首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Importance of current photosynthate in the regulation of tree defense against the southern pine beetle (SPB),Dendroctonus frontalis Zimm. (Coleoptera: Scolytidae) was investigated in loblolly pine,Pinus taeda L. Downward translocation of carbohydrate was blocked by removing a ring of bark (girdle) at 3.5 m above ground. Beetle colonization success and tree defensive responses measured as resin flow and induced lesion formation to inoculations with the beetle-associated fungus,Ophiostoma minus (Hedge.) H. and P. Sydow., were assessed above and below girdles. We hypothesized that a decrease in a available carbohydrate would lead to a decrease in tree defense and an increase in SPB colonization success below girdles. At 2 weeks, post-girdling carbohydrates were already reduced by 50% below girdles, but no significant differences in beetle colonization success or defensive responses were measured. At 8 weeks, post-girdling starch was reduced by 93%, sucrose by 44% and resin flow by 44% below girdles. Southern pine beetle adults were more successful in colonizing areas below than above girdles. However, no significant differences were detected in the size of the lesions that formed in response to inoculated fungi. This suggests that the size of the induced lesion may not be a reliable indicator of tree resistance to bark beetle attack as previously believed, and that lesion development is not entirely dependent on available carbohydrate or related to tree defense against beetles. Cambial growth was reduced below girdles with no latewood formed below and 25 rows of latewood formed above girdles. Latewood contains much higher densities of resin ducts than earlywood. This may explain why resin flow was lower and beetles were more successful in colonizing areas of the tree below girdles. Therefore, tree defense against bark beetles may be more complex than a simple supply-and-demand relationship for carbohydrate, and changes in source-sink relationships, as influenced by the environment, may be more important than supply.  相似文献   

2.
本文对云杉八齿小蠹化学生态的研究进展进行了综述。云杉八齿小蠹在中欧的大面积爆发激发了广大林业科学工作者对其化学生态学的广泛研究。在寻找寄主的过程中,雄性找到寄主后释放化学信息物质吸引雄性和雌性的聚集。开始发起进攻的小蠹在找寻寄主的过程中能利用寄主树脂作为利己素,并能够在体内解毒后合成可被利用的化学信息物质。在云杉八齿小蠹雄性的中肠中,我们发现9种单萜类化合物,主要是反式马鞭草烯醇和2-甲基3-己烯2-醇,这两种物质被认为是云杉八齿小蠹聚集信息素的主要成分。小蠹二烯醇的含量虽然很低但是能显著提高马鞭草烯醇和2-甲基3-己烯2-醇的野外诱集作用。马鞭草烯酮和小蠹烯醇是反聚集信息素,在调节攻击密度和树皮下的种群密度的过程中起着重要的作用。本文主要综述了寄主抗性、信息素成分和小蠹虫行为之间的关系。野外生测的结果证明利用信息素防治云杉八齿小蠹是行之有效的防治方法。  相似文献   

3.
Frequency of Douglas-fir bark beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Scolytidae), attack on western larch (Lark occidentalis Nutt.) was negatively correlated with 3-carene content of the xylem oleoresin. Concentrations of all oleoresin volatiles from stem cores of standing trees were higher in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) than in western larch with the single exception of 3-carene. Successful brood production by the Douglas-fir bark beetle in standing trees of Douglas-fir but not western larch may therefore be explained, at least in part, by the high 3-carene content of western larch. Other differences between the species that might affect susceptibility to beetle attack include thinner phloem, higher phloem moisture content and larger diameter vertical resin ducts in western larch compared with Douglas-fir. Live standing western larch had no oleoresin exudation pressure, suggesting that this trait is not associated with resistance to attack by the Douglas-fir bark beetle in this species.  相似文献   

4.
Chemical ecology of the spruce bark beetle lps typographus (L.) was reviewed. The outbreak of 1.typographus in central Europe triggered extensive research on chemical ecology, Males initiate host location and produce semiochemicals which attract both males and females, A successful mass attack must first overcome the resistance of the host tree. Pioneer I. typographus evolved to use the resin flow of host trees as kairomones in host location, and synthesized semiochemicals initially to detoxify the resin. If small bark beetle populations infest healthy trees, mass attack is prevented by host resistance, Nine monoterpene alcohols were found in male hind-guts, including cis-verbenol (cV) and 2-methyl-3-buten-2-ol (MB) which are regarded as primary aggregation pheromones, and a low proportion of lpsdienol (ld) which increases attractiveness of cV and MB, Verbenone (Vn) and Ipsenol (le) are anti-aggregation pheromones, that play important roles in adjusting attack density and insect density under the bark. Non-host volatiles are repellent to L typographus, so that beetles do not waste energy boring into non-host trees. The relationship between host resistance, pheromone compounds and behavior, non-host volatiles, bioassays and mass trapping are reviewed, Results of field bioassays stressed that traps baited with specific pheromones could be used as a reasonable protection measure.  相似文献   

5.
Four treatments (control, burn-only, thin-only, and thin-and-burn) were evaluated for their effects on bark beetle-caused mortality in both the short-term (one to four years) and the long-term (seven years) in mixed-conifer forests in western Montana, USA. In addition to assessing bark beetle responses to these treatments, we also measured natural enemy landing rates and resin flow of ponderosa pine (Pinus ponderosa) the season fire treatments were implemented. All bark beetles were present at low population levels (non-outbreak) for the duration of the study. Post-treatment mortality of trees due to bark beetles was lowest in the thin-only and control units and highest in the units receiving burns. Three tree-killing bark beetle species responded positively to fire treatments: Douglas-fir beetle (Dendroctonus pseudotsugae), pine engraver (Ips pini), and western pine beetle (Dendroctonus brevicomis). Red turpentine beetle (Dendroctonus valens) responded positively to fire treatments, but never caused mortality. Three fire damage variables tested (height of crown scorch, percent circumference of the tree bole scorched, or degree of ground char) were significant factors in predicting beetle attack on trees. Douglas-fir beetle and pine engraver responded rapidly to increased availability of resources (fire-damaged trees); however, successful attacks dropped rapidly once these resources were depleted. Movement to green trees by pine engraver was not observed in plots receiving fire treatments, or in thinned plots where slash supported substantial reproduction by this beetle. The fourth tree-killing beetle present at the site, the mountain pine beetle, did not exhibit responses to any treatment. Natural enemies generally arrived at trees the same time as host bark beetles. However, the landing rates of only one, Medetera spp., was affected by treatment. This predator responded positively to thinning treatments. This insect was present in very high numbers indicating a regulatory effect on beetles, at least in the short-term, in thinned stands. Resin flow decreased from June to August. However, resin flow was significantly higher in trees in August than in June in fire treatments. Increased flow in burned trees later in the season did not affect beetle attack success. Overall, responses by beetles to treatments were short-term and limited to fire-damaged trees. Expansions into green trees did not occur. This lack of spread was likely due to a combination of high tree vigor in residual stands and low background populations of bark beetles.  相似文献   

6.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

7.
Four years of severe drought from 1999 through 2003 led to unprecedented bark beetle activity in ponderosa and Jeffrey pine in the San Bernardino and San Jacinto Mountains of southern California. Pines in the San Bernardino Mountains also were heavily impacted by ozone and nitrogenous pollutants originating from urban and agricultural areas in the Los Angeles basin. We studied bark beetle activity and bark beetle associated tree mortality in pines at two drought-impacted sites in the San Bernardino Mountains, one receiving high levels of atmospheric pollutants, and one with more moderate atmospheric input. We also investigated the effects of nitrogen addition treatments of 0, 50 and 150 kg N ha−1 year−1 at each site. Tree mortality and beetle activity were significantly higher at the high pollution site. Differences in beetle activity between sites were significantly associated with ozone injury to pines, while differences in tree mortality between sites were significantly associated with both ozone injury and fertilization level. Tree mortality was 9% higher and beetle activity 50% higher for unfertilized trees at the high pollution site compared to the low pollution site. Tree mortality increased 8% and beetle activity increased 20% under the highest rates of nitrogen additions at the low pollution site. The strong response in beetle activity to nitrogen additions at the low pollution site suggests that atmospheric nitrogen deposition increased tree susceptibility to beetle attack at the high deposition site. While drought conditions throughout the region were a major factor in decreased tree resistance, it appears that both ozone exposure and atmospheric nitrogen deposition further increased pine susceptibility to beetle attack.  相似文献   

8.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

9.
  • ? Our aim is to present why the hypothesis, that Ophiostomatoid fungi play an important role in the establishment of most bark beetle species on living conifers, is valuable.
  • ? After summarizing knowledge about the relationships of bark beetles with conifers and fungi, we conclude that controversy results from misinterpretations when using fungal pathogenicity to demonstrate the role of Ophiostomatoid fungi in beetle establishment on host trees.
  • ? We demonstrate that fungal pathogenicity is not the right parameter to appreciate the role of fungus in beetle establishment on host trees. We argue that artificial low density inoculations that allow the appreciation of fungus ability to stimulate tree defenses and thus to help beetles in overcoming tree resistance must be used in complement to mass inoculations. In both cases, results must be expressed in terms of tree defense stimulation rather than in terms of tree killing.
    1. Fungal species stimulating tree defenses are generally not those that grow the best in the sapwood.
    2. We argue that beetle development in the phloem, fungal invasion of the sapwood and phloem, and tree death, occur after tree defenses are exhausted, and that any fungus present in the beetle gallery could thus potentially invade the sapwood after defense exhaustion.
  • ? We conclude that stimulation of the tree defense reactions in both the phloem and the superficial sapwood is a real benefit brought by fungi to the beetles during the first phase of establishment (overcoming tree resistance).
  • ? Considering the origin of the bark beetle fungus associations attacking living trees and their general functioning based on stimulation of tree defenses, we develop three hypotheses:
    1. any beetle species would be helped in its establishment in a given tree species by developing an association, even loosely, with a fungus species belonging to the Ophiostomatoid flora of that tree species;
    2. the necessity of a considerably low level of tree resistance for fungus extension into the tree is the selection pressure that has led fungi to develop their intrinsic ability to stimulate tree defenses, through their ability to grow into the phloem. This association can be completed by antagonistic fungal species controlling extension of the previous fungal species in the tree tissues;
    3. Beetle species using the strategy of overcoming tree resistance are associated with a fungal complex, of which species could assume three roles regarding relationships between beetles and trees: 1- to stimulate tree defenses in the phloem and superficial sapwood, 2- to grow into the sapwood after tree resistance is overcome, and 3- to control phloem extension of the first other two categories. Bringing nutrients to the beetle progeny can be a fourth role.
  • ? We propose that bark beetle — Ophiostomatoid associations can be categorized, based on associations’ frequency and complexity while taking into account beetle aggressiveness. We show that a close correspondence exists between beetles’ aggressiveness and the ability of their main associated fungal species to stimulate the defenses of their host tree.
  • ? We conclude with suggesting that most sapwood invading fungi might be “cheaters” which have taken advantage of the efficiency of the relationship between beetles and fungi that stimulate tree defenses.
  •   相似文献   

    10.
    Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.  相似文献   

    11.
    Extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality associated with a widespread severe drought and increased bark beetle (Coleoptera: Curculionidae, Scolytinae) populations occurred in Arizona from 2001 to 2004. A complex of Ips beetles including: the Arizona fivespined ips, Ips lecontei Swaine, the pine engraver beetle, Ips pini (Say), Ips calligraphus (Germar), Ips latidens (LeConte), Ips knausi Swaine and Ips integer (Eichhoff) were the primary bark beetle species associated with ponderosa pine mortality. In this study we examine stand conditions and physiographic factors associated with bark beetle-caused tree mortality in ponderosa pine forests across five National Forests in Arizona. A total of 633 fixed-radius plots were established across five National Forests in Arizona: Apache-Sitgreaves, Coconino, Kaibab, Prescott, and Tonto. Prior to the bark beetle outbreak, plots with mortality had higher tree and stocking compared with plots without pine mortality. Logistic regression modeling found that probability of ponderosa pine mortality caused by bark beetles was positively correlated with tree density and inversely related with elevation and tree diameter. Given the large geographical extent of this study resulting logistic models to estimate the likelihood of bark beetle attack should have wide applicability across similar ponderosa pine forests across the Southwest. This is particularly true of a model driven by tree density and elevation constructed by combining all forests. Tree mortality resulted in significant reductions in basal area, tree density, stand density index, and mean tree diameter for ponderosa pine and for all species combined in these forests. Most of the observed pine mortality was in the 10–35 cm diameter class, which comprise much of the increase in tree density over the past century as a result of fire suppression and grazing practices. Ecological implications of tree mortality are discussed.  相似文献   

    12.
    We studied the bark beetle guild (Coleoptera: Scolytidae) in the ponderosa pine forests of northern Arizona to explore if the species assemblages and relative abundance differ between managed and unmanaged stands. Four stand conditions were assessed: (1) unmanaged stands with high tree density, (2) thinned stands, (3) thinned and burned (with prescribed fire) stands and (4) stands that had been burned by stand replacing wildfires. The study was conducted in the ponderosa pine forests of the Coconino Plateau, northern Arizona. For several decades this area has been relatively free of bark beetle outbreaks despite the current overstocked condition of many stands. We found that a similar species assemblage composed of Dendroctonus frontalis, D. brevicomis, D. valens, D. approximatus, D. ponderosae, and Ips pini occurred across all four stand conditions over 3 years of study. The population levels of all these species were endemic across all stand conditions. The non-aggressive D. approximatus and D. valens were indicator species for thinned and unmanaged stands, respectively, but this was not consistent among years. The ambrosia beetle Gnathotrichus sp. and the bark beetle predator Enoclerus sp. consistently indicated stands burned by wildfire. In addition to our field experiment, we analyzed the historical pattern of attacks of bark beetles in our area of study. Our findings suggest that the pattern of attack of D. brevicomis (the only Dendroctonus species for which attacks have been reported) and Ips spp. has been through scattered small infestations in groups of 1–10 trees. Whereas small infestations by Ips spp. are increasing, those for D. brevicomis are decreasing. Although we agree that the high density stands in northern Arizona are in an “unhealthy” condition, our results do not show that they were supporting large bark beetle outbreaks. Our results challenge the theoretical assumptions about the relationship between stand structure, tree resistance and bark beetle performance.  相似文献   

    13.
    Warmer climates induced by elevated atmospheric CO(2) (eCO(2)) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO(2) on resin production--the tree's primary defense against beetle attack--remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO(2) are not consumed by respiration or growth, resin production could increase. Here, the effect of eCO(2) on resin production of mature pines is assessed. As predicted, eCO(2) enhanced resin flow by an average of 140% (P=0.03) in canopy dominants growing in low-nitrogen soils, but did not affect resin flow in faster-growing fertilized canopy dominants or in carbohydrate-limited suppressed individuals. Thus, pine trees may become increasingly protected from bark beetle attacks in an eCO(2) climate, except where they are fertilized or are allowed to become overcrowded.  相似文献   

    14.
    When conifers such as Picea abies Karst. (Norway spruce) are attacked by insects or pathogens, they often respond by producing increased quantities of terpenoid oleoresin. This response can be mimicked in young P. abies seedlings by treatment with methyl jasmonate (MJ). In this study, we determined the effects of MJ on terpenoids and other chemical defenses of mature P. abies, and investigated whether this treatment protected trees against attack by the blue-stain fungus Ceratocystis polonica (Siem.) C. Moreau, the most important fungal associate of the spruce bark beetle Ips typographus L. Methyl jasmonate treatment induced the formation of traumatic resin ducts in the developing xylem, enhanced resin flow and stimulated increased accumulation of monoterpenes, sesquiterpenes and diterpene resin acids. However, only minor changes were detected in terpene composition in response to MJ treatment and no changes in soluble phenolic concentration were measured. There was much variability in the timing and degree of response to MJ among clones. The observed chemical and anatomical changes in response to MJ treatment were correlated with increased resistance to C. polonica, suggesting that terpenoid oleoresin may function in defense against this pathogen.  相似文献   

    15.
    林木受小蠹虫危害的表征及其遥感监测   总被引:1,自引:0,他引:1  
    通过查阅大量相关文献,分析了小蠹虫对寄主树的选择和定殖,小蠹虫、真菌与寄主树的相互关系以及寄主树的防御反应,总结了遥感在小蠹虫早期危害监测上的应用。  相似文献   

    16.
    云南橡胶树小蠹虫研究   总被引:2,自引:1,他引:1  
    云南植胶区橡胶树小蠹虫为4个科17个种的小蠹虫群体,是主要蛀食橡胶树死亡组织的次期性害虫,长期生存在橡胶林中。1990年后,橡胶树小蠹虫为害逐渐明显,表现大量发生,虫害树快速死亡,造成严重的经济损失。经2000~2007年的研究表明:橡胶树小蠹虫种群结构已发生重要变化,活蛀性的角面长小蠹(Platypussecrelus Sampson)、小杯长小蠹(P.calicutus Chapuis)已发展成为优势种,致使橡胶树小蠹虫种群从次要害虫逐渐变为主要害虫,成为橡胶树衰退重要的促进因素(Contributing factors);橡胶树衰退,特别是过度的乙烯利刺激割胶导致的橡胶树衰退,是促变小蠹虫群体结构并逐渐发展成为主要害虫的主要诱因。因此,提高管理水平,调控生产技术,使胶林生态系统达到新的平衡,才是有效地控制橡胶树衰退趋势和控制小蠹虫为害于经济阈值之下的正确途径。  相似文献   

    17.
    Field bioassays were conducted in south-central Alaska in a stand of Lutz spruce, Picea × lutzii, to determine whether a semiochemical interruptant (verbenone and trans-conophthorin) and/or a defense-inducing plant hormone (methyl jasmonate, MJ) could be used to protect individual standing trees from bark beetle attack. During two experiments (initiated in May 2004 and 2005, respectively), attacks by Ips perturbatus on standing trees were induced by using a three-component aggregation pheromone (ipsenol, cis-verbenol, and ipsdienol) and prevented by using the interruptant. In 2005, treatments from 2004 were repeated and additional treatments were evaluated by using MJ spray or injection with and without the interruptant. Aggregation began before 3 or 7 June, and attack density was monitored through 3 or 16 August. During both years, tree mortality caused by I. perturbatus was recorded twice (in August, and in May of the following year). In both experiments, attack density was greatest on trees baited with the three-component attractive pheromone, but was significantly reduced by addition of the semiochemical interruptant to trees baited with the attractant. There were no significant differences in attack density between attractant + interruptant-treated trees and unbaited trees. In 2004, mortality was highest among attractant-baited trees, whereas addition of the interruptant significantly reduced the level of initial (10 week post-treatment) and final (54 week post-treatment) mortality. In 2005, no significant reduction in attack density occurred on trees baited with the attractant when MJ was sprayed or injected. The highest initial (10.6 week post-treatment) and final (49.4 week post-treatment) mortality was observed among trees that had been injected with MJ and baited with the attractant. Mortality at the final assessment was significantly lower in all other treatment groups. As in 2004, addition of the interruptant to attractant-baited trees significantly reduced the level of final mortality compared to attractant-baited trees. MJ was not attractive or interruptive to I. perturbatus or associated bark beetles in a flight trapping study. However, MJ-treated trees (sprayed or injected) exuded copious amounts of resin on the bark surface. Anatomical analyses of felled trees from four treatment groups [Tween (solvent)-sprayed, MJ-sprayed, Tween-injected, and MJ-injected + attractant baited] showed that treatment with MJ increased the number and size of resin ducts produced following treatment. These analyses also revealed a reduction in radial growth in MJ-treated trees. Our results show that during both years, treatment with a simple, two-component interruptant system of verbenone and trans-conophthorin significantly reduced I. perturbatus attack density and tree mortality on attractant-baited trees and provided a full year of protection from bark beetle attack.  相似文献   

    18.
    A method and layout of various systems of barriers of pheromone traps is described. The rationale of the method is based on the stress of spruce and the chemical communication ofIps typographus. Various systems of pheromone trap barriers were used according to the required level of protection. The method was used in two areas affected by air pollution and bark beetle outbreak. The first area was in an unnatural spruce monoculture region while the second was in a National Park. The described method led to a significant reduction of bark beetle attacks on trees along forest edges and subsequently to the stopping of movement of the zone of attacked trees due to bark beetle damage. In the case of forest stands with no reduced canopy closure, the reduction of attacks led to a dramatic decline of bark beetle outbreak. On the other hand, this method was not able to reduce the level of bark beetle attack in the interior of forest stands with a decreased level of canopy closure. This method, as part of differentiated pest management measures in one forest district, was successful without any other protection measures in the condition of natural reserves in a spruce vegetation zone.  相似文献   

    19.
    唐巍 《林业研究》2003,14(2):171-179
    Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great pro-gress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a monoterpene synthase, a sesquiterpene synthase, and a diterpene synthase. Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects. Re-cent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest bio-technology. This review described enzymes of resin biosynthesis, structural feathers of genes genomic intron and exon or-ganization, pathway organization and evolution, resin production and accumulation, interactions between conifer and bark beetle, and engineering strategies to improve conifer defenses.  相似文献   

    20.
    The spruce bark beetle, Ips typographus, was induced to attack Norway spruce by means of pheromone dispensers. The degree of attack on each tree was recorded and the trees were later categorized as surviving or dying, according to the degree of sapwood blue-staining caused by the attacks. A threshold of successful attack was observed; i.e. above a certain number of attacks the trees were successfully invaded by the beetles and their mutualistic blue-stain fungi. The height of this threshold increased with increasing tree vigour, measured as the relative increment of the sapwood cross-sectional area.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号