首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the grey fabric deformation during relaxation. It investigates the effect of twist direction and twist liveliness on the 2/2 twill weave woven fabric distortion, during relaxation This experimental work shows that twist liveliness increases the natural tendency of the twill weave woven fabric to skew. In addition when the twist direction of the warp and weft is opposite to each other the bias curling occurs too.  相似文献   

2.
In this paper, we report on predicting the strength of polyester/viscose spun yarns made on ring, rotor and air-jet spinning systems. A system has been developed to measure the weavability of yarns. Hamburger’s fibre bundle theory is modified to predict the strength of blended yarns from the strengths of single-fibre component yarns. The modified model predicts blended yarn strength more accurately than the original Hamburger’s model emphasizing the importance of yarn structure on blended yarn strength. The weavability of blended yarns is measured on a CTT instrument incorporating a shedding device which addresses the stresses viz., cycle extension, flex abrasion and beat up occur during weaving. The measured weavability compared well with that obtained on a commercial Sulzer Ruti Reutlingen Webtester. Yarn structure and strength and cohesion of fibres affect the strength and weavability of yarns.  相似文献   

3.
This study reports on the analysis of tenacity and breaking elongation of ring-, rotor- and air-jet-polyester/viscose spun yarns measured using static- and dynamic tensile testers. The weavability, a measure of performance of these yarns in post spinning operations is quantified. The yarn diameters and helix angles of fibres in these yarns are measured in order to analyze the effect of types of spun yarn and blend proportion on yarn elongations. The dynamic tenacity is highly correlated with the weavability than the average static tenacity measured at 500 mm gauge length. The minimum static tenacity obtained from 100 tests has high correlation with the dynamic tenacity. The present study indicates that it is appropriate to evaluate the performance of spun yarns in winding, warping and weaving based on the dynamic yarn tenacity measured while running a 200 m length of yarn in a constant tension transport tester or the minimum static yarn tenacity obtained using any conventional constant rate extension (CRE) tensile testers corresponding to a total test length of 50 m.  相似文献   

4.
The intrinsic torque of freshly spun wool yarns is affected by ageing of wool roving prior to spinning as well as the storage time of the yarn after spinning. The effect of physical ageing of roving on yarn torque properties has not been observed before and this study shows that the yarn intrinsic torque increases with ageing of the roving and decreases or relaxes with the yarn storage time. The dependency of the intrinsic torque on the roving ageing time and the yarn storage time after spinning show a simple double-logarithmic shift factor of 0.42 compared with the value of 1 found generally for amorphous polymeric materials. The self-plying twist of the yarns used in this study shows a close link to the intrinsic torque and both are affected by the history of the roving prior to spinning. Significant reductions in the self-plying twist were obtained when deaged rovings were used in spinning. When self-plying twist is used as a predictor of fabric spirality the roving and yarn history needs to be considered. This study shows that low intrinsic torque yarns can be produced by deageing of the roving prior to spinning.  相似文献   

5.
The tensile properties of spun yarns decisively influence its performance in various mechanical processing stages. This study is primarily aimed at simultaneous analysis of two tensile properties of spun yarns namely tenacity and breaking strain, which play crucial role in determining the frequency of warping breaks. The threshold values of yarn tenacity and breaking strain required for 20’s Ne carded cotton yarn to sustain the imposed stresses and strains during warping process have been determined using a bivariate normal distribution model. This study opens up the possibility of minimizing end breakage rate in various manufacturing processes of textile industry by engineering of spun yarns devoid of potential weak spots which are responsible for breaks.  相似文献   

6.
The effect of strand spacing and twist multiplier on strength of Siro-spun yarns with reference to the yarn structural parameters was investigated. Of the various structural parameters for staple yarns, fiber migration has a crucial influence on the yarn strength, which in turn to a considerable extent is influenced by the strand spacing and twist multiplier. Achieving the objectives of this research, the yarns were produced from lyocell fibers at five strand spacings and four different twist multipliers. Tracer fiber technique combined with image analysis were utilized to study the yarn migration parameters. Afterwards, the yarns were subjected to uniaxial loading by a CRE tensile tester. The measured results are presented in forms of diagrams and tables. The findings reveal that, as strand spacing is increased, yarn tenacity increases up to strand spacing of 8 mm beyond which it reduces. Analysis of the results indicates that the higher tenacity values at the strand spacing of 8 mm can be attributed to the higher mean fiber position, higher migration factor, higher proportion of broken fibers and lower hairiness.  相似文献   

7.
In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.  相似文献   

8.
In this study, an artificial neural network (ANN) and a statistical model are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. A back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model (simplex lattice design) with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Both ANN and simplex lattice design have given satisfactory predictions, however, the predictions of statistical models gave more reliable results than ANN.  相似文献   

9.
Spirality is one of the major potential problems in knitted fabrics and garments. It affects the aesthetics and physical properties of the garment produced, such as the seam displacement, shape retention, pattern distortion and sewing difficulties. In this paper, a comparative study has been carried out to evaluate the physical performance of 100 % cotton knitted fabrics and garments produced by the modified low twist and conventional ring yarns through the actual wearing and washing trials. Experimental results showed that the properties of side seam displacement, fabric spirality, dimensional stability and skewness change of the T-shirts and sweaters made by the modified single yarns are comparable to those of garments made from the control plied yarns but much improved when compared to those from the control single yarns. In addition, the pilling resistance and bursting strength of the knitted fabrics made by the modified single yarns can still maintain a reasonably high level at a low yarn twist.  相似文献   

10.
The moisture transport expressed with wicking is one of the most important aspects in clothing science and strongly effects on the quality of clothes. Wicking is a spontaneous transport of liquid driven into a porous system by capillary forces. Furthermore, the packing density has a direct relation with the yarn structure. At the present work, the effects of yarn count and twist factor on the wicking height and packing density of lyocell ring-spun yarns was investigated. Achieving the objectives of this research, an image processing method was developed to determine the packing density of samples. Experimental results were also used to develop a regression model to predict the wicking height based on the packing density, yarn count, twist factor and rising time. The results demonstrated that the correlation coefficient between the predicted and measured wicking height was 0.98 indicating the capability of the presented model to predict the wicking height of lyocell ring-spun yarns.  相似文献   

11.
The formation of a symmetric electrospinning triangle zone (E-triangle) via a technique based on using two oppositely charged nozzles is described for fabricating continuous twisted nanofiber yarn of polyamide (Nylon 66). This study shows how changing the dimensions and geometry of the E-triangle influences the distribution of nanofiber tension and diameter in this zone, and consequently how it affects the nanofiber yarn strength. The twist effect on the E-triangle geometry was investigated by changing the rotational speed of the twister plate of values of 96, 160, 224 and 288 rpm. The results showed that by increasing the twist rate, the apex angle of the E-triangle increased, whereas the height and width of the Etriangle decreased. An energy method was adopted to study the distribution of tension on nanofibers in the E-triangle. Considering a constant spinning tension, it was observed that the gradient of the nanofiber tension curve was steeper and the extreme values of tension on nanofibers were increased by increasing the twist rate. Furthermore, the mean diameter reduction of nanofibers confirmed these results. It is concluded that mechanical properties of nanofiber yarn have been considerably improved by increasing the twist rate and changing the shape of the E-triangle.  相似文献   

12.
In this article, an attempt has been made to explain the failure mechanism of spun yarns. The mechanism includes the aspects of generation and distribution of forces on a fibre under the tensile loading of a yarn, the free body diagram of forces, the conditions for gripping and slipping of a fibre, and the initiation, propagation, and ultimate yarn rupture in its weakest link. A simple mathematical model for the tenacity of spun yarns has been proposed. The model is based on the translation of fibre bundle tenacity into the yarn tenacity.  相似文献   

13.
The present paper is concerned with the influence of opening roller speed, drum speed difference and suction air pressure on properties of polyester and acrylic open-end friction spun yarns. The results shows that the opening roller speed and the suction air pressure have considerable influence on the characteristics of polyester and acrylic open-end friction spun yarns. In case of polyester yarns the unevenness, imperfection and hairiness decreases and the yarn tenacity increases with the increase in opening roller speed and suction air pressure. However for acrylic yarns the unevenness and imperfections decreases and tenacity increases with the increase in opening roller speed and suction air pressure.  相似文献   

14.
Core spun yarns are applied for various purposes that especially require the multi-functional performance. This research reports on the core spinning effect on the yarn strength. We prepared various core yarns by combining different kinds of high tenacity filaments in core with cotton staples in sheath with various twist levels in the ring spin system. And the tensile strength was tested to investigate the contribution of the core-sheath structure to the core yarn strength. The influence of the twist level was also checked up on the relationship between the core-sheath structure and the yarn strength. Results turned out that the core-sheath weight ratio had influence on the tensile properties of the ring core-spun yarns in different ways according to the core filaments used for the yarn. Increasing the twists yielded a monotone decreasing strength for the aramid and the basalt core yarns, while the PET core yarns showed almost unchanged strength, which could be ascribed to the extensional property of the filaments.  相似文献   

15.
Ultra fine fibers were electrospun from regenerated silk fibroin/formic acid solution. Effect of some process parameters on the morphology, diameter and variation in fiber diameter of electrospun fibers were experimentally investigated. Scanning electron microscope was used for the measurement of fiber diameter. Fibers with diameter ranging from 80 to 210 nm were collected depending on the solution concentration and the applied voltages. Response surface methodology (RSM) was used to obtain a quantitative relationship between selected electrospinning parameters and the average fiber diameters and its distribution. It was shown that concentration of silk fibroin solution had a significant effect on the fiber diameter and the standard deviation of the fiber diameter. Applied voltage had no significant effect on the fiber diameter and its standard deviation.  相似文献   

16.
Effect of heat-moisture treatment on quality properties of two bread wheats (cvs. Tosunbey and Bayraktar) were investigated by using response surface methodology (RSM). Temperature and moisture conditions in the experimental design were in the range of 55–95 °C and 13–19%. Heat-moisture treated grains were milled into flour and quality properties were determined. The optimum moisture-temperature combination for the highest dry gluten, Zeleny sedimentation, Alveograph W and bread volume values were estimated as 14%-63 °C for Tosunbey and 19%-55 °C for Bayraktar samples. Alveograph W seems to be a good indicator of baking quality for wheats treated at higher temperatures. In order to describe the relationship between the dependent and independent variables (moisture, temperature), the response values were fitted by second order polynomial models. Significance analysis showed that the effect of both moisture and temperature on dry gluten content, sedimentation and falling number values for Tosunbey; falling number and damaged starch values for Bayraktar were significant (p < 0.05). The effect of temperature on Farinograph water absorption, W and P/G, bread volume and firmness values were significant for both cultivars (p < 0.05). It can be concluded that improvement in baking quality can be achieved and flours with different properties can be produced by heat-moisture treatments on wheat.  相似文献   

17.
D. Pemsl  H. Waibel  J. Orphal 《Crop Protection》2004,23(12):1249-1257
Bt-cotton varieties can control lepidopterous pests, hence offering the possibility to reduce chemical pesticide use. India, with the largest cotton-growing area globally, gave commercial approval for Bt cotton in 2002 and a rapid adoption of the technology is expected. This paper uses a stochastic partial budgeting approach that captures the key pest control properties of Bt cotton taking into account uncertainty of pest pressure, control effectiveness and prices to assess the profitability effects of Bt varieties and hence complements previous studies that generally excluded such issues. Results of the simulation model reveal that under the current price situation a prophylactic chemical control strategy dominates the use of Bt varieties in both, irrigated and non-irrigated cotton. The effect of a higher cotton price is assessed in a second scenario that depicts a Bt cotton variety with improved fiber quality than varieties currently approved for commercial planting. Under this assumption, the Bt strategy would be slightly better than the prophylactic use of chemical pesticides. The model can be extended to include pests other than the bollworm and correlations among variables, e.g. prices and yield, provided sufficient evidence for such correlation exists. Results of this analysis show the impact of uncertainty in the main variables that influence the profitability of Bt cotton and alternative crop protection methods.  相似文献   

18.
In the present study, effect of OPP (oxidized PP) fraction on the mechanical and structural properties of produced fibers is investigated. Polypropylene powder without antioxidant materials was oxidized at the suitable thermal condition. The various fractions of OPP were blended with PP in the chips shape, and employed as starting material in a melt spinning machine for production of filament yarn. Then as-spun filaments were drawn and finally textured. Structural properties including density, birefringence and FTIR and physical properties consisting of shrinkage, tensile properties and crimp properties were measured. Results show that blending of OPP with virgin PP reduces tacticity and crystallinity, but it hasn’t any effect on orientation. Physical properties of drawn yarns and textured yarns were reduced with increasing of OPP fraction. Moreover, increasing of OPP fraction in blend, reduce crimp properties of textured yarn.  相似文献   

19.
The quality of ring spun yarns is largely determined by its level of hairiness. The existence of hairiness inevitably affects the quality of ring spun yarns. This paper presents an innovative method on lowering the level of hairiness of ring spun yarns. This can be achieved by shooting compressed air to the yarn, through a swirl nozzle comprising a yarn duct and an airjet nozzle attached to a traditional ring spin frame. When compressed air is applied from the air-jet nozzle to the yarn duct, the swirling air flow tucks surface fibers of the ring spun yarns into its body. Four controllable variable parameters for the process, supplied pressure, nozzle position, twist factor and spindle speed, and their effects on the lowering of yarn hairiness will be clarified. Their impact on the quality of the yarn is statistically analyzed, and the optimum outcome of the combination of parameters for the process, will thus be determined.  相似文献   

20.
Summary 1.Glinus lotoides has been investigated from a botanical and pharmacological point of view. 2. The plant seems to possess antispasmodic and ecbolic properties, since it relaxes the intestinal movements and stimulates the uterine musculature. 3. It does not affect the blood pressure or respiratory movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号