首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
One thousand four hundred and seven spring wheat germplasm lines belonging to Indian and CIMMYT wheat programs were evaluated for stay green (SG) trait and resistance to spot blotch caused by Bipolaris sorokiniana during three consecutive crop seasons, 1999–2000, 2000–2001 and 2001–2002. Disease severity was recorded at six different growth stages beginning from tillering to late milk stage. SG trait was measured by following two approaches: difference for 0–9 scoring of green coloration (chlorophyll) of flag leaf and spike at the late dough stage (GS 87) and a new approach of leaf area under greenness (LAUG). Germplasm lines showed a wide range (7–89) for LAUG and were grouped into four viz., SG, moderately stay green, moderately non-stay green and non-stay green (NSG). However, very few (2.2%) lines showed high expression of SG trait, i.e., LAUG >60. LAUG appeared to be a better measure of SG trait than a 0–9 scale. Mean spot blotch ratings of SG genotypes were significantly lower than those of NSG genotypes at all growth stages. Two spot blotch resistant genotypes (Chirya 3 and Chirya 7) having strong expressions of SG trait were crossed with NSG, spot blotch susceptible cv. Sonalika. Individually threshed F2 plants were used to advance the generations. SG trait and spot blotch severity were recorded in the parents and F1, F3, F4, F5, F6 and F6–7 generations under disease-protected and inoculated conditions. SG trait in the F1 generation was intermediate and showed absence of dominance. Evaluation of progenies (202–207) in the segregating generations revealed that SG trait was under the control of around four additive genes. Lines homozygous for SG trait in F4, F5, F6 and F6–7 generations showed significantly lower mean area under disease progress curve (AUDPC) for spot blotch than those with NSG expression. A positive correlation (0.73) between SG trait and AUDPC further indicated a positive influence of SG on severity of spot blotch. The study established that variation for SG trait exists in spring wheat; around four additive genes control its inheritance in the crosses studied and there is positive association between SG trait and resistance to spot blotch.  相似文献   

3.
L. E. Marsh  D. W. Davis 《Euphytica》1985,34(2):431-439
Summary The effect of short term high temperature exposure on the performance of five Phaseolus species and of long term (continuous) exposure on the performance of P. vulgaris was studied at three growth stages. Phaseolus species subjected to 26.7, 32.2 or 37.3°C for two days showed small differences in the number of pods produced and in visual leaf damage, but large differences in leaf heat killing time, as measured by conductivity. P. coccineus had the shortest heat killing time (20–60 minutes) and P. acutifolius and P. lunatus the longest times (180 and 153 minutes), respectively. The P. vulgaris genotypes were intermediate in killing times to P. acutifolius and P. coccineus. Species response was not consistent with temperature within developmental stage. On average, the number of pods decreased as temperature increased from 32.2 to 37.3°C. Heat killing time and leaf damage also increased with temperature. CO2 exchange rates of plants grown at prolonged high temperatures (30–40°C/20–30°C, day/night) decreased with the age of the plant. Shoot lenght was decreased as high temperature. P. vulgaris genotypes differed on the basis of either short term exposure or of continuous exposure. These results suggest that there may be useful germplasm in Phaseolus for improving heat tolerance.Scientific Journal Series Paper Number 13,8000 of the Minnesota Agricultural Experiment Station, USA.  相似文献   

4.
A.K. Joshi  R. Chand  B. Arun 《Euphytica》2002,123(2):221-228
A total of 1,407 spring wheat (T. aestivum) lines of Indian and CIMMYT (International Maize and Wheat Improvement Centre, Mexico) origin were evaluated for plant height, days to maturity and resistance to spot blotch (caused by Bipolaris sorokiniana) during the 1994–95, 1995–96 and 1996–97 crop seasons. The frequency distribution of genotypes, based on disease score ignoring the growth stages, differed from the distribution in which disease score was assessed on a similar growth stage. Two crosses each,between `tall resistant × dwarf susceptible' and `late resistant × early susceptible' genotypes, were made. The evaluation of homozygous resistant lines in the F3, F4 and F5 generations of both crosses showed a wide range of plant height and days to maturity. These lines showed significant differences for plant height and days to maturity but did not show a significant difference for AUDPC values of spot blotch. The correlation coefficients for AUDPC versus plant height or days to maturity were weak, i.e., – 0.336 and 0.061, respectively. Results indicated that resistance to spot blotch severity was independent of plant height and days to maturity in progenies from these crosses.  相似文献   

5.
Cold in the initial growth stages is an important stressfactor for maize grown in regions with a temperate climate,particularly in case of early sowing. Sources of tolerancehave been identified in adapted genotypes, but promisinggenes for cold tolerance should also be found in materialdeveloped under the lower-temperature margins of the cropdistribution. This research was conducted in order to testAndean maize accessions for cold tolerance expressed duringboth the heterotrophic and early autotrophic growth stages.Experiments were conducted in controlled environments tostudy cold tolerance traits (germination %, germinationindex and plant growth rate) at continuous 10°C (heterotrophic growth) and at varying 10–16°C (autotrophic growth). An experiment was also performed inthe field with early sowing (both heterotrophic and autotrophic growth). In each experiment, a control trialwas conducted in more favourable conditions (i.e. continuous25°C in a controlled environment or late planting inthe field) so that cold tolerance traits could also beexamined as the ratio between the stress and the controltrial. None of the accessions was superior for all coldtolerance traits. However, several Andean maize accessionsoutperformed the US Corn-belt hybrid checks for one or moretraits, both in heterotrophic and autotrophic growth. Overall, BOZM 855, PMS 636, Poblacion D, Poblacion E andBOZM 696 were the best accessions, suggesting that they canbe a promising source of genes for improving cold toleranceof adapted maize genotypes.  相似文献   

6.
Parasitic nematodes damage white clover (Trifolium repens) roots, negatively impacting forage yield and persistence. No single gene resistance to nematodes has been identified in white clover. Trifolium semipilosum (2n = 2x = 16) genotypes exhibiting either complete resistance or susceptibility to infection by the clover root-knot nematode (CRKN), Meloidogyne trifoliophila, were identified. F1 progeny (n = 92) of a pair-cross between ‘TsR’, a plant heterozygous for the resistance phenotype and ‘TsS’, a plant homozygous for the susceptible phenotype, were challenged with infective CRKN juveniles and evaluated subsequently for root galling. Segregation analysis indicated the resistance phenotype may be conferred by a single dominant allele at a locus (designated TRKR, Trifolium Root-knot Resistance) subject to segregation distortion. TsR, TsS, and bulked resistant and bulked susceptible F1 progeny (n = 12/bulk) were screened using T. repens microsatellite (SSR) markers. Three SSRs revealed polymorphism in TsR and the resistant bulk, of which prs090 and prs247 map to loci on T. repens linkage group D2. Progeny were genotyped with these three SSRs and 23 additional SSRs from T. repens groups D1 and D2. Linkage analysis in both TsR and TsS demonstrated macro-synteny between T. repens group D homoeologues and the T. semipilosum linkage group (designated DTs) containing the TRKR locus. Significant segregation distortion was detected in TsR, and recombination in the central region of the T. semipilosum linkage group was suppressed relative to T. repens in both parents. These data demonstrate the opportunities and challenges for comparative mapping in Trifolium and characterisation of loci conferring resistance to plant-parasitic nematodes.  相似文献   

7.
Summary Cold tolerance of common bean (Phaseolus vulgaris L.), runner bean (P. coccineus L.) and several bean lines was evaluated under artificial conditions. Seedlings were exposed to –6°C gradually, then to –12°C rapidly in the growth chamber with copper-constantan thermocouples attached to various parts of the plant. Seedling freezing curves with exotherms were then analyzed. Three basic parameters were measured: time required for exotherm to appear, temperature of the appearance of the exotherm and temperature rise caused by the exotherm. Exotherm appearance in beans was related to freezing injury and death of the seedlings. Exotherms of the common bean variety Bush Blue Lake 92 seedling recorded at the stem, primary leaf base, tip and petiole and true leaf appeared at the same time, however their shape was different. Exotherms of stem appeared at higher temperature than those of primary leaves. Their shapes always followed the same pattern. Beans with cold tolerance were found to produce exotherms later than susceptible ones. Exposing 3 weeks old bean seedlings to 12°C delayed the time of exotherm appearance in the cold susceptible cultivar Bush Blue Lake 92. Some plants survived 2 hours exposure to –6°C in the growth chamber.  相似文献   

8.
Summary A spring wheat genotype which produces somatic embryos in vitro, after short and long-term culture, was tested for its ability to sexually transmit this embryogenic trait. Reciprocal crosses were performed between a embryogenic line and a nonembryogenic variety.Immature embryos were cultured on Murashige and Skoog medium plus 2 mg/l 2,4-dichlorophenoxyacetic acid, gelled with 5.5 g/l agarose. Somatic embryogenesis was not expressed in the F1's. In contrast, from several hundred immature embryos of the F2 generation of one cross, 10.7% and 1.6% expressed somatic embryogenesis in short and long-term cultures respectively. These percentages of embryogenic: non-embryogenic fits a model of a few complementary genes. The embryogenic capacity of the F2 genotypes depends on the presence of recessive alleles at these gene loci. The long-term wheat somatic embryogenesis capacity requires a more complex mechanism than the short-term one.Abbreviations CS Chinese Spring - Aq Aquila - E Embryogenic - NE Nonembryogenic - SC Subculture  相似文献   

9.
Summary Genotypic effects on callus induction and plant regeneration in callus, suspension and protoplast culture, and their correlations with both phenotypic and GCA-values for anther culture response, were studied using 21 genotypes of perennial ryegrass. Differences between genotypes accounted for approximately 40% of the total variation for callus induction and initial callus growth, and 59 and 83% of the variation in callus culture for regeneration percentage and percentage of green plants. Effects of genotypes were less pronounced in suspension culture, where suspensions from the same genotype often behaved differently. Some suspension cultures retained their capacity for green plant regeneration for almost two years, repeatedly producing 80–100% green regenerants during this period. Genotypes with high regeneration percentage and a large proportion of green plants from callus culture were also superior in suspension culture for both regeneration performance and longevity. Regeneration percentage and percentage of green plants were uncorrelated, and probably under different genetic control. While capacity for green plant formation from the different genotypes showed no correlation between anther culture and somatic in vitro culture, a positive correlation was observed between the regeneration percentages in somatic in vitro culture and anther culture (r=0.44*–0.85***), suggesting some common genetic control of the two systems.  相似文献   

10.
Characterization of transgenic male sterility in alfalfa   总被引:6,自引:0,他引:6  
Dependable male sterility would help to make hybrid cultivar development a reality in alfalfa once higher levels of heterosis are attained. Alfalfa plants obtained by genetic transformation with a construct containing the Barnase gene under the control of a tobacco anther tapetum specific promoter were studied. Vacuolization and degeneration of the tapetal cell cytoplasm at a premeiotic stage of development were observed in all five transformed plants (T0)examined, but the severity of the abnormalities varied greatly among pollen sacs of a genotype. During the meiotic stage, some pollen sacs showed reduction in size, and the tapetum generally appeared thinner when compared to those of the non transgenic plants; tapetal cells showed abnormal vacuolization and signs of cytoplasm degeneration. Despite this, some microspores were formed and some pollen grains were shed in all the T0 plants, but these were highly variable in size and had very low in vitro germinability. Self-fertility was negligible. The T0 plants were crossed with one or two unrelated non transgenic male-fertile plants. Mendelian segregation was observed with two exceptions. Instability of the trait in F1 progenies was noticed, varying for different T0 parents. F1 plants exhibiting higher sterility than the primary transformants were observed, indicating that it should be possible to obtain good male sterile plants by backcrossing this trait into different genetic backgrounds. The possible use of this transgenic male sterility in alfalfa breeding is briefly discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Understanding the genetic basis of tolerance to high temperature is important for improving the productivity of wheat (Triticum aestivum L.) in regions where the stress occurs. The objective of this study was to estimate inheritance of heat tolerance and the minimum number of genes for the trait in bread wheat by combining quantitative genetic estimates and molecular marker analyses. Two cultivars, Ventnor (heat-tolerant) and Karl92 (heat-susceptible), were crossed to produce F1, F2, and F3populations, and their grain-filling duration (GFD) at 30/25 °C 16/8 h day/night was determined as a measure of heat tolerance. Distribution of GFD in the F1 and F2 populations followed the normal model (χ2, p > 0.10). A minimum of 1.4 genes with both additive and dominance effects, broad-sense heritability of 80%, and realized heritability of 96%for GFD were determined from F2 and F3 populations. Products from 59primer pairs among 232 simple sequence repeat (SSR) pairs were polymorphic between the parents. Two markers, Xgwm11 andXgwm293, were linked to GFD by quantitative trait loci (QTL) analysis of the F2 population. The Xgwm11-linked QTL had only additive gene action and contributed 11% to the total phenotypic variation in GFD in the F2population, whereas the Xgwm293-linked QTL had both additive and dominance action and contributed 12% to the total variation in GFD. The results demonstrated that heat tolerance of common wheat is controlled by multiple genes and suggested that marker-assisted selection with microsatellite primers might be useful for developing improved cultivars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
M. N. Barakat 《Euphytica》1996,87(2):119-125
Summary Estimates of gene actions were obtained for five in vitro traits of immature wheat (Triticum aestivum L.) embryo cultures from a cross of two wheat cultivars and the resulting reciprocal, F1, F2 and backcross populations. The contribution of additive gene effects to in vitro traits was not as important as the dominance gene effects. Epistatic gene effects were relatively more important than either additive or dominance gene effects. Of the individual types of digenic epistatic effects, the dominance x dominance estimates were relatively larger in magnitude for all in vitro culture traits measured. The maternal effect played a minor role in the inheritance of the in vitro studied traits since the difference among the reciprocal values was not significant. It is shown from the generation mean method that epistasis played a major role in the inheritance of most of the traits under study. The negative values of additive and dominance genetic variance were estimates of zero. Heritability estimates, in broad sense, were relatively high for the in vitro studied traits. In some cases, heritability estimates in broad and narrow senses are almost equal since the estimation of dominance genetic variance led to negative values. According to the results of the gene effects, dominance and epistasis were important for the shoot formation trait. Selection would be effective among the isolated genotypes on individual basis.  相似文献   

13.
Summary The genetic control of tolerance of wheat to high concentrations of soil boron was studied for five genotypes. Each genotype represented one of five categories of response to high levels of boron, ranging from very sensitive to tolerant. Tolerance to boron was expressed as a partially dominant character, although the response of an F1 hybrid, relative to the parents, varied with the level of boron applied. The F1 hybrids responded similarly to the more tolerant parent at low B treatments and intermediate to the parents at higher treatments. Ratios consistent with monogenic segregation were observed for the F2 and F3 generations for the combinations (WI*MMC) × Kenya Farmer, Warigal × (WI*MMC) and Halberd × Warigal. The three genes, Bo1, Bo2 and Bo3, while transgressive segregation between two tolerant genotypes, G61450 and Halberd, suggested a fourth locus controlling tolerance to boron.  相似文献   

14.
Peng Luo  Zequ Lan  Jie Deng  Ziqing Wang 《Euphytica》2000,114(3):217-221
Oil radish (Raphanus sativus var. raphanistroides Makino) is resistant to drought and low temperature. In order to breed more resistant cultivars of rapeseed, the wide cross between rapeseed (Brassica napus L.) and oil radish was made. Rapeseed was not compatible with oil radish, and the frequency of hybrid plants (F1) was very low. Moreover, the hybrid plants were sterile. In order to recover the intergeneric hybrids (F1), the in vitro organ culture technique was applied in our experiments. The frequency of hybrid plants (F1) was increased up to 25.55% by means of in vitro culture of pollinated ovaries. Some fertile amphidiploid hybrid plants were obtained by means of colchicine treatment of small buds obtained from cultured flower receptacle segments of hybrid plants (F1). It is suggested that the technique of in vitro culture of pollinated ovaries and flower receptacle segments is useful in the wide-cross breeding of rapeseed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

16.
Liguleless phenotypes of wheat lack ligule and auricle structures on all leaves of the plant. Two recessive genes principally control the liguleless character in tetraploid wheat. The F2 progenies of k17769 (liguleless mutant)/Triticum dicoccoides and k17769/T. dicoccum segregated in a 15:1 ratio, whereas the F2 progenies of k17769/T. durum and k17769/T. turgidum segregated in a 3:1 ratio. A new gene, lg3, was found on chromosome 2A. Segregation of F2 progenies between k17769 and chromosome substitution lines for homoeologous group 2 chromosomes suggested that the liguleless genotype had occurred by mutation at the lg3 locus on chromosome 2A, and then by mutation at the lg1 locus on chromosome 2B, in the process of domestication of tetraploid wheat. The gene (lg1) was linked to Tc2 (11.9 cM), which determines phenol colour reaction of kernels, on the long arm of chromosome 2B. The distance of lg1 to the centromere was found to be 60.4 cM, and microsatellite mapping established the gene order, centromere – Xgwm382Xgwm619Tc2lg1 on the long arm of chromosome 2B.  相似文献   

17.
K. Reinink 《Euphytica》1992,60(1):61-74
Summary Adverse effects on human health makes the high nitrate content frequently found in lettuce (Lactuca sativa L.) grown under low light conditions an undesirable trait. Efforts have been made to breed cultivars with a reduced capacity for nitrate accumulation. In this study components of variance for nitrate content were estimated in F2 and F3 generations of ten lettuce crosses. Additive genotypic variances (A) were estimated from F3 variance components and from the covariance between F2 plants and corresponding F3 lines. Estimates of wide sense heritability of the F2 from crosses between a high nitrate genotype and four low nitrate genotypes ranged from 0.44 to 0.74 and the estimates for A ranged from 0.25 to 0.40 g·l-1. Estimated wide sense heritabilities of F2's from six crosses involving two low nitrate parents ranged from 0.15 to 0.52. The parents of four of the low nitrate crosses showed relatively large effects of genotype x environment (GE) interaction in successive experiments: the nitrate content of the parents reacted differently to environmental changes between experiments. Estimates of A for crosses between low nitrate genotypes without large effects of GE interaction ranged from 0 to 0.19 g·l-1. The estimated probability of selecting transgressive low nitrate lines in the progeny of a cross between a high and a low nitrate genotype was low (P=0.002–0.039), indicating that large populations should be evaluated to combine the positive traits of modern high nitrate cultivars with low nitrate content from genotypes not adapted to modern cropping practices. In the progenies from crosses between two low nitrate genotypes without important GE effects, only low estimates of the probability of obtaining transgressive low nitrate lines were obtained (P=0.04–0.06). With the growth conditions used in this study, the probability of selecting lines with a nitrate content compatible under all winter conditions with the proposed future maximum permissible level of 2.5 g nitrate per kg fresh matter is low. Therefore the solution of this problem should be found in a combination of low nitrate cultivars and cultural measures that reduce the nitrate content of the crop.  相似文献   

18.
Genetic divergence among cold tolerant rices (Oryza sativa L.)   总被引:1,自引:0,他引:1  
Summary Genetic divergence was investigated among 17 rice varieties known to possess some degree of cold tolerance at different growth stages. The 17 varieties and their 102 F1 hybrids with 6 male testers were studied for isozyme variation at 15 loci, spikelet fertility, and degree of cold tolerance at various stages. Multivariate analyses of the data provided several schemes of divergence based on various sources of evidence. All schemes gave similar results, and separated the varieties into japonica and indica groups. The japonica group displayed specific isozymes, a low F1 fertility with indica testers, and a high degree of cold tolerance which was expressed in the F1 progenies. The indica group displayed contrasting specific isozymes, a high F1 fertility with indica testers, and a moderate to low degree of cold tolerance which was not expressed in the F1 progenies. One variety, ARC 6000, displayed unique traits in most schemes and was classified into a distinct type based on the isozymes. The results emphasize that cold tolerance is a major trait for classification of rice into two varietal groups and that proper characterization of potential donors is essential in breeding. Isozyme studies are useful tools for this purpose.  相似文献   

19.
Summary Breeding of Phaseolus vulgaris L. for resistance to common bacterial blight (CBB) can be done with visual evaluations of symptoms to distinguish broad resistance classes, but a more quantitative measure was needed for genetic studies of resistance. A novel method of evaluation was developed by quantifying Xanthomonas campestris pv. phaseoli (XCP) in bean leaf tissue infected with CBB using a 32P-labeled probe and densitometric analysis of hybridization signals. Quantification of bacterial populations using the probe was highly correlated (r=0.98) with the number of colony forming units (CFU) from plate counts of the same leaf samples. The probe was used to follow XCP population dynamics on susceptible (BAT 41) and resistant (OAC 88-1) bean genotypes. OAC 88-1 supported a maximum XCP population which was approximately tenfold less than BAT 41. The probe was also used to study an F2/F3 population segregating for resistance. Narrow sense heritability estimates were less for resistance measured on the basis of bacterial populations (0.18–0.26) than on visual scores of symptoms (0.29–0.38). The anticipated response to selection for CBB resistance would be less based on bacterial numbers than based on symptom expression in this population. In breeding for resistance to CBB, selection based on visual symptoms combined with measurements of XCP populations using a DNA probe can be used to develop bean genotypes that are both resistant to symptom development and bacterial multiplication.Abbreviations CBB common bacterial blight - CFU colony forming units - XCP Xanthomonas campestris pv. phaseoli  相似文献   

20.
G. A. Kemp 《Euphytica》1979,28(2):425-433
Summary The interaction of suboptimal temperatures with light on the normal photonastic movement of the unifoliate leaf of cultivars and progeny derived from crosses of the common bean (Phaseolus vulgaris) was studied. Nastic movements are normally inhibited by a temperature of 10°C, but tolerance permits the normal orientation of the leaf-blade to the light. Analysis of data from parental, F1, and F2 populations of two sensitive and one tolerant cultivar indicated that this trait was controlled by two major genes. Tolerance appeared to be due to two pairs of recessive genes. The intolerant reaction was due to either one, or both, of the dominant alleles, one of which was epistatic to the second and similar in response. It is suggested that early growth could be improved by selection for photonastic response at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号