首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (−)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6,11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS.  相似文献   

2.
Noguchi T  Arakawa O 《Marine drugs》2008,6(2):220-242
Many pufferfish of the family Tetraodontidae possess a potent neurotoxin, tetrodotoxin (TTX). In marine pufferfish species, toxicity is generally high in the liver and ovary, whereas in brackish water and freshwater species, toxicity is higher in the skin. In 1964, the toxin of the California newt was identified as TTX as well, and since then TTX has been detected in a variety of other organisms. TTX is produced primarily by marine bacteria, and pufferfish accumulate TTX via the food chain that begins with these bacteria. Consequently, pufferfish become non-toxic when they are fed TTX-free diets in an environment in which the invasion of TTX-bearing organisms is completely shut off. Although some researchers claim that the TTX of amphibians is endogenous, we believe that it also has an exogenous origin, i.e., from organisms consumed as food. TTX-bearing animals are equipped with a high tolerance to TTX, and thus retain or accumulate TTX possibly as a biologic defense substance. There have been many cases of human intoxication due to the ingestion of TTX-bearing pufferfish, mainly in Japan, China, and Taiwan, and several victims have died. Several cases of TTX intoxication due to the ingestion of small gastropods, including some lethal cases, were recently reported in China and Taiwan, revealing a serious public health issue.  相似文献   

3.
4.
The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.  相似文献   

5.
Tetrodotoxin (TTX) is a potent neurotoxin found in many marine and terrestrial animals, but only a few species, such as the ribbon worms of the genus Cephalothrix, accumulate it in extremely high concentrations. The intrabody distribution of TTX in highly toxic organisms is of great interest because it helps researchers to understand the pathways by which the toxin migrates, accumulates, and functions in tissues. Using immunohistochemistry with anti-TTX antibodies, the authors of this study investigated the toxin’s distribution inside the organs, tissues, and cells of Cephalothrix cf. simula. The cell types of TTX-positive tissues were identified by light microscopy. The main sites of TTX accumulation occurred in the secretory cells of the integuments, the microvilli of the epidermal ciliary cells, cephalic glands, the glandular epithelia of the proboscises, the enterocytes of the digestive systems, and nephridia. Obtained data suggest the toxin migrates from the digestive system through blood vessels to target organs. TTX is excreted from the body through the nephridia and mucus of epidermal cells.  相似文献   

6.
Tetrodotoxin (TTX) is a potent neurotoxin found in a number of marine creatures including the pufferfish, where it is synthesized by bacteria and accumulated through the food chain. It is a potent and selective blocker of some types of voltage-gated Na+ channel (NaV channel). 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX) was purified from a crude mixture of TTX analogues (such as TTX, 4-epiTTX, 6-epiTTX, 11-oxoTTX and 11-deoxyTTX) by the use of liquid chromatography-fluorescence detection (LC-FLD) techniques. Recently, it has been reported that 4,9-anhydroTTX selectively blocks the activity of NaV1.6 channels with a blocking efficacy 40–160 times higher than that for other TTX-sensitive NaV1.x channel isoforms. However, little attention has been paid to the molecular properties of the α-subunit in NaV1.6 channels and the characteristics of binding of 4,9-anhydroTTX. From a functional point of view, it is important to determine the relative expression of NaV1.6 channels in a wide variety of tissues. The aim of this review is to discuss briefly current knowledge about the pharmacology of 4,9-anhydroTTX, and provide an analysis of the molecular structure of native NaV1.6 channels. In addition, chemical aspects of 4,9-anhydroTTX are briefly covered.  相似文献   

7.
We test previous claims that the bacteria Vibrio alginolyticus produces tetrodotoxin (TTX) when living in symbiosis with the nemertean Lineus longissimus by a setup with bacteria cultivation for TTX production. Toxicity experiments on the shore crab, Carcinus maenas, demonstrated the presence of a paralytic toxin, but evidence from LC-MS and electrophysiological measurements of voltage-gated sodium channel–dependent nerve conductance in male Wistar rat tissue showed conclusively that this effect did not originate from TTX. However, a compound of similar molecular weight was found, albeit apparently non-toxic, and with different LC retention time and MS/MS fragmentation pattern than those of TTX. We conclude that C. maenas paralysis and death likely emanate from a compound <5 kDa, and via a different mechanism of action than that of TTX. The similarity in mass between TTX and the Vibrio-produced low-molecular-weight, non-toxic compound invokes that thorough analysis is required when assessing TTX production. Based on our findings, we suggest that re-examination of some published claims of TTX production may be warranted.  相似文献   

8.
A potent and heat-stable tetrodotoxin (TTX) has been found to accumulate in various marine bivalve species, including Pacific oysters (Crassostrea gigas), raising a food safety concern. While several studies on geographical occurrence of TTX have been conducted, there is a lack of knowledge about the distribution of the toxin within and between bivalves. We, therefore, measured TTX in the whole flesh, mantle, gills, labial palps, digestive gland, adductor muscle and intravalvular fluid of C. gigas using liquid chromatography-tandem mass spectrometry. Weekly monitoring during summer months revealed the highest TTX concentrations in the digestive gland (up to 242 µg/kg), significantly higher than in other oyster tissues. Intra-population variability of TTX, measured in the whole flesh of each of twenty animals, reached 46% and 32% in the two separate batches, respectively. In addition, an inter-population study was conducted to compare TTX levels at four locations within the oyster production area. TTX concentrations in the whole flesh varied significantly between some of these locations, which was unexplained by the differences in weight of flesh. This is the first study examining TTX distribution in C. gigas and the first confirmation of the preferential accumulation of TTX in oyster digestive gland.  相似文献   

9.
Most marine biotoxins are produced by microalgae. The neurotoxin tetrodotoxin (TTX) has been reported in many seafood species worldwide but its source is unknown, making accumulation and depuration studies in shellfish difficult. Tetrodotoxin is a water-soluble toxin and cannot be directly ingested by shellfish. In the present study, a method was developed which involved binding TTX to solid particles of humic acid and encapsulating them in agar-gelatin capsules. A controlled quantity of TTX-containing microcapsules (size range 20–280 μm) was fed to Paphies australis, a bivalve known to accumulate TTX in the wild. The TTX-containing microcapsules were fed to P. australis every second day for 13 days. Ten P. australis (including five controls fed non-toxic microalgae) were harvested after 7 days and ten after 13 days. Paphies australis accumulated TTX, reaching concentrations of up to 103 µg kg−1 by day 13, exceeding the European Food Safety Authority recommended concentration of 44 μg kg−1 in shellfish. This novel method will allow future studies to explore the effects, accumulation and depuration rates of TTX in different animals and document how it is transferred through food webs.  相似文献   

10.
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.  相似文献   

11.
Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains.  相似文献   

12.
The origin of tetrodotoxin (TTX) is highly debated; researchers have postulated either an endogenous or exogenous source with the host accumulating TTX symbiotically or via food chain transmission. The aim of this study was to determine whether the grey side-gilled sea slug (Pleurobranchaea maculata) could obtain TTX from a dietary source, and to attempt to identify this source through environmental surveys. Eighteen non-toxic P. maculata were maintained in aquariums and twelve were fed a TTX-containing diet. Three P. maculata were harvested after 1 h, 24 h, 17 days and 39 days and TTX concentrations in their stomach, gonad, mantle and remaining tissue/fluids determined using liquid chromatography-mass spectrometry. Tetrodotoxin was detected in all organs/tissue after 1 h with an average uptake of 32%. This decreased throughout the experiment (21%, 15% and 9%, respectively). Benthic surveys at sites with dense populations of toxic P. maculata detected very low or no TTX in other organisms. This study demonstrates that P. maculata can accumulate TTX through their diet. However, based on the absence of an identifiable TTX source in the environment, in concert with the extremely high TTX concentrations and short life spans of P. maculata, it is unlikely to be the sole TTX source for this species.  相似文献   

13.
Toxic crabs of the family Xanthidae contain saxitoxins (STXs) and/or tetrodotoxin (TTX), but the toxin ratio differs depending on their habitat. In the present study, to clarify within reef variations in the toxin profile of xanthid crabs, we collected specimens of the toxic xanthid crab Zosimus aeneus and their sampling location within a single reef (Yoshihara reef) on Ishigaki Island, Okinawa Prefecture, Japan, in 2018 and 2019. The STXs/TTX content within the appendages and viscera or stomach contents of each specimen was determined by instrumental analyses. Our findings revealed the existence of three zones in Yoshihara reef; one in which many individuals accumulate extremely high concentrations of STXs (northwestern part of the reef; NW zone), another in which individuals generally have small amounts of TTX but little STXs (central part of the reef; CTR zone), and a third in which individuals generally exhibit intermediate characteristics (southeastern part of the reef; SE zone). Furthermore, light microscopic observations of the stomach contents of crab specimens collected from the NW and CTR zones revealed that ascidian spicules of the genus Lissoclinum were dominant in the NW zone, whereas those of the genus Trididemnum were dominant in the CTR zone. Although the toxicity of these ascidians is unknown, Lissoclinum ascidians are considered good candidate source organisms of STXs harbored by toxic xanthid crabs.  相似文献   

14.
Tetrodotoxin (TTX) is a neurotoxin that has been reported from taxonomically diverse organisms across 14 different phyla. The biogenic origin of tetrodotoxin is still disputed, however, TTX biosynthesis by host-associated bacteria has been reported. An investigation into the culturable microbial populations from the TTX-associated blue-ringed octopus Hapalochlaena sp. and sea slug Pleurobranchaea maculata revealed a surprisingly high microbial diversity. Although TTX was not detected among the cultured isolates, PCR screening identifiedsome natural product biosynthesis genes putatively involved in its assembly. This study is the first to report on the microbial diversity of culturable communities from H. maculosa and P. maculata and common natural product biosynthesis genes from their microbiota. We also reassess the production of TTX reported from three bacterial strains isolated from the TTX-containing gastropod Nassarius semiplicatus.  相似文献   

15.
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.  相似文献   

16.
Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) (<1, 1–3, 3–10, 10–50, and >50 kDa). The components with MWs < 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC–MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L−1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.  相似文献   

17.
Melanin synthesis is a defense mechanism that prevents skin damage, but excessive accumulation of melanin occurs in the skin in various reactions such as pigmentation, lentigines, and freckles. Although anti-melanogenic effects have been demonstrated for various naturally occurring marine products that inhibit and control tyrosinase activity, most studies have not been extended to in vivo applications. Phlorofucofuroeckol-A (PFF-A, 12.5–100 µM) isolated from Ecklonia cava has previously been shown to have tyrosinase-mitigative effects in B16F10 cells, but it has not been evaluated in an in vivo model, and its underlying mechanism for anti-melanogenic effects has not been studied. In the present study, we evaluated the safety and efficacy of PFF-A for anti-melanogenic effects in an in vivo model. We selected low doses of PFF-A (1.5–15 nM) and investigated their mitigative effects on pigmentation stimulated by α-MSH in vivo and their related-mechanism in an in vitro model. The findings suggest that low-dose PFF-A derived from E. cava suppresses pigmentation in vivo and melanogenesis in vitro. Therefore, this study presents the possibility that PFF-A could be utilized as a new anti-melanogenic agent in the cosmeceutical industries.  相似文献   

18.
19.
Tetrodotoxin (TTX) is a potent neurotoxin that has been identified in a range of phylogenetically unrelated marine and terrestrial organisms. Tetrodotoxin was recently detected in New Zealand in Pleurobranchaea maculata (the grey side-gilled sea slug). From June 2010 to June 2011 wild specimens were collected from 10 locations around New Zealand. At one site (Narrow Neck Beach, Auckland) up to 10 individuals were collected monthly for 6 months. Attempts were also made to rear P. maculata in captivity. Tetrodotoxin was detected in samples from eight of the ten sites. The highest average (368.7 mg kg−1) and maximum (1414.0 mg kg−1) concentrations were measured in samples from Illiomama Rock (Auckland). Of the toxic populations tested there was significant variability in TTX concentrations among individuals, with the highest difference (62 fold) measured at Illiomama Rock. Tetrodotoxin concentrations in samples from Narrow Neck Beach varied temporally, ranging from an average of 184 mg kg−1 in June 2010 to 17.5 mg kg−1 by December 2010. There was no correlation between TTX levels and mass. The highest levels correspond with the egg laying season (June–August) and this, in concert with the detection of high levels of TTX in eggs and early larval stages, suggests that TTX may have a defensive function in P. maculata. Only one larva was successfully reared to full maturation and no TTX was detected.  相似文献   

20.
Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Sonneradon A (SDA), a new compound first extracted from the edible fruits of mangrove Sonneratia apetala, showed remarkable antiaging activity. However, the role of SDA in antiaging remains unclear. In this article, we studied the function of SDA in antiaging by using the animal model Caenorhabditis elegans. Results showed that SDA inhibited production of reactive oxygen species (ROS) by 53%, and reduced the accumulation of aging markers such as lipids and lipofuscins. Moreover, SDA also enhanced the innate immune response to Pseudomonas aeruginosa infection. Genetic analysis of a series of mutants showed that SDA extended the lifespan of the mutants of eat-2 and glp-1. Together, this effect may be related to the enhanced resistance to oxidative stress via mitochondrial and insulin/insulin-like growth factor-1 signaling (IIS) pathways. The results of this study provided new evidence for an antiaging effect of SDA in C. elegans, as well as insights into the implication of antiaging activity of SDA in higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号