conception to AI was not different (P = 0.23); however, AI pregnancy rate tended (P = 0.08) to be less in EXT heifers. Final pregnancy rates were not different (P = 0.38) between treatment groups. Although EXT heifers had lighter (P = 0.02) BW at pregnancy diagnosis; however, they did compensate with greater (P = 0.05) ADG after breeding, resulting in similar (P = 0.22) precalving BW. Winter development system did not influence (P > 0.10) percentage of calving in the first 21 d, calf birth date, and calf birth BW, or dystocia score. Pregnancy rate after the second breeding season was not different (P = 0.56) between treatments. Heifer development using extended winter grazing reduced (P < 0.01) the cost of producing a pregnant heifer by $45 compared with DL.  相似文献   

20.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号