首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different types of transmissible spongiform encephalopathies (TSEs) affect sheep and goats. In addition to the classical form of scrapie, both species are susceptible to experimental infections with the bovine spongiform encephalopathy (BSE) agent, and in recent years atypical scrapie cases have been reported in sheep from different European countries. Atypical scrapie in sheep is characterized by distinct histopathologic lesions and molecular characteristics of the abnormal scrapie prion protein (PrP(sc)). Characteristics of atypical scrapie have not yet been described in detail in goats. A goat presenting features of atypical scrapie was identified in Switzerland. Although there was no difference between the molecular characteristics of PrP(sc) in this animal and those of atypical scrapie in sheep, differences in the distribution of histopathologic lesions and PrP(sc) deposition were observed. In particular the cerebellar cortex, a major site of PrP(sc) deposition in atypical scrapie in sheep, was found to be virtually unaffected in this goat. In contrast, severe lesions and PrP(sc) deposition were detected in more rostral brain structures, such as thalamus and midbrain. Two TSE screening tests and PrP(sc) immunohistochemistry were either negative or barely positive when applied to cerebellum and obex tissues, the target samples for TSE surveillance in sheep and goats. These findings suggest that such cases may have been missed in the past and could be overlooked in the future if sampling and testing procedures are not adapted. The epidemiological and veterinary public health implications of these atypical cases, however, are not yet known.  相似文献   

2.
ABSTRACT: Scrapie in sheep and goats has been known for more than 250 years and belongs nowadays to the so-called prion diseases that also include e.g. bovine spongiform encephalopathy in cattle (BSE) and Creutzfeldt-Jakob disease in humans. According to the prion hypothesis, the pathological isoform (PrPSc) of the cellular prion protein (PrPc) comprises the essential, if not exclusive, component of the transmissible agent. Currently, two types of scrapie disease are known - classical and atypical/Nor98 scrapie. In the present study we examine 24 cases of classical and 25 cases of atypical/Nor98 scrapie with the sensitive PET blot method and validate the results with conventional immunohistochemistry. The sequential detection of PrPSc aggregates in the CNS of classical scrapie sheep implies that after neuroinvasion a spread from spinal cord and obex to the cerebellum, diencephalon and frontal cortex via the rostral brainstem takes place. We categorize the spread of PrPSc into four stages: the CNS entry stage, the brainstem stage, the cruciate sulcus stage and finally the basal ganglia stage. Such a sequential development of PrPSc was not detectable upon analysis of the present atypical/Nor98 scrapie cases. PrPSc distribution in one case of atypical/Nor98 scrapie in a presumably early disease phase suggests that the spread of PrPSc aggregates starts in the di- or telencephalon. In addition to the spontaneous generation of PrPSc, an uptake of the infectious agent into the brain, that bypasses the brainstem and starts its accumulation in the thalamus, needs to be taken into consideration for atypical/Nor98 scrapie.  相似文献   

3.
Intensive active surveillance has uncovered two atypical German BSE cases in older cattle which resemble the two different atypical BSE phenotypes that have recently been described in France (designated H-type) and Italy (designated L-type or BASE). The H-type is characterized by a significantly higher molecular size, but a conventional glycopattern of the proteinase K treated abnormal prion protein (PrP(Sc)), while the L-type PrP(Sc) has only a slightly lower molecular size and a distinctly different glycopattern. In this paper we describe the successful transmission of both German atypical BSE cases to transgenic mice overexpressing bovine PrP(C). Upon challenge with the L-type, these mice developed BSE after a substantially shorter incubation period than any classical BSE transmission using these mice to date. In contrast, the incubation period was distinctly prolonged when these mice were challenged with the H-type. PrP(Sc) accumulated in the brains of these mice were of the same atypical BSE type that had been used for the transmission. These atypical cases suggest the possible existence of sporadic BSE cases in bovines. It is thus feasible that the BSE epidemic in the UK could have also been initiated by an intraspecies transmission from a sporadic BSE case.  相似文献   

4.
5.
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy of cattle, first detected in 1986 in the United Kingdom and subsequently in other countries. It is the most likely cause of variant Creutzfeldt-Jakob disease (vCJD) in humans, but the origin of BSE has not been elucidated so far. This report describes the identification and characterization of two cases of BSE diagnosed in the United States. Case 1 (December 2003) exhibited spongiform changes in the obex area of the brainstem and the presence of the abnormal form of the prion protein, PrP(Sc), in the same brain area, by immunohistochemistry (IHC) and Western blot analysis. Initial suspect diagnosis of BSE for case 2 (November 2004) was made by a rapid ELISA-based BSE test. Case 2 did not exhibit unambiguous spongiform changes in the obex area, but PrP(Sc) was detected by IHC and enrichment Western blot analysis in the obex. Using Western blot analysis, PrP(Sc) from case 1 showed molecular features similar to typical BSE isolates, whereas PrP(Sc) from case 2 revealed an unusual molecular PrP(Sc) pattern: molecular mass of the unglycosylated and monoglycosylated isoform was higher than that of typical BSE isolates and case 2 was strongly labeled with antibody P4, which is consistent with a higher molecular mass. Sequencing of the prion protein gene of both BSE-positive animals revealed that the sequences of both animals were within [corrected] the range of the prion protein gene sequence diversity previously reported for cattle.  相似文献   

6.
Molecular profiling of the proteinase K resistant prion protein (PrP(res)) is a technique that has been applied to the characterisation of transmissible spongiform encephalopathy (TSE) strains. An interesting example of the application of this technique is the ability to differentiate, at the experimental level, between bovine spongiform encephalopathy (BSE) and scrapie infection in sheep, and to distinguish between classical and atypical BSE and scrapie cases. Twenty-six BSE cases and two scrapie cases from an active TSE surveillance program and diagnosed at the PRIOCAT, TSE Reference Laboratory (Centre de Recerca en Sanitat Animal, Universitat Autònoma de Barcelona, Catalunya, Spain) were examined by Western blotting. Molecular profiling was achieved by comparing the glycosylation profile, deglycosylated PrP molecular weight and 6H4/P4 monoclonal antibody binding ratio. The results obtained during the characterisation of these field cases indicated an absence of atypical BSE cases in Catalunya.  相似文献   

7.
Brain tissue from a case of bovine spongiform encephalopathy (BSE) from Alberta was subjected to a Western immunoblotting technique to ascertain the molecular profile of any disease-specific, abnormal prion protein, that is, prion protein that is protease-resistant (PrP(res)). This technique can discriminate between isolates from BSE, ovine scrapie, and sheep experimentally infected with BSE. Isolates of brain tissue from the BSE case in Alberta, 3 farmed elk with chronic wasting disease (CWD) from different parts of Saskatchewan, and 1 farmed white-tailed deer with CWD from Edmonton, Alberta, were examined alongside isolates of brain tissue from BSE, ovine scrapie, and sheep experimentally infected with BSE from the United Kingdom (UK). The molecular weights of PrP(res) and the cross reactions to 2 specific monoclonal antibodies (mAbs) were determined for each sample. The BSE isolates from Canada and the UK had very similar PrP(res) molecular weights and reacted with only 1 of the 2 mAbs. The PrP(res) isolated from both elk and white-tailed deer with CWD had a higher molecular weight profile than did the corresponding PrP(res) from the scrapie and BSE isolates. The PrP(res) from CWD cases cross reacted with both mAbs, a property shared with PrP(res) in isolates from scrapie but not with PrP(res) isolates from BSE or sheep experimentally infected with BSE. The results from this study seem to confirm that the PrP(res) isolated from the BSE case in Alberta has similar molecular properties to the PrP(res) isolated from a BSE case in the UK, and that it differs in its molecular and immunological characteristics from the CWD and scrapie cases studied.  相似文献   

8.
Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrP(d) in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrP(d) in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrP(d) brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrP(d) type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrP(d) deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrP(d) brain mapping to help in identifying prion strains in small ruminants.  相似文献   

9.
Nor98 is an atypical scrapie strain characterized by a molecular pattern and brain distribution of the pathological prion protein (PrPSc) different from classical scrapie. In Italy, 69 atypical cases have been identified so far and all were characterized as Nor98 strain. In this paper we report an unusual case in a sheep which showed immunohistochemical and molecular features of PrPSc different from the other atypical cases. The sheep was from an outbreak where the index and the other four cases were affected by classical scrapie. Histopathological, immunohistochemical and Western blot analyses on the brain of the unusual case revealed the simultaneous presence of pathological features characteristic of Nor98 and classical scrapie. Interestingly, the prevalent disease phenotype in the brainstem was classical scrapie-like, while in the cerebral cortex and cerebellum the Nor98 phenotype was dominant. The sub-mandibular lymph node was positive and showed a PrPSc molecular pattern referable to classical scrapie. The PrP genotype was AL141RQ/AF141RQ. Taken together, the occurrence of classical scrapie in the outbreak, the PrP genotype, the involvement of different cellular targets in the brain and the pathological and molecular PrPSc features observed suggest that this unusual case may result from the co-existence of Nor98 and classical scrapie.  相似文献   

10.
Tissues from sequential-kill time course studies of bovine spongiform encephalopathy (BSE) were examined to define PrP immunohistochemical labeling forms and map disease-specific labeling over the disease course after oral exposure to the BSE agent at two dose levels. Study was confined to brainstem, spinal cord, and certain peripheral nervous system ganglia-tissues implicated in pathogenesis and diagnosis or disease control strategies. Disease-specific labeling in the brainstem in 39 of 220 test animals showed the forms and patterns observed in natural disease and invariably preceded spongiform changes. A precise temporal pattern of increase in labeling was not apparent, but labeling was generally most widespread in clinical cases, and it always involved neuroanatomic locations in the medulla oblongata. In two cases, sparse labeling was confined to one or more neuroanatomic nuclei of the medulla oblongata. When involved, the spinal cord was affected at all levels, providing no indication of temporal spread within the cord axis or relative to the brainstem. Where minimal PrP labeling occurred in the thoracic spinal cord, it was consistent with initial involvement of general visceral efferent neurons. Labeling of ganglia involved only sensory ganglia and only when PrP was present in the brainstem and spinal cord. These experimental transmissions mimicked the neuropathologic findings in BSE-C field cases, independent of dose of agent or stage of disease. The model supports current diagnostic sampling approaches and control measures for the removal and destruction of nervous system tissues in slaughtered cattle.  相似文献   

11.
Seventeen clinically suspect scrapie sheep, and twelve suspected BSE-affected cattle were confirmed using routine histopathological examination by the detection of characteristic spongiform change in the medulla brain region taken at the level of the obex. Three sheep and four cows acquired as controls showed no spongiform change. Five aliquots of brain tissue from each of four brain regions were taken (cerebellum, medulla, frontal cerebral cortex and occipital cerebral cortex) from each of the 36 animals. One aliquot was frozen at -70 degrees C, the others were subjected to one of four autolysis regimes at 3 or 7 days at 25 degrees C or 37 degrees C. All samples were tested by Western immunoblotting for detection of PrP(Sc) using the Prionics - Check test (Prionics AG, Zurich, Switzerland). Further samples of medulla from 15 suspect scrapie cases, 10 healthy sheep, 13 suspect BSE cows and 5 healthy cows, were taken adjacent to the obex, and subjected to autolysis at 37 degrees C for 6, 12, 24 and 48 hours before being fixed in 10 per cent formal saline and subsequently examined by a routine immunohistochemical technique for detection of PrP(Sc) protein. The abnormal protein could not be detected in any of the control animals by either technique. PrP(Sc) could be detected by Western immunoblotting in at least one brain area from all the positive animals after autolysis for 7 days at 37 degrees C. The protein could be detected by immunohistochemistry in all cases which were positive by histopathological examination using all autolysis conditions. From the results of this study it is concluded that autolysis does not significantly compromise the diagnosis of scrapie or BSE by either of these diagnostic methods.  相似文献   

12.
Five cases of scrapie with unusual features have been diagnosed in Norway since 1998. The affected sheep showed neurological signs dominated by ataxia, and had the PrP genotypes homozygous A136 H154 Q171/ A136H154Q171 or heterozygous A136H154Q171/A136R154Q171, which are rarely associated with scrapie. Brain histopathology revealed neuropil vacuolisation essentially in the cerebellar and cerebral cortices; vacuolation was less prominent in the brainstem, and no lesions were observed at the level of the obex. The deposits of PrPSc were mainly in the cortex of the cerebellum and cerebrum, and no PrPSC was detectable by immunohistochemistry and ELISA in the lymphoid tissues investigated. Western blot analysis showed that the glycotype was different from other known scrapie strains and from the BSE strain. From a diagnostic point of view, these features indicate that this type of scrapie, designated Nor98, could have been overlooked and may be of significance for sampling in scrapie surveillance programmes.  相似文献   

13.
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder of cattle characterized by accumulation of the disease-associated prion protein (PrP(Sc)) in the central nervous system (CNS). The immunohistochemical patterns and distribution of PrP(Sc) were investigated in the CNS, brains, and spinal cords of 7 naturally occurring BSE cases confirmed by the fallen stock surveillance program in Japan. No animals showed characteristic clinical signs of the disease. Coronal slices of 14 different brain areas in each case were immunohistochemically analyzed using an anti-prion protein antibody. Immunolabeled PrP(Sc) deposition was widely observed throughout each brain and spinal cord. Intense PrP(Sc) deposition was greater in the thalamus, brainstem, and spinal cord of the gray matter than in the neocortices. The topographical distribution pattern and severity of PrP(Sc) accumulation were mapped and plotted as immunohistochemical profiles of the different brain areas along the caudal-rostral axis of the brain. The distribution pattern and severity of the immunolabeled PrP(Sc) in the CNS were almost the same among the 7 cases analyzed, suggesting that the naturally occurring cases in this study were at the preclinical stage of the disease. Immunohistochemical mapping of the PrP(Sc) deposits will be used to clarify the different stages of BSE in cattle.  相似文献   

14.
15.
The Prionics-Check PrioSTRIP is a rapid chromatographic immunoassay for bovine spongiform encephalopathy (BSE) approved by the European Union in 2004. In this study, the PrioSTRIP was used to analyse PrP(BSE) in 16 different brain areas of nine confirmed BSE cases. The levels of PrP(BSE) in the different brain areas were plotted to give the brain PrP(BSE) distribution curve (BPDC) and compared with the BPDC obtained previously by Western blotting and enzyme-linked immunosorbent assay (ELISA) methods on the same samples. The distribution of PrP(BSE) in different areas of the brain was similar, irrespective of the test applied, indicating that each test could be used for the characterisation of BSE cases.  相似文献   

16.
The origin and transmission routes of atypical bovine spongiform encephalopathy (BSE) remain unclear. To assess whether the biological and biochemical characteristics of atypical L-type BSE detected in Japanese cattle (BSE/JP24) are conserved during serial passages within a single host, 3 calves were inoculated intracerebrally with a brain homogenate prepared from first-passaged BSE/JP24-affected cattle. Detailed immunohistochemical and neuropathologic analysis of the brains of second-passaged animals, which had developed the disease and survived for an average of 16 months after inoculation, revealed distribution of spongiform changes and disease-associated prion protein (PrP(Sc)) throughout the brain. Although immunolabeled PrP(Sc) obtained from brain tissue was characterized by the presence of PrP plaques and diffuse synaptic granular accumulations, no stellate-type deposits were detected. Western blot analysis suggested no obvious differences in PrP(Sc) molecular mass or glycoform pattern in the brains of first- and second-passaged cattle. These findings suggest failures to identify differences in mean incubation period and biochemical and neuropathologic properties of the BSE/JP24 prion between the first and second passages in cattle.  相似文献   

17.
Chronic wasting disease (CWD) in Wisconsin was first identified in February 2002. By April 2005, medial retropharyngeal lymph node (RLN) tissues had been examined from over 75,000 white-tailed deer for the presence of CWD by either immunohistochemical (IHC) staining for the prion protein associated with CWD (PrP(res)) or by using enzyme-linked immunosorbent assays with confirmation of positives by IHC staining and had been detected in 469 animals. Obex tissue was also available from 438 of the CWD-positive animals and was CWD positive by IHC staining in 355 (81%). To verify whether false-negative results were possible examining only RLN, both obex and RLN samples were examined for CWD by IHC staining from 4,430 of the white-tailed deer harvested from an area in Wisconsin where the overall deer CWD prevalence was approximately 6.2%. Two hundred and fourteen of the 269 positive deer (79.6%) had deposits of PrP(res) in both obex and lymphoid tissues, 55 (20.4%) had deposits only in lymphoid tissue, and there were no deer that had deposits only in obex.  相似文献   

18.
Sections of medulla oblongata, taken at the level of the obex, palatine tonsil and medial retropharyngeal lymph node from 10,269 captive Rocky Mountain elk (Cervus elaphus nelsoni), were examined by immunohistochemical staining with monoclonal antibody for the prion protein associated with the transmissible spongiform encephalopathy of cervids, chronic wasting disease (PrP(CWD)). The protein was detected in 226 of them. On the basis of the anatomical location of the deposits in the brainstem of 183 elk, four distinct patterns of distribution of PrP(CWD) within the parasympathetic region of the dorsal motor nucleus of the vagus nerve and the adjacent nuclei were observed. Mild gross lesions of chronic wasting disease (serous atrophy of fat) were observed in only three elk, all with spongiform degeneration; the other elk were considered to be in the preclinical stage of the disease. In contrast with the relatively predictable distribution of prion protein (PrP) in the brain and cranial nodes of sheep and mule deer, the distribution of PrP(CWD) in the brain and nodes of the elk was more variable and unrelated to their PrP genotype. One hundred and fifty-five of the 226 positive elk had deposits of PrP(CWD) in the brainstem and lymphoid tissues, 43 had deposits only in the lymphoid tissue and 28 had deposits only in the brainstem.  相似文献   

19.
All sheep older than 1 year of age from a flock of the Rygja breed in which clinical scrapie was detected for the first time in two animals (4%) were examined for accumulation of pathogenic prion protein (PrPSc) by immunohistochemistry in the obex, the cerebellum, and the medial retrophayngeal lymph node. In addition, six lambs, 2-3 months old, all offspring of PrPSc-positive dams, were examined for PrPSc in the ileal Peyers' patch (IPP), the distal jejunal lymph node, the spleen, and the medial retropharyngeal lymph node (RPLN). In this flock, 35% (17/48) of the adult sheep showed accumulation of PrPSc, an eightfold increase compared with clinical disease. All positives carried susceptible PrP genotypes. Three sheep had deposits of PrPSc in the RPLN and not in the brain, suggesting that this organ, easily accessible at slaughter, is suitable for screening purposes. Two 7-year-old clinically healthy homozygous V136Q171 ewes showed sparse immunostaining in the central nervous system and may have been infected as adults. Further, two littermates, 86-days-old, showed PrPSc in the IPP. Interestingly, one of these lambs had the intermediate susceptible PrP genotype, VA136QR171. In addition to early immunolabeling in the dorsal motor nucleus of the vagal nerve, a few of the sheep had early involvement of the cerebellum. In fact, a 2-year-old sheep had sparse deposits of PrPSc in the cerebellum only. Because experimental bovine spongiform encephalopathy (BSE) in sheep seems to behave in a similar manner as natural scrapie, these results, particularly regarding spread of infectivity, may have implications for the handling of BSE should it be diagnosed in sheep.  相似文献   

20.
To characterize the biological and biochemical properties of H-type bovine spongiform encephalopathy (BSE), a transmission study with a Canadian H-type isolate was performed with bovinized transgenic mice (TgBoPrP), which were inoculated intracerebrally with brain homogenate from cattle with H-type BSE. All mice exhibited characteristic neurologic signs, and the subsequent passage showed a shortened incubation period. The distribution of disease-associated prion protein (PrP(Sc)) was determined by immunohistochemistry, Western blot, and paraffin-embedded tissue (PET) blot. Biochemical properties and higher molecular weight of the glycoform pattern were well conserved within mice. Immunolabeled granular PrP(Sc), aggregates, and/or plaque-like deposits were mainly detected in the following brain locations: septal nuclei, subcallosal regions, hypothalamus, paraventricular nucleus of the thalamus, interstitial nucleus of the stria terminalis, and the reticular formation of the midbrain. Weak reactivity was detected by immunohistochemistry and PET blot in the cerebral cortex, most thalamic nuclei, the hippocampus, medulla oblongata, and cerebellum. These findings indicate that the H-type BSE prion has biological and biochemical properties distinct from those of C-type and L-type BSE in TgBoPrP mice, which suggests that TgBoPrP mice constitute a useful animal model to distinguish isolates from BSE-infected cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号