共查询到5条相似文献,搜索用时 0 毫秒
1.
Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. 相似文献
2.
3.
Elena A. Zelepuga Alexandra S. Silchenko Sergey A. Avilov Vladimir I. Kalinin 《Marine drugs》2021,19(11)
The article describes the structure-activity relationships (SAR) for a broad series of sea cucumber glycosides on different tumor cell lines and erythrocytes, and an in silico modulation of the interaction of selected glycosides from the sea cucumber Eupentacta fraudatrix with model erythrocyte membranes using full-atom molecular dynamics (MD) simulations. The in silico approach revealed that the glycosides bound to the membrane surface mainly through hydrophobic interactions and hydrogen bonds. The mode of such interactions depends on the aglycone structure, including the side chain structural peculiarities, and varies to a great extent. Two different mechanisms of glycoside/membrane interactions were discovered. The first one was realized through the pore formation (by cucumariosides A1 (40) and A8 (44)), preceded by bonding of the glycosides with membrane sphingomyelin, phospholipids, and cholesterol. Noncovalent intermolecular interactions inside multimolecular membrane complexes and their stoichiometry differed for 40 and 44. The second mechanism was realized by cucumarioside A2 (59) through the formation of phospholipid and cholesterol clusters in the outer and inner membrane leaflets, correspondingly. Noticeably, the glycoside/phospholipid interactions were more favorable compared to the glycoside/cholesterol interactions, but the glycoside possessed an agglomerating action towards the cholesterol molecules from the inner membrane leaflet. In silico simulations of the interactions of cucumarioside A7 (45) with model membrane demonstrated only slight interactions with phospholipid polar heads and the absence of glycoside/cholesterol interactions. This fact correlated well with very low experimental hemolytic activity of this substance. The observed peculiarities of membranotropic action are in good agreement with the corresponding experimental data on hemolytic activity of the investigated compounds in vitro. 相似文献
4.
Alejandro M. S. Mayer Aimee J. Guerrero Abimael D. Rodríguez Orazio Taglialatela-Scafati Fumiaki Nakamura Nobuhiro Fusetani 《Marine drugs》2021,19(2)
The review of the 2016–2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016–2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016–2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories. 相似文献