首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important contagious agents of swine in the world. PRRSV infection poses a challenge to current vaccination strategies. In this study, three replication-defective adenovirus recombinants were developed as potential vaccine against PRRSV in a mouse model. Three groups of BALB/c mice (24 mice per group) were inoculated subcutaneously twice at 2-week intervals with the recombinants expressing PRRSV GP5 (rAd-GP5), M (rAd-M), and M-GP5 fusion protein (rAd-M-GP5). Two additional groups were injected with wild-type adenovirus (wtAd) or PBS as control. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response by 2 weeks post second inoculation. However, only mice immunized with recombinant adenovirus rAd-M-GP5 developed significantly higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-M or rAd-GP5 alone. It was also found that mice immunized with rAd-M-GP5 were primed for significant higher levels of anti-PRRSV CTL responses than mice immunized with rAd-M. Mice receiving rAd-GP5 also mounted PRRSV-specific response, but levels were lower. It suggested that the recombinant adenovirus expressing M-GP5 fusion protein might be an attractive candidate vaccine to be tested for preventing PRRSV infection.  相似文献   

2.
Currently, killed-virus and modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are used to control porcine reproductive and respiratory syndrome. However, both types of vaccines have inherent drawbacks; accordingly, the development of novel PRRSV vaccines is urgently needed. Previous studies have suggested that yeast possesses adjuvant activities, and it has been used as an expression vehicle to elicit immune responses to foreign antigens. In this report, recombinant Kluyveromyces lactis expressing GP5 of HP-PRRSV (Yeast-GP5) was generated and immune responses to this construct were analyzed in mice. Intestinal mucosal PRRSV-specific sIgA antibody and higher levels of IFN-γ in spleen CD4+ and CD8+ T cells were induced by oral administration of Yeast-GP5. Additionally, Yeast-GP5 administered subcutaneously evoked vigorous cell-mediated immunity, and PRRSV-specific lymphocyte proliferation and IFN-γ secretion were detected in the splenocytes of mice. These results suggest that Yeast-GP5 has the potential for use as a vaccine for PRRSV in the future.  相似文献   

3.
Porcine reproductive and respiratory syndrome (PRRS) is characterized by a delayed and defective adaptive immune response. The viral nonstructural protein 1 (NSP1) of the PRRS virus (PRRSV) is able to suppress the type I interferon (IFN) response in vitro. In this study, recombinant adenoviruses (rAds) expressing NSP1 (rAd-NSP1), glycoprotein 5 (GP5) (rAd-GP5), and the NSP1-GP5 fusion protein (rAd-NSP1-GP5) were constructed, and the effect of NSP1 on immune responses was investigated in pigs. Pigs inoculated with rAd-NSP1 or rAd-NSP1-GP5 had significantly lower levels of IFN-γ and higher levels of the immunosuppressive cytokine IL-10 than pigs inoculated with rAd-GP5, wild-type adenovirus, or cell culture medium alone. The antibody response to vaccination against classic swine fever virus (CSFV) was significantly decreased by inoculation of NSP1 7 d after CSFV vaccination in pigs. Thus, NSP1-mediated immune suppression may play an important role in PRRSV pathogenesis.  相似文献   

4.
5.
不同CSF免疫状态下猪PRRS易感性及IFN-γ分泌细胞应答   总被引:1,自引:0,他引:1  
采用酶联免疫斑点检测技术(ELISpot)检测自然状态下猪外周血单核细胞(PBMC)中分泌IFN-γ的细胞数,并用带T细胞表位的猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)特异性小分子多肽刺激培养的PBMC,观察IFN-γ的分泌变化。结果显示,猪瘟病毒(Classical fever virus,CSFV)抗体阳性组中感染PRRSV比率小于CSFV抗体阴性组。CSFV抗体阳性猪PBMC中IFN-γ分泌细胞数量均高于CS—FV抗体阴性组,CSFV抗体阴性且受PRRSV感染猪的PBMC对PRRSV多肽刺激不应答。结果表明,对CSFV疫苗应答好的猪对PRRSV感染有一定的抵抗,其细胞免疫处于活动状态,提示2种传染病的免疫应答机理有部分相关性。  相似文献   

6.
PRRSV, the virus   总被引:25,自引:0,他引:25  
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-strand RNA virus that belongs to the Arteriviridae family. PRRSV grows in primary alveolar macrophages and in monkey kidney cell lines. The genomic RNA is approximately 15 kb. The genome encodes the RNA replicase (ORF1a and ORF1b), the glycoproteins GP2 to GP5, the integral membrane protein M, and the nucleocapsid protein N (ORFs 2 to 7). A comparison of nucleotide sequences of different strains indicates that European and North American strains represent two distinct antigenic types. Various PRRSV-specific monoclonal antibodies and recombinant structural proteins have been produced. Well-defined PRRSV mutants can be generated with the recently developed infectious cDNA clone of PRRSV.  相似文献   

7.
Beta-glucan has been shown to enhance anti-tumor and anti-infection functions in animals. Pigs at 4 months of age were infected with porcine reproductive and respiratory syndrome virus (PRRSV), and peripheral blood monocytes (PBMC) were isolated for the detection of interferon gamma (IFNgamma)-producing cells. We found that soluble high molecular weight beta-glucan could increase IFNgamma-producing cell frequency in a dose-dependent manner in the enzyme-linked immunospot assay (ELISPOT) in the absence of antigenic restimulation. A concentration as low as 1.6 microg/ml gave a significant increase and a similarly high enhancement was achieved at concentrations from 3.2 to 100 microg/ml. In PRRSV-specific IFNgamma ELISPOT, soluble beta-glucan elicited increased PRRSV-specific responses at concentrations from 3.2 to 50 microg/ml, but not at 100 microg/ml, whereas insoluble beta-glucan had no effect. Soluble beta-glucan augmented the porcine cellular immune response in an antigen-independent fashion, whereas insoluble beta-glucan had no activity. This finding suggests that soluble beta-glucan may enhance innate antiviral immunity against PRRSV.  相似文献   

8.
采用猪繁殖与呼吸综合征病毒(PRRSV)变异株HN07-01和经典美洲株BJ-4人工感染2月龄仔猪,通过观察发病情况、检测外周血免疫细胞和PRRSV特异血清抗体水平,研究了不同毒株PRRSV的致病特性.结果表明:PRRSV变异株感染后能够引起高热症状;变异株HN07-01株感染后引起的外周血各类免疫细胞下降速度和下降程度显著高于BJ-4株.提示PRRSV变异株引起机体的免疫抑制明显强于BJ-4株;PRRSV特异血清抗体结果表明:变异株和BJ-4株均能快速诱导机体产生抗体.  相似文献   

9.
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important viral pathogens in the swine industry. Despite great efforts of pig holders, veterinarians, researchers and vaccine developers, the virus still causes major production losses. It is clear that efficient and correct monitoring and rational development of vaccines are crucial in the combat against this pathogen. PRRSV-specific monoclonal antibodies (mAbs) are essential tools for both diagnostic and research purposes. This study describes the production of PRRSV GP3-, GP5- and N-specific hybridomas and an extensive characterization of the mAbs. The N-specific mAbs generated in this study appear to be useful tools for diagnostics, as they were found to react with genetically very different PRRSV isolates and may serve to discriminate between European and American type PRRSV isolates. These mAbs also allowed detection of the PRRSV N protein in both formalin-fixed, paraffin-embedded tissue sections and frozen tissue sections of PRRSV-infected lungs, further illustrating their diagnostic value. Different neutralization assays pointed out that none of the GP3- and GP5-specific mAbs tested shows virus-neutralizing capacity. This is noteworthy, as these mAbs recognize epitopes in the predicted ectodomains of their target protein and since the GP5-specific antibodies specifically react with the antigenic region that corresponds to the "major neutralizing epitope" suggested for American type PRRSV. The current findings argue against an important role of the identified antigenic regions in direct antibody-mediated neutralization of European type PRRSV in vivo. However, it is also clear that findings concerning a specific PRRSV epitope cannot always be generalized, as the antigenic determinants and their biological properties may differ radically between different virus isolates.  相似文献   

10.
Mannan-containing products are capable of modulating immune responses in animals. However, different products may have diverse immunomodulation. The experiment was conducted to examine effects of mannan oligosaccharide (Actigen; ACT) on growth performance and serum concentrations of antibodies and inflammatory mediators in weanling pigs (Sus scrofa) experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 32 PRRSV-negative pigs (3 wk old) were randomly assigned from within blocks to 1 of 4 treatments in a 2 by 2 factorial arrangement [2 types of diet: control (0%) and ACT addition (0.04%); and with and without PRRSV] in a randomized complete block design. Pigs were blocked by initial BW within sex. Ancestry was equalized across treatments. Pigs (8/treatment) were kept individually in each pen. After 2 wk of an 8-wk period of feeding the treatments, pigs received an intranasal inoculation of PRRSV or sham medium at 5 wk of age. Infection by PRRSV decreased ADG, ADFI, and G:F throughout the experiment (P < 0.01). Actigen did not affect ADG (P = 0.450), but decreased (P = 0.047) ADFI from 28 to 42 days postinoculation (DPI). During that time, ACT improved G:F in infected pigs but not in sham controls (interaction, P = 0.009). Dietary ACT did not affect viremia in infected pigs (P > 0.05), but increased PRRSV-specific antibody titer at 35 DPI (P = 0.042). Infection with PRRSV induced the febrile responses of pigs from 3 to 10 DPI (P < 0.001) with return to normal at 14 DPI. During the experimental period, the rectal temperature of pigs was found slightly elevated by ACT (P = 0.045). Infected pigs had greater serum concentrations of IL-1β, tumor necrosis factor (TNF)-α, IL-12, interferon (IFN)-γ, IL-10, and haptoglobin (Hp) than sham controls (P < 0.001). These results indicate that PRRSV stimulated secretion of cytokines involved in innate, T-helper 1, and T-regulatory immune responses. Actigen tended to decrease the serum TNF-α concentration regardless of PRRSV (P = 0.058). The ACT × PRRSV interaction was significant for IL-1β (P = 0.016), IL-12 (P = 0.026), and Hp (P = 0.047), suggesting that infected pigs fed ACT had greater serum concentrations of these mediators than those fed the control. The increases in IL-1β and IL-12 may favorably promote innate and T-cell immune functions in infected pigs fed ACT. Feeding ACT may be useful as ACT is related to increased PRRSV antibody titers and G:F in infected pigs at certain times during infection.  相似文献   

11.
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.  相似文献   

12.
本试验通过分子克隆技术分别构建了单独表达猪繁殖与呼吸综合征病毒(PRRSV)GP5基因以及PRRSVGP5基因和猪IL-18基因共表达的重组核酸疫苗质粒(pEGFP—GP5和pEGFP—ILl8-GP5),并进行仔猪免疫原性研究,对构建的PRRSV核酸疫苗所诱导的体液免疫和细胞免疫水平进行检测,进一步研究了PRRSV核酸疫苗免疫效果以及猪IL-18基因对PRRSV核酸疫苗免疫调节作用的影响。同时,调查了商业上应用不同类型的PRRSV疫苗诱导的免疫效果,并与核酸疫苗免疫效果进行比较。结果表明,IL-18作为免疫佐剂在疫苗免疫猪后诱导的病毒特异性细胞免疫反应方面具有很好的调节作用,共表达IL18-GP5蛋白能够明显的改善DNA疫苗的免疫效力,增强抗PRRSV的免疫保护。因此,DNA疫苗做为一种新一代疫苗可用于对抗高致病性PRRSV感染。  相似文献   

13.
PRRSV GP5蛋白在重组牛痘病毒中的表达与鉴定   总被引:1,自引:0,他引:1  
为构建表达猪繁殖与呼吸综合征病毒(PRRSV)GP5重组牛痘病毒,本研究通过RT-PCR获得PRRSV CH-1a株GP5蛋白基因,将其克隆至pMD18-T栽体.经测序鉴定正确后,将该片段作为目的基因亚克隆至转移质粒pSC11中,构建重组转移质粒(pSC11-GP5).将pSC11-GP5转染WR株牛痘病毒感染的TK-143细胞.与牛痘病毒进行同源重组.在舍有X-gal的琼脂培养基上进行蓝斑筛选,获得了含有PRRSV GP5基因的重组病毒(rWR-PRRSV-GP5).IFA及动物试验表明,重组病毒表达了PRRSV GP5蛋白,并在免疫小鼠体内诱生了较强的PRRSV抗体.实验表明,该重组病毒所表达的PRRSV GP5蛋白保持了良好的抗原性,为进一步研究PRRSVGP5蛋白免疫原性提供了基础数据,也为PRRS重组活载体疫苗的研究奠定了基础.  相似文献   

14.
为了研制猪繁殖与呼吸综合征病毒(PRRSV)基因工程疫苗,以伪狂犬病毒(PRV)gE基因缺失标志疫苗株TK^-/gE^-/LacZ^+为病毒载体,通过同源重组,构建了共表达与牛疱疹病毒1型VP22(BHV-1 VP22)融合的PRRSV E及M蛋白的重组伪狂犬病毒(rPRV)TK^-/gE^-/VP22E^+/VP22M^+。经PCR、Southern blot、Western blot证实rPRV构建正确,并能表达与BHV-1 VP22融合的PRRSV E及M蛋白。rPRV在IBRS-2、PK-15细胞中的增殖滴度与PRV亲本株相比无显著差异,表明外源基因的插入不影响rPRV增殖。用该rPRV免疫BALB/c小鼠,检测免疫小鼠抗PRRSV中和抗体及脾淋巴细胞增殖反应,并与未融合VP22的单表达PRRSV E蛋白及共表达E及M蛋白的rPRV TK^-/gE^-/E^+与TK^-/gE^-/E^+/M^+进行比较。结果显示TK^-/gE^-/VP22E^+/VP22M^+可诱导小鼠产生更好的体液与细胞免疫反应,BHV-1 VP22发挥了佐剂效应。本研究为研制安全、有效的猪繁殖与呼吸综合征-伪狂犬病二价基因工程疫苗奠定了基础。  相似文献   

15.
16.
参照GenBank中猪繁殖与呼吸综合征病毒(PRRSV)美洲型代表株VR2332 GP5和M蛋白基因序列,设计并合成2对引物,用RT-PCR方法分别扩增出PRRSV野毒株GP5和M蛋白基因603,525bp片段,并将其分别克隆到pMD18-T载体。测序正确后,将GP5和M蛋白基因分别克隆到真核表达载体pEGFP-C1上,成功构建基因疫苗表达载体pEGP5-C1和pEM-C1。小鼠免疫试验证实,这些基因疫苗质粒可以诱导小鼠产生特异性抗体,并在二免后1周开始检测到特异性淋巴细胞增殖反应。  相似文献   

17.
用3株构建好的分别表达猪繁殖与呼吸综合症病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)GP5蛋白,M蛋白和GP5-M融合蛋白的重组鸡痘病毒接种BALB/c小鼠进行免疫学实验,对其诱导小鼠产生体液免疫和细胞免疫反应的潜力进行了评价.结果表明,表达...  相似文献   

18.
Glycoprotein 5 (GP5) of porcine reproductive and respiratory syndrome virus (PRRSV) has been studied extensively as a target for vaccine development. This study evaluated the serodiagnostic application of PRRSV GP5 by enzyme-linked immunosorbent assay (ELISA). Two immunodominant peptides (VR #1 and VR #2) and two neutralizing ectodomain-containing peptides (Ecto #1 and Ecto #2), as well as recombinant GP5 (rGP5) as a control, were prepared. Serum from unvaccinated pigs was screened for the antibodies that bind to these peptide and protein antigens. The results were compared with those from a commercially available diagnostic ELISA kit (HerdChek), which uses the nucleocapsid (N) protein as an antigen. Only VR #1+#2 showed a result statistically similar to that of N protein. Ecto #1 and Ecto #2 had a lower sensitivity than VR #1+#2 and rGP5. The peptides and rGP5 showed significant associations with the N protein (P < 0.05 or 0.01), which suggests that GP5 may also be a candidate serodiagnostic antigen. Since antibodies against GP5 persist much longer than those against the N protein, GP5 itself and some of its fragments are thought to be good targets for serodiagnosis. In addition, the presence of antibodies against the PRRSV structural antigens showed significant antigen-dependent differences.  相似文献   

19.
This study was conducted to determine whether the ingestion of mannan oligosaccharide (MOS, Bio-Mos) alters the immune response of nursery pigs challenged with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 64 pigs (3 wk old), free of PRRSV, were used in 2 separate but similar experiments conducted sequentially. Pigs were blocked by initial BW. Sex and ancestry were equalized across treatments. Pigs were randomly assigned from within blocks to 1 of 4 treatments in a 2 × 2 factorial arrangement [2 types of diet: control (0%) and MOS addition (0.2%); 2 levels of PRRSV: with and without]. There were 8 replicate chambers of 2 pigs each. After 2 wk of a 4-wk period of feeding the treatments, pigs were intranasally inoculated with PRRSV or a sterile medium at 5 wk of age. The PRRSV challenge decreased ADG, ADFI, and G:F throughout the experiment (P < 0.001). Feeding MOS improved G:F of the pigs during d 7 to 14 (P=0.041) postinfection (PI). Serum concentrations of tumor necrosis factor (TNF)-α, C-reactive protein, and haptoglobin were increased by PRRSV (P < 0.001). The MOS × PRRSV interaction was significant for TNF-α at d 14 PI (P=0.028), suggesting that infected pigs fed MOS had less TNF-α than those fed the control. Dietary MOS increased serum IL-10 at d 14 PI (P=0.036). Further, MOS-fed pigs had greater numbers of white blood cells (WBC) at d 3 (P=0.048) and 7 PI (P=0.042) and lymphocytes at d 7 PI (P=0.023) than control-fed pigs. In contrast, PRRSV decreased (P < 0.01) WBC numbers until d 14 PI. Dietary MOS appeared (P=0.060) to increase the neutrophils in PRRSV-infected pigs at d 3 PI, but no (P=0.202) MOS × PRRSV interaction was found. Infection with PRRSV increased rectal temperature (RT) of pigs at d 3 PI (P < 0.001) and continued to affect the infected pigs fed the control diet until d 14 PI. The MOS × PRRSV interaction for RT was found at d 7 (P < 0.01) and 10 (P=0.098) PI, indicating that the infected pigs fed MOS had a decreased RT compared with those fed the control. This could explain why feed efficiency was improved by MOS. No effect (P > 0.05) of treatments on viremia or PRRSV-specific antibody was observed. These results suggest that MOS is associated with rapidly increased numbers of WBC at the early stage of infection and alleviates PRRSV-induced effects on G:F and fever. The results also indicate that the reduced intensity of inflammation by MOS may be related to changes in inflammatory mediator levels at the end of the acute phase.  相似文献   

20.
本试验旨在构建表达猪繁殖与呼吸综合征病毒(PRRSV)GP3、GP5和M蛋白的真核重组质粒。以PRRSV LN株为模板,采用PCR方法扩增出GP3、GP5、M基因片段,将扩增的GP5、M通过Linker序列串联成GP5-M,然后将GP3与GP5-M双酶切后插入pcDNA3.1(+)构建重组质粒pcDNA3.1-GP3-GP5-M,将其转染COS7细胞。PCR鉴定表明重组质粒pcDNA3.1-GP3-GP5-M含有PRRSV GP3、GP5-M基因,间接免疫荧光检测表明GP3、GP5-M蛋白在COS7细胞内获得表达。Western blotting检测证实GP3、GP5、M蛋白获得正确表达,并且所表达的GP3、GP5、M蛋白是融合蛋白。将pcDNA3.1-GP3-GP5-M免疫BALB/c小鼠,首免后2周可检测到特异性PRRSV中和抗体,首免后8周中和抗体效价最高可达1∶32。进一步将pcDNA3.1-GP3-GP5-M免疫断奶仔猪,首免后4周即可产生1∶4~1∶8的中和抗体。本试验成功构建了表达PRRSV GP3、GP5和M融合蛋白的真核重组质粒pcDNA3.1-GP3-GP5-M,中和抗体检测表明pcDNA3.1-GP3-GP5-M具有良好的免疫原性,从而为PRRSV基因工程疫苗的研制奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号