共查询到20条相似文献,搜索用时 15 毫秒
1.
Tiejun Zhang Yunwen Wang Xianguo Wang Quanzhen Wang Jianguo Han 《Soil & Tillage Research》2009,105(1):143-148
Soil organic carbon and nitrogen are key elements of sustainable agriculture. Converting forest land and grassland to arable land is known to decrease the content of soil organic carbon (SOC), whereas converting land under annual crops into perennial grasslands has the potential to increase organic C and N sequestration, an assumption tested in this study. Compared to the levels in reed meadows, SOC and total nitrogen (TN) stocks in the top layer of 2489 Mg soil ha−1 (about 0–15 cm depth) significantly increased 3 years after the conversion, despite a slight decrease numerically in the first year following the conversion. And the mass of light fraction organic carbon (LFOC), total extractable carbon (TEC), humic acid carbon (HAC), and fulvic acid carbon (FAC) stocks all decreased significantly in the first year in the top layer but recovered after 3 years. In the deeper layer of 2549 Mg soil ha−1 (about 15–30 cm depth), however, the levels of SOC and heavy fraction organic carbon (HFOC) stocks began increasing from the first year itself. During the period of 1–10 years after the conversion, the degree of humification rate (HR) for the deeper layer were consistent, averaging 30%, whereas the same parameters in the top layer stabilized after 3 years at 33%. After 10 years of conversion, the soil recorded higher levels of SOC and TN stocks, used as indicators in this study, than those that had prevailed in the reed meadows, demonstrating the positive combined effects of the conversion on the retention of atmospheric C-CO2 in the soil. This study suggests that proper management of alfalfa fields can maintain or even improve chemical and physical quality of converted reed meadows soils. 相似文献
2.
3.
Livia Wissing Angelika Kölbl Vanessa Vogelsang Jian-Rong Fu Zhi-Hong Cao Ingrid Kögel-Knabner 《CATENA》2011
Considerable amounts of soil organic matter (SOM) are stabilized in paddy soils, and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. Nonetheless, the mechanisms for stabilization of organic carbon (OC) in paddy soils are largely unknown. Based on a chronosequence derived from marine sediments, the objectives of this study are to investigate the accumulation of OC and the concurrent loss of inorganic carbon (IC) and to identify the role of the soil fractions for the stabilization of OC with increasing duration of paddy soil management. A chronosequence of six age groups of paddy soil formation was chosen in the Zhejiang Province (PR China), ranging from 50 to 2000 years (yrs) of paddy management. Soil samples obtained from horizontal sampling of three soil profiles within each age group were analyzed for bulk density (BD), OC as well as IC concentrations, OC stocks of bulk soil and the OC contributions to the bulk soil of the particle size fractions. Paddy soils are characterized by relatively low bulk densities in the puddled topsoil horizons (1.0 and 1.2 g cm− 3) and high values in the plow pan (1.6 g cm− 3). Our results demonstrate a substantial loss of carbonates during soil formation, as the upper 20 cm were free of carbonates in 100-year-old paddy soils, but carbonate removal from the entire soil profile required almost 700 yrs of rice cultivation. We observed an increase of topsoil OC stocks from 2.5 to 4.4 kg m− 2 during 50 to 2000 yrs of paddy management. The OC accumulation in the bulk soil was dominated by the silt- and clay-sized fractions. The silt fraction showed a high accretion of OC and seems to be an important long-term OC sink during soil evolution. Fine clay in the puddled topsoil horizon was already saturated and the highest storage capacity for OC was calculated for coarse clay. With longer paddy management, the fractions < 20 μm showed an increasing actual OC saturation level, but did not reach the calculated potential storage capacity. 相似文献
4.
Substantial losses of soil organic carbon (SOC) from the plough layer of intensively managed arable soils in western Europe have recently been reported, but these estimates are associated with very large uncertainties. Following soil surveys in 1952 and 1990 of arable soils in West Flanders (Belgium), we resampled 116 sites in 2003 and thus obtained three paired measurements of the OC stocks in these soils. Ten soils were selected for detailed physical fractionation to obtain possible further explanations for changes in SOC stocks. Between 1990 and 2003, the SOC stocks decreased at an average rate of ?0.19 t OC ha?1 year?1. This loss is significant but is still less than half the rate of SOC decrease that was estimated previously for the whole region of Flanders, which includes the study area. Variation in SOC stocks or in the magnitude of SOC stock losses could not be related to soil texture, to changes in ploughing depth, or to recent land‐use changes. A good relationship, however, was found between the SOC losses and organic matter (OM) inputs. The results of the physical fractionation also suggested management to be the predominant factor determining variation in SOC stocks because no correlation was found between soil texture and the absolute amounts of OC present in the largest OM fractions, that is, the OC in free particulate organic matter (POM), and OC associated with the silt + clay size fraction. The proportion of OC in free POM was up to 40% of the total OC, which indicates the important impact of management on SOC and also indicates that a substantial part of the SOC still present, may in the future be lost at a time scale of years to decades assuming that the intensive management continues. 相似文献
5.
A. Rodríguez Rodríguez C.D. Arbelo J.A. Guerra J.L. Mora J.S. Notario C.M. Armas 《CATENA》2006,66(3):228-235
Soil organic carbon (SOC) plays a key role in the structural stability of soils and in their resistance against erosion. However, and as far as andic soils are concerned, these mechanisms and processes, as well as the influence of the different types of SOC on aggregate stability, are not fully understood. The targets of this paper are: (i) to determine the content and forms of SOC in Andosols under evergreen forest vegetation [laurel (Laurus) and heather (Erica) forest] and (ii) to find out the role of soil organic matter (SOM) in the aggregate stability and in the resistance of Andosols to water erosion. Soil samples have been collected in 80 sites in a 40 km2 area under udic soil moisture regime. In them, fulvic and humic acids, Walkley–Black SOC, pyrophosphate-extractable SOC, Fe and Al, potassium sulphate extractable SOC, dissolved SOC, acid oxalate-extractable Fe, Al and Si, USLE K-factor and aggregate stability have been determined. The Andosols over volcanic ash are Aluandic Andosols (non-allophanic Andosols), whereas over basaltic lava flows are Silandic Andosols (allophanic Andosols). The surface (0–30 cm) samples analyzed contain 9.5–30 kg C m− 2 being significantly higher in allophanic Andosols (p < 0.5). Organic carbon adsorbed onto the mineral fraction (extractable pyrophosphate, Cp) accounts for 35–55% of the total SOC. All samples show a high stability to slaking and raindrop impact, being the first one highly correlated (r = 0.6) with pyrophosphate extractable C (Cp), Fe (Fep), and Al (Alp) in allophanic Andosols, unlike non-allophanic ones. The stability to raindrop impact correlates with pyrophosphate extractable C (Cp) and Fe (Fep) in both types of soils (r = 0.3–0.6, p < 0.05). These findings suggest that the high stability to both slaking and water-drop impact is due to the occurrence of allophane–Fe–OC complexes, rather than to the total OC, and the active Fe and Al forms, generated by the weathering of volcanic materials, constitute an essential constituent responsible for C sequestration and resistance to degradation in these soils. 相似文献
6.
耕作措施对双季稻田土壤碳及有机碳储量的影响 总被引:3,自引:0,他引:3
针对不同耕作措施对双季稻田的固碳效应和固碳潜力问题,选择湖南省宁乡县的双季稻区试验点进行了有机碳、活性有机碳以及耕层有机碳储量的研究,以期为制定适合于稻田条件下的合理耕作方式提供理论依据。结果表明,耕作措施和秸秆还田对有机碳(SOC)和活性有机碳(AOC)含量均产生不同程度的影响。免耕处理下,有机碳和活性有机碳含量皆随土壤深度的增加而减少,土壤0~5cm的SOC和AOC的含量最高,且与其他层次达到显著性差异水平(P&lt;0.05),具有明显的表层富集现象。与免耕相比,旋耕和翻耕则更利于5~10cm和10~20cm土层的有机碳和活性有机碳的积累。比较秸秆还田对SOC和AOC的影响表明,秸秆还田有效地提高了0~10cm有机碳含量,但对10~20cm并未产生显著影响,秸秆的输入并未增加土壤活性有机碳的含量。采用等质量方法计算了耕层土壤有机碳储量,结果显示旋耕秸秆还田使有机碳储量明显增加,而免耕只增加了土壤0~5cm和5~10cm土层有机碳储量,10~20cm有机碳储量有所降低,但耕作措施对有机碳储量的长效作用还有待于进一步研究。 相似文献
7.
Patrick A.W. van Hees David L. Jones Douglas L. Godbold 《Soil biology & biochemistry》2005,37(1):1-13
Dissolved organic matter (DOM), typically quantified as dissolved organic carbon (DOC), has been hypothesized to play many roles in pedogenesis and soil biogeochemical cycles, however, most research to date concerning forest soils has focussed on the high molecular weight (HMW) components of this DOM. This review aims to assess the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars. The current knowledge of concentrations, mineralization kinetics and production rates and sources in soil are summarised. We conclude that although these LMW compounds are typically maintained at very low concentrations in the soil solution (<50 μM), the flux through this pool is extremely rapid (mean residence time 1-10 h) due to continued microbial removal. Due to this rapid flux through the soil solution pool and mineralization to CO2, we calculate that the turnover of these LMW compounds may contribute substantially to the total CO2 efflux from the soil. Moreover, the production rates of these soluble transitory compounds could exceed HMW DOM production. The possible impact of climate change on the behaviour of LMW compounds in soil is also discussed. 相似文献
8.
Although it is known that cool fire can result in carbon loss in organic soils, data are lacking on the effects of such fire on the distinctive lowland organic soils of the southern hemisphere and on the relationship of fire-induced carbon loss to topography. We established an experiment to determine the effects of a low severity burn on organic and total mass of soils, the position of the water table and vegetation cover. We recorded soil losses directly after the fire, after the first rain and after 4 years. We also recorded losses as a result of the first rain and at 4 years after a wildfire at another locality with the same vegetation and topography. We compared soil surface temperatures over summer between burned and unburned moorland. The planned fire resulted in substantial soil and carbon losses, which, up to 4 years after the wildfire, occurred mostly as a result of the fire itself and the first rains. The topographic wetness index was strongly related to soil and organic matter loss for the pooled data for both sites, while fire severity, slope and vegetation cover were less predictive. Burning increased dissolved organic material in streams; the depth of the water table; and, soil temperatures. The continuing soil loss on slopes 18 years after fire contrasts with faster recovery on the shelves and in the basins, reflecting a strong topographic component in variation. Fire is a major influence on the depth of the organic soils of the southern hemisphere, as in the northern hemisphere. The influence of fire on soils varies markedly between topographic positions, with the time interval between fires that would maintain organic soils in basins being markedly less than that necessary to maintain organic soils on slopes. The topographic effect appears to be a consequence of relative drying rather than relative exposure to water or aeolian erosion or differences in fire severity. 相似文献
9.
Manuring and rotation effects on soil organic carbon concentration for different aggregate size fractions on two soils in northeastern Ohio, USA 总被引:5,自引:0,他引:5
Soil carbon (C) sequestration is important to the mitigation of increasing atmospheric concentration of CO2. This study was conducted to assess soil aggregation and C concentration under different management practices. The effects of crop rotation, manure application and tillage were investigated for 0–5 and 5–10 cm depths on two silt loam soils (fine-loamy, mixed, active, mesic Aquic Fragiudalfs and fine-loamy, mixed, active, mesic Aeric Fragiadalf) in Geauga and Stark Counties, respectively, in northeastern Ohio, USA. Wet sieve analysis and gravity fractionation techniques were used to separate samples in aggregate and particle size groups, respectively. In the Stark County farms water stable aggregate (WSA) is higher in wooded (W) controls (WSA = 94.8%) than in cultivated soils with poultry manure (PM, 78.7%) and with chemical fertilizers (CF, 79.0%). Manure applications did not increase aggregation compared to unmanured soils. The C concentrations (%) within aggregates (Cagg) are higher in W than in cultivated soils (W = 5.82, PM = 2.11, CF = 1.96). Soil C (%) is enriched in the clay (W = 9.87, PM = 4.17, CF = 4.21) compared to silt (4.26, 1.04 and 0.98, respectively) and sand (0.93, 0.14 and 0.32, respectively) fractions. In the Geauga County farm, continuous corn (CC) with conventional tillage has lower WSA (83.1%) than soils with rotations (R) (93.9%), dairy manure (DM) application (93.2%) and no-till (NT) (91.1%). The C concentrations within macroaggregates (Cagg) were higher in W soils (4.84%) than in cultivated soils (ranging from 2.65 to 1.75%). The C (%) is enriched in clay (W = 8.56, CC = 4.18, R = 5.17, DM = 5.73, NT = 4.67) compared to silt (W = 2.35, CC = 0.90, R = 0.96, DM = 1.57, NT = 1.06) and sand (W = 0.44, CC = 0.33, R = 0.13, DM = 0.41, NT = 0.18). Cultivation decreased C concentration whereas reduced tillage, rotation and manure enhanced C concentration in soil. 相似文献
10.
Soil organic carbon (SOC) plays an essential role in the sustainability of natural and agricultural systems. The identification of sensitive SOC fractions can be crucial for an understanding of SOC dynamics and stabilization. The objective of this study was to assess the effect of long‐term no‐tillage (NT) on SOC content and its distribution between particulate organic matter (POM) and mineral‐associated organic matter (Min) fractions in five different cereal production areas of Aragon (north‐east Spain). The study was conducted under on‐farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. An undisturbed soil nearby under native vegetation (NAT) was included. The results indicate that SOC was significantly affected by tillage in the first 5 cm with the greatest concentrations found in NT (1.5–43% more than in CT). Below 40 cm, SOC under NT decreased (20–40%) to values similar or less than those under CT. However, the stratification ratio (SR) never reached the threshold value of 2. The POM‐C fraction, disproportionate to its small contribution to total SOC (10–30%), was greatly affected by soil management. The pronounced stratification in this fraction (SR>2 in NT) and its usefulness for differentiating the study sites in terms of response to NT make POM‐C a good indicator of changes in soil management under the study conditions. Results from this on‐farm study indicate that NT can be recommended as an alternative strategy to increase organic carbon at the soil surface in the cereal production areas of Aragon and in other analogous areas. 相似文献
11.
《Communications in Soil Science and Plant Analysis》2012,43(5):387-400
Abstract The Ae, Bhf and Bf horizons of two podzolic soils from the Appalachian and Laurentian Highlands were treated with various reagents to remove the amorphous material prior to X‐ray diffraction analysis. Treatments were Na citrate, NaOH, Tiron, DCB and modified DCB, with a lower solid:liquid ratio. Samples treated with NaOH, Tiron and DCB were subsequently extracted with citrate. The latter extraction was necessary to remove Fe2O3 and SiO2 that was not solubilized in the first treatment. The effectiveness of the reagents to extract SiO2, Al203 and Fe2O3 decreased in the following order: DCB 1:1 > Tiron = DCB > citrate > NaOH The total weight loss of the samples represented about 1.8 times the sum of the oxides and reached up to 70% of the Laurentian Bf sample. Organic matter accounted for a part of the weight loss and its removal was more complete in the less crystalline samples of the Laurentian profile. Tiron was the best reagent to improve the X‐ray diffraction patterns, closely followed by DCB 1:1 treatment. Removal of amorphous material and organic matter resulted in a decrease of the cation exchange capacity of the clay fraction, from a maximum of 73.5 meq / 100 g in the Laurentian profile to a minimum of 3.2 meq / 100 g in the Appalachian profile. The results suggested that in the Laurentian profile, very poorly crystallized minerals possibly contributed to a part of the extracted material. 相似文献
12.
Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China 总被引:2,自引:0,他引:2
Soil organic carbon (SOC) is an important component in agricultural soil, and its stock is a major part of global carbon stocks. Estimating the SOC distribution and storage is important for improving soil quality and SOC sequestration. This study evaluated the SOC distribution different land uses and estimated the SOC storage by classifying the study area by land use in a small watershed on the Loess Plateau. The results showed that the SOC content and density were affected by land use. The SOC content for shrubland and natural grassland was significantly higher than for other land uses, and cropland had the lowest SOC content. The effect of land use on the SOC content was more significant in the 0-10 cm soil layer than in other soil layers. For every type of land use, the SOC content decreased with soil depth. The highest SOC density (0-60 cm) in the study area was found in shrublandII (Hippophae rhamnoides), and the other land uses decreased in the SOC density as follows: natural grassland > shrublandI (Caragana korshinskii) > abandoned cropland > orchard > level ground cropland > terrace cropland > artificial grassland. Shrubland and natural grassland were the most efficient types for SOC sequestration, followed by abandoned cropland. The SOC stock (0-60 cm) in this study was 23,584.77 t with a mean SOC density of 4.64 (0-60 cm). 相似文献
13.
14.
土壤中钙键和铁/铝键结合的有机碳差异的比较 总被引:5,自引:0,他引:5
为研究矿质元素在有机碳矿化中所起的作用,以棕壤、黄棕壤、红壤为供试土壤,比较了不同利用方式和施肥处理土壤中钙键、铁/铝键结合的有机碳的差异。结果表明,从北至南的地带性土壤(棕壤、黄棕壤和红壤)系列中,全钙及与有机碳结合的钙依次降低,钙键结合的有机碳占有机碳总量的比值依次升高;铁/铝键结合的有机碳及其占全碳的比值依次升高。与自然土壤相比,耕作土壤在不施肥条件下,钙键有机碳、铁/铝键有机碳占有机碳总量的比值增加,且铁/铝键有机碳占有机碳总量比值的增加率始终比钙键有机碳占有机碳总量比值的增加率要高;覆膜比不覆膜时铁/铝键有机碳占有机碳总量比值的增加率比钙键有机碳占有机碳总量比值的增加率高得多。这表明,与全土有机碳相比,有机碳矿化稳定性由高到低依次是铁/铝键有机碳、钙键有机碳、全土有机碳。 相似文献
15.
Organic C inputs and their rate of stabilization influence C sequestration and nutrient cycling in soils. This study was undertaken to explore the influence of the combined application of different quality organic resources (ORs) with N fertilizers on the link between aggregate dynamics and soil organic C (SOC) and soil N. A mesocosm experiment was conducted in Embu, central Kenya where 4 Mg C ha−1 of Tithonia diversifolia (high quality), Calliandra calothyrsus (intermediate quality) and Zea mays (maize; low quality) were applied to soil compared to a no-input control. Each treatment was fertilized with 120 kg N ha−1 as urea [(NH2)2CO] or not fertilized. The soils used in the mesocosms were obtained from a three-year old-field experiment in which the same treatments as in the mesocosm were applied annually. No crops were grown in both the mesocosms and the thee-year field experiment. Soil samples were collected at zero, two, five and eight months after installation of the mesocosms and separated into four aggregate size fractions by wet sieving. Macroaggregates were further fractionated to isolate the microaggregates-within-macroaggregates; all soils and fractions were analyzed for SOC and N. The addition of ORs increased soil aggregation and whole SOC and soil N compared to the control and sole N fertilizer treatments. There were no differences among different OR qualities for whole SOC or soil N, but maize alone resulted in greater mean weight diameter (MWD), macroaggregate SOC and N than sole added Calliandra. The addition of N fertilizer only influenced SOC and soil N dynamics in combination with maize where SOC, soil N and aggregation were lower with the addition of N fertilizer, indicating an increased decomposition and loss of SOC and soil N due to a faster aggregate turnover after addition of N fertilizer. In conclusion, compared to high quality ORs, low quality ORs result in greater aggregate stability and a short-term accumulation of macroaggregate SOC and N. However, the addition of N fertilizers negates these effects of low quality ORs. 相似文献
16.
Spatial patterns and effects of soil organic carbon on grain productivity assessment in China 总被引:1,自引:0,他引:1
In this paper, we present an assessment of the content and effects of cropland soil organic carbon (SOC) on grain productivity at the national scale in China using a Web‐based Land Evaluation System. Homogeneous 5 km × 5 km grid data sets of climate, crop, soil and management parameters were created and grain production in 2005 was simulated. Attempts were made to incorporate SOC into the land evaluation procedure and to quantify the potential effects of SOC deficiency on grain productivity. Results were statistically analysed and the modelling approach was validated. National cropland SOC maps were generated. At the national scale, the cropland SOC content averaged 1.20, 0.58, 0.41, 0.31 and 0.26% for the five 20‐cm sections consecutively from the surface downwards. At the regional scale it tended to decline slightly from northeast (1.63%) to southwest (1.11%). On average, 64% of grain yield was lost due to SOC deficiency for the humid provinces and 7% for the arid and sub‐arid ones. Soil management options are suggested based on the simulation results. 相似文献
17.
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself. 相似文献
18.
Petrocalcic horizons are frequent in soils of semiarid landscapes. A survey of SIC and SOC contents made in Southern Spain in a pilot area with well defined geomorphological surfaces showed that topsoils overlying petrocalcic horizons are almost twice as rich in SOC as soil of similar depth without petrocalcic horizons. This could be due to impedance to root penetration, changes in redox potential and soil water availability caused by the presence of indurated crust. Soil age, on the contrary, seems not be an essential factor, since only a short time is required to reach a steady state in SOC in comparison to the time span available for soil formation on the different geomorphic surfaces. 相似文献
19.
The maintenance of soil organic carbon (SOC) in terrestrial ecosystems is critical for long-term productivity. Simulation models of SOC dynamics are valuable tools in predicting the impacts of climate on carbon storage and developing management strategies for the mitigation of greenhouse gas emissions, however, their utility is generally reduced due to need for specific data. The SOCRATES model is a simple process based representation of soil SOC dynamics in terrestrial ecosystems, which requires minimal data inputs and specifically designed to examine the impact of land use and land use change on soil carbon storage. SOCRATES was successful in predicting SOC change at eighteen long-term crop, pasture and forestry trials from North America, Europe and Australasia. These trials ranged from 8 to 86 years in duration, over a wide range of climates and soil types with annual changes in SOC ranging from −3.0 to 4.2%. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(8):885-892
Abstract The effect of soil series, cultivation, soil depth, and parent material on the correction factor which should be applied to organic carbon values determined by the method of Walkley and Black, has been examined using 450 low‐activity‐clay soil samples from high rainfall tropical Queensland. There were minimal effects due to soil depth, and differences between virgin and cultivated soils were greatest in soils formed on beach sands. However, soils formed on granitic or metamorphic rocks require a factor of 1.24, whereas the originally recommended factor of 1.32 (Walkley and Black) has been confirmed for soils formed on basalt, alluvium, and beach sands. 相似文献