首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Growth characteristics of ash (Fraxinus mandshuricavar. japonicd)and kalopanax (Kalopanax pictus), two mid-succcs-sional species, were monitored in relation to seasonal light in a deciduous broadleaf forest. During the growing, relative light intensity of the gap was 4 to 6 times higher than that under the closed canopy. Seedlings could be found on the mixed hardwood forest floor where relative light intensity was around greater than 7% of full sunlight. When saplings gap openings which had relative light intensities above 20%, they quickly developed lateral branches and increased their foliage volume. The light-photosynthesis curve of seedlings of both species showed a curve typical of the “shade leaf” type even though they grew under sunlight. In contrast, saplings of both species showed the “sun leaf” type of light-photosynthesis curve. This seedling to sapling shift from shade to sun adaptation was also found in other foliage characteristics. This study shows that species can efficiently adjust their leaf and branch characteristics to changing light environments from shade to openings in a forest.  相似文献   

2.
Containerized seedlings of three commercially important tropical species were grown under four different light treatments [i.e., 100 (open site), 45, 22 and 10% sunlight] for 130 days. Light-saturated photosynthesis (A max) and light saturation estimates (LSE) reflected the species successional status with Terminalia superba Engl. and Diels, the pioneer species showing largest mean A max and LSE at 100% sunlight, whereas at 10% sunlight, it showed the lowest A max and LSE. At 22% sunlight, Cedrela odorata L., an intermediate successional species had greater A max and LSE than Mansonia altissima A. Chev., a non-pioneer light demander and T. superba. T. superba had the lowest relative growth rate (RGR) at 10% sunlight and greatest net assimilation rate (NAR) at 100% sunlight; although a higher RGR at this light level was not seen for this species. Strong and positive linear mean A max–mean NAR relationship of C. odorata and T. superba indicated that differences in leaf photosynthetic rates of the two species were reflected in their NAR, which increased with increasing light. At final harvest, superior biomass production was found at 45% sunlight for all the species. Seedling responses in specific leaf area, leaf area ratio, leaf mass ratio and root mass ratio were typically those found along a light gradient. At the 100% sunlight, intrinsic water-use efficiency (WUE), F v/F m and final root system of the plants was generally superior in T. superba but at 10% sunlight, WUE was inferior in T. superba when compared to C. odorata and M. altissima, reflecting the respective species’ short-term acclimation to high or low light. Results of this study may have practical use in screening tropical tree species for use in plantation forestry.  相似文献   

3.
There is growing interest in using switchgrass (Panicum virgatum L.) as a biofuel intercrop in forestry systems. However, there are limited data on the longevity of intercropped bioenergy crops, particularly with respect to light availability as the overstory tree canopy matures. Therefore, we conducted a greenhouse study to determine the effects of shading on switchgrass growth. Four treatments, each with different photosynthetically active radiation (PAR) levels, were investigated inside the greenhouse: control (no shade cloth, 49 % of full sunlight), low (under 36 % shade cloth), medium (under 52 % shade cloth), and heavy shade (under 78 % shade cloth). We determined the effect of shading from March to October 2011 on individually potted, multi-tillered switchgrass transplants cut to a stubble height of 10 cm. In the greenhouse, there was a reduction in tiller number, tiller height, gas exchange rates (photosynthesis and stomatal conductance), leaf area, above- and belowground biomass and light-use efficiency with increasing shade. Total (above- and belowground) biomass in the control measured 374 ± 22 compared to 9 ± 2 g pot?1 under heavy shade (11 % of full sunlight). Corresponding light-use efficiencies were 3.7 ± 0.2 and 1.4 ± 0.2 g MJ?1, respectively. We also compared PAR levels and associated aboveground switchgrass biomass from inside the greenhouse to PAR levels in the inter-row regions of a range of loblolly pine (Pinus taeda L.) stands from across the southeastern United States (U.S.) to estimate when light may limit the growth of intercropped species under field conditions. Results from the light environment of loblolly pine plantations in the field suggest that switchgrass biomass will be significantly reduced at a loblolly pine leaf area index between 1.95 and 2.25, which occurs on average between ages 6 and 8 years across the U.S. Southeast in intensively managed pine plantations. These leaf area indices correspond to a 60–65 % reduction in PAR from open sky.  相似文献   

4.
Saplings of 19 valuable rain forest timber species representative of three successional status groups (early secondary, late secondary and climax) were grown in a polyhouse to examine their responses to three light intensity/quality treatments and nitrogen supply. Solar radiation was modified using painted polyethylene sheet to mimic natural light environments across a rain forest vertical column as follows: 1. Transparent plastic, 80% of full sunlight, R:FR = 0.95, 2. Blue shade, 14% of full sunlight, R:FR = 0.69; 3. Green shade, 7% of full sunlight, R:FR = 0.50. Transparent plastic conditions promoted an increase in stem height and diameter (i.e., growth), leaf thickness and gas exchange per unit leaf area. Additional nitrogen availability enhanced growth and specific leaf area (i.e., leaves were thinner), particularly in the full sun environment and on early secondary and late secondary successional species, but did not influence photosynthetic rate. Successional status of the species did not affect photosynthetic rate although early secondary successional species grew faster and had fewer branches than species of the other successional groups. We recommend that for a successful mixed stand the high-light requiring species should be planted first, with increased nitrogen supply, and the shade tolerant species should be introduced later with no extra nitrogen supply required.  相似文献   

5.
In Mediterranean climates, seedlings are frequently shaded in the nursery to avoid heat damage and save water. However, the impact of this shading on the seedling quality and transplanting performance of Mediterranean species is not well known. We studied the effect of nursery shading on pre-planting features and post-planting performance of two Mediterranean tree species: the shade-intolerant pioneer Pinus halepensis and the shade-tolerant late-successional Quercus ilex. We grew one-year-old seedlings of both species under 100, 40 and 5% full sunlight. Shade had a low impact on the morphology and physiology of Q. ilex seedlings. In pines, only the deep shade treatment produced low quality seedlings with poor root development. In both species, transference to high light at planting in autumn did not impose any additional stress than that caused by frosts, but initial root growth was impaired in the two shaded treatments in pine. Post-planting growth and survival of oak seedlings showed no difference between treatments. Pine seedlings grown in deep shade showed higher mortality and lower growth after planting than those grown in full sun and intermediate light treatments, while intermediate light only reduced growth. For the nursery culture of Q. ilex seedlings, we advise using low light levels during summer to save water without impairing field performance. In P. halepensis, seedlings should be cultured under full sunlight conditions to maximize post-planting growth, but they can be cultured under intermediate light without impairing survival.  相似文献   

6.
Selected tropical Acacia species are used extensively for short-rotation plantation forestry in many parts of Asia and, to a limited degree, in Australia. We explored leaf-level photosynthetic activity and leaf water potential (Ψleaf) of three field-grown Acacia tree species (aged between 7 and 18 months) in contrasting wet–dry tropical plantations in southern Vietnam and northern Australia. Light-saturated photosynthetic rate (A1500) declined throughout the morning and early afternoon in the dry season; in the wet season, levels remained high and relatively constant throughout most of the day. Maximum daily A1500 at 09:00 ranged from 22.2 μmol?m?2?s?1 in the wet to 10.4 μmol?m?2?s?1 in the dry season. At both locations, trees were able to extract soil water such that pre-dawn leaf water potential (Ψpd) remained>?1.5?MPa even at the end of the dry season. Stomatal conductance to water vapour (gs) did not respond to decreasing Ψleaf during the wet season but was sensitive to changes in Ψleaf in the dry season. Species comparisons of the relationships between A1500 and Ψleaf revealed different strategies to balance carbon uptake and water loss in a wet–dry environment. Acacia crassicarpa and A. mangium regulated Ψleaf to a greater extent than the A. mangium×A. auriculiformis hybrid such that ?Ψleaf (determined as Ψpd?midday Ψleaf) was unaffected by season. This result suggests that the hydraulic regulation of tree water status varies amongst young tropical Acacia species. From a management perspective, for Acacia species that tend to strongly regulate water loss in environments with an extended dry season, overall productivity at the end of a rotation may be less than for species that prioritise carbon gain.  相似文献   

7.
  • ? The combined effect of water stress and light on seedlings of forest species is a key factor to determine the best silvicultural and afforestation practices in the Mediterranean area.
  • ? The aims of this work was (1) to determine the optimal light level for the early development of cork oak seedlings under mild water stress and (2) to test if the combined effect of water stress and light followed the trade-off, the facilitation or the orthogonal hypothesis.
  • ? Shade reduced instantaneous photosynthetic rates and water use efficiency in cork oak. However, seedlings grown under moderate shade (15% of full sunlight) were capable to accumulate similar amount of biomass than those grown under more illuminated environments by increasing their specific leaf area. Absolute differences in net photosynthesis between light treatments were higher in well watered than in water stressed seedlings. However, the impact of both factors on overall growth was orthogonal.
  • ? We concluded that cork oak development is impaired under deep shade (5% of full sunlight) but it can be optimal under moderate shade (15% of full sunlight) even under moderate water stress. Implications of these patterns on regeneration, cultivation and afforestation of cork oak are discussed.
  •   相似文献   

    8.
    The Cocoa Research Institute of Ghana has embarked on studies to support the replanting of cacao (Theobroma cacao L) in areas, which previously carried the crop but are now degraded. A key component of the studies is to identify fast growing tree species capable of ameliorating degraded soils and ultimately providing suitable shade for cacao. A screening trial involving ten Albizia species in a randomized complete block design experiment was therefore initiated in 1996 to evaluate growth rate, leaf biomass production, carbon and nitrogen contents and decomposition rates. Over a four-year period, Albizia adenocephala, A. guachapele, A. niopoides, A. plurijuga,A. saman and A. tomentosa showed promising results, with 12.2 to 14.5 m height and between 12.4 and 22.4 cm stem diameter (DBH). Crown diameter ranged between 6.1 and 10.1 m, with light transmission through crowns averaging 50–65% of full sunlight throughout the year. Half-yearly leaf biomass production ranged between 3and 10 t ha–1, yielding between 0.07 and 0.32 t N ha–1 from each coppicing. Half-life for carbon and nitrogen release from leaves of the six species averaged 31.0 and 32.0 days respectively. This short-term release of C and N is an indication of the quality of the leaf prunings. These species can provide early ground cover, appropriate shade, N and organic matter requirements for re-establishing cacao on denuded and degraded lands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

    9.
    Because of their high growth rate and tolerance to bare soil, two exotic Acacia species, Acacia auriculiformis and Acacia mangium, have been commonly planted in degraded areas of South China. With their large canopies and ability to fix nitrogen, the two Acacia species have also been considered to act as nurse plants for understory plants. The current study clarified the nursing effects of the Acacia species by comparing microclimate characteristics and physiological traits of native plant seedlings at three sites: under the canopies of the each Acacia species and on bare land (open site). Although the sites were not replicated, the results indicated that adult trees of both Acacia species can facilitate native species, but that A. mangium has greater facilitating effects due to greater temperature buffering, radiation reduction, and nutrient amelioration. In response to facilitation, three species (Castanopsis hystrix, Michelia macclurei, and Manglietia glauca) with different shade-tolerant traits growing under Acacia canopies expressed distinct adaptations. For the three species, the chlorophyll fluorescence curves of rETR and ΔF/Fm′ were higher under A. auriculiformis and on the open site than under A. mangium. The maximum quantum yield in PSII(Fv/Fm) in diurnal changes of the three species showed that all the Fv/Fm values were between 0.70 and 0.84 and that the Fv/Fm values were mostly higher under A. mangium than on the open site or under A. auriculiformis. Total chlorophyll content and both chlorophyll a and b contents in the three species were higher under the Acacia species than on the open site, while chlorophyll a/b ratio was higher on the open site. In contrast, the carotenoid content in C. hystrix and M. macclurei was lower under the two Acacia species than on the open site, while the opposite was true for M. glauca. The results demonstrate that the adaptation of the understory species to abiotic environmental factors is not restricted to a single mechanism but apparently involves a group of interrelated, adaptive suites. And also these adaptations were species-specific and especially related to their shade tolerance.  相似文献   

    10.
    为筛选出耐晒性较强的山茶花品种,以烈香、六角大红、克瑞墨、金花茶、五色赤丹、迪斯6个品种为试验材料,研究不同光照强度(全光照、遮阴率50%、遮阴率70%、遮阴率90%)对植物形态指标及叶绿素含量的影响。结果表明,从生长特性、叶绿素含量、生物量积累等方面来看,全光照条件下品种迪斯、克瑞墨的生长表现最好,不同程度的遮阴处理均影响各品种的生长。最终筛选出品种迪斯、克瑞墨作为耐晒性较强的山茶品种。  相似文献   

    11.
    To determine the effects of shade on biomass, carbon allocation patterns and photosynthetic response, seedlings of loblolly pine (Pinus taeda L.), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and yellow-poplar (Liriodendron tulipifera L.) were grown without shade or in shade treatments providing a 79 or 89% reduction of full sunlight for two growing seasons. The shade treatments resulted in less total biomass for all species, with loblolly pine showing the greatest shade-induced growth reduction. Yellow-poplar was the only species to show increased stem height growth in the 89% shade treatment. The shade treatments increased specific leaf area of all species. Quantum efficiency, dark respiration and light compensation point were generally not affected by the shade treatments. Quantum efficiency, dark respiration, maximum photosynthesis and light compensation point did not change consistently between the first and second growing seasons. We conclude that differences in shade tolerance among these species are not the result of changes in the photosynthetic mechanism in response to shade.  相似文献   

    12.
    We analyzed the growth and photosynthetic behavior of Gallesia integrifolia (‘pau-d’alho’) and Schinus terebinthifolius (‘aroeirinha’) under shade, seeking to obtain ecophysiological information for introducing seedlings of those species in previously established cacao agroforestry systems. Considering that light intensity under the shade of cacao trees varied between 5 and 10% daylight, 5 months old seedlings were exposed to four irradiance levels (25, 17, 10 and 5% daylight) for 92 days. With shade increase both species displayed trends of decrease leaf mass per unit leaf area, leaf area per plant (LA), relative growth rate (RGR) and net assimilation rate (NAR), and increase leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (P nmax) in 25 and 5% daylight were 12.8 and 8.0 μmol CO2 m−2 s−1 for G. integrifolia and 17.9 and 7.4 μmol CO2 m−2 s−1, respectively, for S. terebinthifolius. Based on the measurements of photosynthetic photon flux density and estimated values of photosynthetic saturated irradiance (Is) we concluded that, in all shaded conditions, the leaves of both species were under sub optimal light conditions to reach P nmax. In spite of the lowest P nmax values, RGR and NAR were significantly higher for G. integrifolia in all irradiance levels. Differences in growth rates can be explained by the higher values of LA, LAR and leaf mass ratio (LMR), as well as by the lower values of Is, photosynthetic compensation irradiance and dark respiration rates observed for G. integrifolia. Even though seedlings of G. integrifolia presented higher capacity to adapt under conditions of dense shade, we concluded that both species were under stress conditions induced by shade in light environments below 25% daylight. On a practical point of view it is possible to conclude that seedlings of both species should be introduced in light gaps, formed after the fall of big trees, or in places in which cacao trees are cultivated using large plant spacing.  相似文献   

    13.
    紫茎泽兰(Eupatorium adenophorum)对光强的生态适应性   总被引:6,自引:0,他引:6  
    紫茎泽兰(Eupatorium adenophorum)是我国主要外来入侵植物之一,在我国西南地区迅速传播,引起了巨大的经济损失。本文比较研究了不同光强下生长14个月的(透光率RI分别为10%、20%、30%、55%、100%)紫茎泽兰幼苗的生物量分配、叶片形态和生长反应特性。结果表明:紫茎泽兰在不同的光强条件下显示出极强的叶生态适应性。植株总生物量随光强升高而增加(RI从10%到55%),但在全光照下总生物量反而有所下降。株高也随光强增大(RI从10%到30%)而增大,但到达一定程度(RI30%)后,株高反而下降。在弱光照条件下,从比叶面积(SLA),叶面积比(LAR)和比茎长(SSL)等指标表明,植物通过叶片变薄、变大增加单位生物量的叶面积来捕获光能。随着光强的升高,平均相对生长速率增加,在本试验尺度下,RI在55%左右达到平均相对生长速率最大值。植株在RI为30%–55%下生长状况好于全光照条件下的幼苗。在高遮荫条件下能阻止其它生物的生存和生长,这可能是紫茎泽兰强入侵性的一种生态适应策略。结论:紫荆泽兰对光照强度拥有极强的生态适应性,可能是紫荆泽兰入侵性比较强的重要原因之一。图3参26。  相似文献   

    14.
    Seedlings of invasive species often exhibit superior physiological traits that facilitate their spread at early stages of invasion, although it is unclear whether these traits persist at the post-establishment stage. To determine whether mature exotic Acacia spp. possess superior traits over mature native plants, we compared foliar gas exchange and chlorophyll a fluorescence of Acacia auriculiformis and Acacia mangium coexisting with tropical heath forest tree species Buchanania arborescens and Dillenia suffruticosa in Brunei Darussalam. The CO2 assimilation rates of Acacia spp. were significantly higher than those of heath species at current prevailing conditions of ~400 ppm ambient CO2, 1,500 µmol m?2 s?1 photosynthetically active radiation and 30°C leaf temperature. The photosystem II of Acacia spp. exhibited significantly higher maximum quantum yield of primary photochemistry at comparable temperatures, and was more sensitive to an elevated temperature (42°C for 1 h). Better photosynthetic performance of Acacia spp., due to larger stomatal openings, better light harvesting efficiency, and greater plasticity in photosystem II, may enable adult Acacia trees to sustain a competitive growth advantage and suppress native tropical heath forest species. The competitive advantage maintained by Acacia spp. in post-establishment stage likely facilitates the establishment of monospecific Acacia stands in invaded heath forests.  相似文献   

    15.
    Genipa americana L. (Rubiaceae) is a late successional neotropical fruit tree used in riparian forest restoration programs. We analyze the effects of light availability and soil flooding on the growth and photosynthetic characteristics of G. americana seedlings under nursery and natural light conditions. Two light levels (full sunlight and shade), and two levels of soil water (flooded and control) were used in the experiment. Flooding induced significant changes in the total seedling biomass (P < 0.01). The differences among water treatments were 70 and 10% at full sunlight and shade, respectively. These changes were explained by alterations in the maximum quantum efficiency of the photosystem 2 (Fv/Fm), light-saturated net photosynthetic rates (A sat) and intrinsic water use efficiency (WUE). G. americana has high physiological plasticity in relation to the light availability and flooding, although significant interactive effects between high light exposure and soil flooding were observed in several photosynthetic and growth variables. The results highlight the importance of the synergistic effects between physical environmental variables on the establishment and growth of G. americana seedlings. In the practical point of view we can indicate that, in degraded riparian forests subjected to soil flooding, seedlings of this species should be planted under partially shaded environments.  相似文献   

    16.
    Shade tolerance, plastic phenotypic response to light and sensitivity to photoinhibition were studied in holly (Ilex aquifolium L.) seedlings transported from the field to a greenhouse and in adult trees in the field. All plants were growing in, or originated from, continental Mediterranean sites in central Spain. Seedlings tolerated moderate but not deep shade. Mortality was high and growth reduced in 1% sunlight. Survival was maximal in 12% sunlight and minimal in full sunlight, although the relative growth rate of the seedlings surviving in high light was similar to that of plants in moderate shade. Maximum photochemical efficiency at predawn was significantly lower in sun plants than in shade plants in the field, revealing chronic photoinhibition that was most pronounced in winter. Plasticity in response to available light varied according to the variable studied, being low for photosynthetic capacity and stomatal conductance, and high for specific leaf area, root:shoot ratio and leaf area ratio, particularly in seedlings. Differences in water relations and hydraulic features between sun and shade plants in the field were marginal. High water potential at the turgor loss point of field-grown plants suggested that holly is sensitive to drought during both the seedling and the adult stage. Low relative growth rates in both high and low light with low physiological plasticity in response to light indicate the existence of a stress-tolerance mechanism. We conclude that holly is a facultative understory plant in areas of oceanic and relatively mild climate, but an obligate understory plant in dry continental areas such as the study site. The impact of abandonment of traditional management practices and climate change on these Mediterranean populations is discussed.  相似文献   

    17.
    Khan  Shafiqur Rehiman  Rose  Robin  Haase  Diane L.  Sabin  Thomas E. 《New Forests》2000,19(2):171-186
    Four species of Pacific Northwestconifer seedlings (ponderosa pine [Pinusponderosa Dougl. ex Laws.], Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], westernredcedar [Thuja plicata Donn ex D. Donn], andwestern hemlock [Tsuga heterophylla (Raf.)Sarg.]) were planted in individual pots and grownunder shade-cloth shelters that provided four levelsof shade (0% [full sunlight], 35%, 55%, and 75%)for approximately 30 weeks. Height growth wasrecorded every 2 weeks. Initial and final seedlingmorphology and chlorophyll concentrations weremeasured. Chlorophyll fluorescence was measuredmonthly. All species responded similarly to shade. Although height growth was greatest under 75% shadeand least in 0% shade, total biomass production wassignificantly lower and shoot:root ratio significantlyhigher in 75% shade than in 0% shade. As thetreatment shade level increased from 0% to 75%,Fv/Fm was significantly lower whilechlorophyll concentrations were significantly higher. These results indicate that photochemical efficiencyof all four species was lower under higher shade. Morphological and physiological responses differedgreatly among species and corresponded with theirdegree of shade tolerance.  相似文献   

    18.
    We analyzed the growth and photosynthetic responses of Canarium pimela K. D. Koenig (Chinese black olive) and Nephelium topengii (Merr.) H. S. Lo. (Hainan shaozi) to a light gradient to recommend better procedures for optimizing seedling establishment and growth of both species in restoration and agroforestry practices. One-month-old seedlings were exposed to four irradiance levels (46, 13, 2 and 0.2 % full sunlight) inside shade cloth covered shadehouses for 1 year. With decreased sunlight both species displayed trends of decreased relative growth rate (RGR) and leaf area (LA), and increased specific leaf area and leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (Pmax) in 46 and 0.2 % full sunlight were 10.11 and 3.44 μmol CO2 m?2 s?1 for C. pimela and 6.26 and 3.47 μmol CO2 m?2 s?1 for N. topengii, respectively. C. pimela had higher RGR in 46 and 13 % full sunlight than in 2 and 0.2 % full sunlight. Differences in growth rates can be explained by the different values of LA, LAR and leaf mass ratio, as well as by the different values of photosynthetic saturation irradiance and net photosynthetic rate (Pmax) between the two species. Both morphological and physiological responses to shading indicate N. topengii could be rated as “very shade-tolerant,” while C. pimela could be rated as “intermediately shade-tolerant”.  相似文献   

    19.
    We compared shade tolerance of maple, ash and beech in the saplingstage from two sites with rich soils differing in water supply,growing in dense thickets underneath a beech shelterwood ofvarying canopy densities. Shade tolerance was described by twocomponents: mortality in shade and height growth in high light.At low light, beech showed the least mortality, maple the highestand ash in between on both sites. The decline with increasinglight was steepest in beech and more gradual with ash and maple.At 15 per cent above canopy light, all three species approachedzero mortality. Beech as the most shade-tolerant species hadthe highest survival rate under low light and the least lengthgrowth rate under high light (>17 per cent). Ash had a lowersurvival rate at low light than beech and a highest growth rateat high light. Maple showed a bit weaker trade-off with thelowest survival rate but a growth rate inferior to ash. On thebetter water-supplied site, height growth was significantlysuperior in all three species only under high light. On thebasis of these results, silvicultural conclusions are drawnwith respect to appropriate light levels and cutting types.  相似文献   

    20.
    The objective of this study was to evaluate the effect of nursery shading on the Yellow-ipe seedling (Tabebuia chrysotricha) growth, photosynthesis, and photosynthetic acclimation after being transferred into direct sunlight. The Yellow-ipe seedlings were grown under 0, 50, 70 and 95% shade. At the 134th day of sowing, leaf gas exchange and chlorophyll were measured under current growth shading, after exposure to 15 min and two day full sunlight. With the increase of shading, the Yellow-ipe seedlings allocated more biomass to the stem and leaves and less to the roots, and there was an increase in the leaf area ratio and specific leaf area. In relation to 0% of shading there was a increase of 211% in stem, 116% in leaf, and a reduction of 200% in roots biomass when seedling were grown under 95% of shading. The total biomass accumulation had a high correlation with collar diameter (r = 0.96). More than 70% of the shading reduced the photosynthesis, and after transferring the seedlings into full sunlight, more than 50% of the shading induced a reduction in chlorophyll, stomatal conductance, photosynthesis and instantaneous carboxylation efficiency, suggesting the presence of a photoinhibition process. The Yellow-ipe seedling growth under nursery conditions should not be done under more than 50% shading, which may result in the lower seedling quality and poorer acclimation to transplantation, particularly to severe degraded areas with direct sunlight. The species can be used for recovering from totally devastated forest areas to initial recovery when full canopy are forming.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号