首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.  相似文献   

2.
Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.  相似文献   

3.
Beef carcasses (n = 5,542) were evaluated by three USDA on-line graders and compared with the computed expert USDA quality (QG) and yield grades (YG) during 8-h shifts at a major beef-processing facility for a 2-wk period to evaluate the accuracy of applying USDA QG and YG within the traditional five-grade and the proposed seven-grade (segregating YG 2 and 3 into YG 2A, 2B, 3A, and 3B) YG systems. Quality grade distribution of the carcasses was 1.1% Prime, 50.0% Choice, 43.8% Select, and 5.1% No-Roll. Accuracy of applying QG was not affected (P>.05) by changing from the five-grade (91.5%) to either the seven-grade system, when determining only QG (94.3%), or the seven-grade system, when determining QG and YG (95.0%). Calculated expert YG successfully segregated carcasses into their respective YG, but on-line graders could not differentiate between YG 4 and 5 in the seven-grade systems. The application of YG in the five-grade system was more accurate (P<.05) than either of the seven-grade systems. A trend existed for on-line graders to undergrade carcasses as the numerical YG increased. Total accuracy of applying YG decreased by 19.4 to 21.8% when switching from the five-grade to the seven-grade system. The segmentation of USDA YG 2 and 3 into YG 2A, 2B, 3A, and 3B resulted in a decrease in the ability of on-line graders to accurately apply the YG.  相似文献   

4.
This study was performed to validate previous equations and to develop and evaluate new regression equations for predicting lamb carcass fabrication yields using outputs from a lamb vision system-hot carcass component (LVS-HCC) and the lamb vision system-chilled carcass LM imaging component (LVS-CCC). Lamb carcasses (n = 149) were selected after slaughter, imaged hot using the LVS-HCC, and chilled for 24 to 48 h at -3 to 1 degrees C. Chilled carcasses yield grades (YG) were assigned on-line by USDA graders and by expert USDA grading supervisors with unlimited time and access to the carcasses. Before fabrication, carcasses were ribbed between the 12th and 13th ribs and imaged using the LVS-CCC. Carcasses were fabricated into bone-in subprimal/primal cuts. Yields calculated included 1) saleable meat yield (SMY); 2) subprimal yield (SPY); and 3) fat yield (FY). On-line (whole-number) USDA YG accounted for 59, 58, and 64%; expert (whole-number) USDA YG explained 59, 59, and 65%; and expert (nearest-tenth) USDA YG accounted for 60, 60, and 67% of the observed variation in SMY, SPY, and FY, respectively. The best prediction equation developed in this trial using LVS-HCC output and hot carcass weight as independent variables explained 68, 62, and 74% of the variation in SMY, SPY, and FY, respectively. Addition of output from LVS-CCC improved predictive accuracy of the equations; the combined output equations explained 72 and 66% of the variability in SMY and SPY, respectively. Accuracy and repeatability of measurement of LM area made with the LVS-CCC also was assessed, and results suggested that use of LVS-CCC provided reasonably accurate (R2 = 0.59) and highly repeatable (repeatability = 0.98) measurements of LM area. Compared with USDA YG, use of the dual-component lamb vision system to predict cut yields of lamb carcasses improved accuracy and precision, suggesting that this system could have an application as an objective means for pricing carcasses in a value-based marketing system.  相似文献   

5.
Carcasses of 342 steers of known genetic backgrounds from four fundamentally different growth types were developed either on pasture or feedlot regimens to study differences in carcass traits. Growth types were large framed-late maturing (LL), intermediate framed-intermediate maturing (II), intermediate framed-early maturing (IE), and small framed-early maturing (SE). Five calves from each growth type were assigned to each regimen in each year of a 9-yr study. Eighteen steers were removed from the study because of accident or illness. Data collected were preslaughter shrunk BW (SBW); hot carcass weight (HCW); chilled carcass weight (CCW); dressing percentage (DRESS); fat thickness at the 12th and 13th-rib interface (FAT); percentage kidney, pelvic, and heart fat (KPH); longissimus muscle area (LMA); marbling score (MARB); quality grade (QG); and yield grade (YG). Differences in carcass traits reflected genetic differences among growth types. The LL steers had heavier BW, HCW, and CCW and larger LMA (P < .05) than steers of other growth types, regardless of development regimen. Among pasture-developed steer carcasses, IE and SE steers had higher (P < .05) MARB and QG than either LL or II steers. Carcasses of large framed-late maturing steers had the lowest (P < .05) MARB and QG of the growth types. Carcasses of the II, IE, and SE steers had a higher (P < .05) numerical value for YG than carcasses of the LL steers. Among the carcasses of the feedlot-developed steers, IE and SE steers had the highest (P < .05) MARB and QG. Carcasses from the IE and SE steers were fatter (P < .05) than those from LL or II steers. Carcasses of the LL steers had the lowest percentage of KPH of growth types developed in the feedlot. No difference was observed in KPH for carcasses of II, IE, and SE steers. The LL steer carcasses had the lowest numerical value for YG of all growth types. These data indicate that variation existed among carcass traits for the four growth types and that carcass traits influenced by fatness were greater and more attainable in the feedlot-developed steers using current methods of evaluation.  相似文献   

6.
An objective method for predicting red meat yield in lamb carcasses is needed to accurately assess true carcass value. This study was performed to evaluate the ability of the lamb vision system (LVS; Research Management Systems USA, Fort Collins, CO) to predict fabrication yields of lamb carcasses. Lamb carcasses (n = 246) were evaluated using LVS and hot carcass weight (HCW), as well as by USDA expert and on-line graders, before fabrication of carcass sides to either bone-in or boneless cuts. On-line whole number, expert whole-number, and expert nearest-tenth USDA yield grades and LVS + HCW estimates accounted for 53, 52, 58, and 60%, respectively, of the observed variability in boneless, saleable meat yields, and accounted for 56, 57, 62, and 62%, respectively, of the variation in bone-in, saleable meat yields. The LVS + HCW system predicted 77, 65, 70, and 87% of the variation in weights of boneless shoulders, racks, loins, and legs, respectively, and 85, 72, 75, and 86% of the variation in weights of bone-in shoulders, racks, loins, and legs, respectively. Addition of longissimus muscle area (REA), adjusted fat thickness (AFT), or both REA and AFT to LVS + HCW models resulted in improved prediction of boneless saleable meat yields by 5, 3, and 5 percentage points, respectively. Bone-in, saleable meat yield estimations were improved in predictive accuracy by 7.7, 6.6, and 10.1 percentage points, and in precision, when REA alone, AFT alone, or both REA and AFT, respectively, were added to the LVS + HCW output models. Use of LVS + HCW to predict boneless red meat yields of lamb carcasses was more accurate than use of current on-line whole-number, expert whole-number, or expert nearest-tenth USDA yield grades. Thus, LVS + HCW output, when used alone or in combination with AFT and/or REA, improved on-line estimation of boneless cut yields from lamb carcasses. The ability of LVS + HCW to predict yields of wholesale cuts suggests that LVS could be used as an objective means for pricing carcasses in a value-based marketing system.  相似文献   

7.
This study was conducted to determine the accuracy and repeatability of beef carcass longissimus muscle area (LMA) measurements obtained by three different methods. Longissimus muscle area for beef carcass sides (n = 100) randomly selected in a commercial packing plant was determined: 1) independently by three USDA grading supervisor "experts" using the grid method to obtain triplicate measurements of the same longissimus muscle (LM); 2) by three different Colorado State University personnel tracing the LMA on acetate paper and subsequently measuring the area via a polar planimeter three different times (total of 3 x 3 = 9 observations/LM); and 3) by use of two identical video image analysis (VIA) instruments making triplicate measurements for each LM using three different procedures. Video image analysis Procedure 1 required that LMA be measured by placing the camera head unit over the LM and collecting three sequential images without moving the camera head unit while carcasses were in a stationary position; Procedure 2 required measurement of LMA by placing the camera head unit over the LM and collecting three images, but removing and repositioning the camera head unit between collection of each image while carcasses were in a stationary position; and Procedure 3 required that LMA be measured by placing the camera head unit over the LM and obtaining an image while carcasses were in continuous motion (chain speed of 360 carcasses/ h) during three different circulations past the grading stand. Overall, VIA-derived LMA measurements were highly accurate for all three procedures compared with expert-gridded (R2 = 0.92, 0.90, and 0.84 for Procedures 1, 2, and 3, respectively) and acetate/planimeter-traced (R2 = 0.94, 0.93, and 0.86 for Procedures 1, 2, and 3, respectively) LMA measurements. Instrument LMA repeatability also was comparable to expert-gridded and acetate/planimeter-traced LMA repeatability, as the means of the absolute differences between individual measurements and the average of those same measurements per LM were 1.29, 1.35, 0.52, 0.84, and 1.87 cm2 for expert-gridded, acetate/planimeter-traced, and VIA Procedures 1, 2, and 3, respectively. Therefore, VIA instrumentation can be used to assess beef carcass LMA in both a stationary and operational scenario with high levels of accuracy and repeatability.  相似文献   

8.
Four experiments were conducted in two commercial packing plants to evaluate the effectiveness of a commercial online video image analysis (VIA) system (the Computer Vision System equipped with a BeefCam module [CVS BeefCam]) to predict tenderness of beef steaks using online measurements obtained at chain speeds. Longissimus muscle (LM) samples from the rib (Exp. 1, 2, and 4) or strip loin (Exp. 3) were obtained from each carcass and Warner-Bratzler shear force (WBSF) was measured after 14 d of aging. The CVS BeefCam output variable for LM area, adjusted for carcass weight (cm2/kg), was correlated (P < 0.05) with WBSF values in all experiments. The CVS BeefCam lean color measurements, a* and b*, were effective (P < 0.05) in all experiments for segregating carcasses into groups that produced LM steaks differing in WBSF values. Fat color measurements by CVS BeefCam were usually ineffective for segregating carcasses into groups differing in WBSF values; however, in Exp. 4, fat b* identified a group of carcasses that produced tough LM steaks. Quality grade factors accounted for 3, 18, 21, and 0% of the variation in WBSF among steaks in Exp. 1 (n = 399), 2 (n = 195), 3 (n = 304), and 4 (n = 184), respectively, whereas CVS BeefCam output variables accounted for 17, 30, 19, and 6% of the variation in WBSF among steaks in Exp. 1, 2, 3, and 4, respectively. A multiple linear regression equation developed with data from Exp. 2 accurately classified carcasses in Exp. 1 and 4 and thereby may be useful for decreasing the likelihood that a consumer would encounter a tough (WBSF > 4.5 kg) LM steak in a group classified as "tender" by CVS BeefCam compared with an unsorted population. Online measurements of beef carcasses by use of CVS BeefCam were useful for predicting the tenderness of beef LM steaks, and sorting carcasses using these measurements could aid in producing groups of beef carcasses with more uniform LM steak tenderness.  相似文献   

9.
Cattle (n = 995 steers and 757 heifers) were randomly selected from a commercial abattoir (Emporia, KS) to determine the relationships between USDA quality and yield grade characteristics and serum concentrations of leptin, IGF-I, and GH. Animals were randomly selected postexsanguination on the slaughter line on 4 occasions (March, May, August, and January). Blood was collected at exsanguination and transported to the University of Missouri for analysis. Sex and hide color were recorded. Carcass data included HCW, 12th-rib fat thickness, KPH, LM area, and marbling score, which were collected from each carcass approximately 24 h postmortem. Average serum leptin concentrations were greater (P = 0.008) for heifers (11.9 ng/mL) than steers (10.9 ng/mL). Heifers had lighter carcasses (331.9 vs. 352.2 kg, P < 0.001), greater 12th-rib fat measurements (1.3 vs. 1.1 cm, P < 0.001), greater KPH (2.5 vs. 2.4%, P < 0.001), and more marbling (Small(40) vs. Small(10), P < 0.001) than steers. Positive correlations (P < 0.01) existed between leptin concentration and marbling score (r = 0.28), 12th-rib fat depth (r = 0.37), KPH (r = 0.23), and USDA yield grade (r = 0.32). Negative correlations were found between leptin and IGF-I (r = -0.11; P < 0.001) and leptin and GH (r = -0.32; P < 0.001). Negative correlations (P < 0.01) were observed for IGF-I and KPH (r = -0.23) and marbling score (r = -0.20), whereas GH was most highly negatively correlated with KPH (r = -0.23; P < 0.001). Leptin concentration accounted for variation (P < 0.001) in a model separating least squares means across USDA quality grade, separating USDA standard (8.5 ng/mL), select (10.3 ng/mL), low choice (12.2 ng/mL), and upper 2/3 choice/prime (>12.9 ng/mL) carcasses. There was no difference (P = 0.31) observed in leptin concentrations between the upper 2/3 choice and prime carcasses (12.9 and 14.2 ng/mL, respectively). Relationships within endocrine profiles and between endocrine concentrations and carcass quality characteristics may prove to be a useful tool for the prediction of beef carcass composition.  相似文献   

10.
With the adoption of visual instrument grading, the calculated yield grade can be used for payment to cattle producers selling on grid pricing systems. The USDA beef carcass grading standards include a relationship between required LM area (LMA) and HCW that is an important component of the final yield grade. As noted on a USDA yield grade LMA grid, a 272-kg (600-lb) carcass requires a 71-cm(2) (11.0-in.(2)) LMA and a 454-kg (1,000-lb) carcass requires a 102-cm(2) (15.8-in.(2)) LMA. This is a linear relationship, where required LMA = 0.171(HCW) + 24.526. If a beef carcass has a larger LMA than required, the calculated yield grade is lowered, whereas a smaller LMA than required increases the calculated yield grade. The objective of this investigation was to evaluate the LMA to HCW relationship against data on 434,381 beef carcasses in the West Texas A&M University (WTAMU) Beef Carcass Research Center database. In contrast to the USDA relationship, our data indicate a quadratic relationship [WTAMU LMA = 33.585 + 0.17729(HCW) -0.0000863(HCW(2))] between LMA and HCW whereby, on average, a 272-kg carcass has a 75-cm(2) (11.6-in.(2)) LMA and a 454-kg carcass has a 96-cm(2) (14.9-in.(2)) LMA, indicating a different slope and different intercept than those in the USDA grading standards. These data indicate that the USDA calculated yield grade equation favors carcasses lighter than 363 kg (800 lb) for having above average muscling and penalizes carcasses heavier than 363 kg (800 lb) for having below average muscling. If carcass weights continue to increase, we are likely to observe greater proportions of yield grade 4 and 5 carcasses because of the measurement bias that currently exists in the USDA yield grade equation.  相似文献   

11.
The present experiment was conducted to evaluate the ability of the U.S. Meat Animal Research Center's beef carcass image analysis system to predict calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score under commercial beef processing conditions. In two commercial beef-processing facilities, image analysis was conducted on 800 carcasses on the beef-grading chain immediately after the conventional USDA beef quality and yield grades were applied. Carcasses were blocked by plant and observed calculated yield grade. The carcasses were then separated, with 400 carcasses assigned to a calibration data set that was used to develop regression equations, and the remaining 400 carcasses assigned to a prediction data set used to validate the regression equations. Prediction equations, which included image analysis variables and hot carcass weight, accounted for 90, 88, 90, 88, and 76% of the variation in calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score, respectively, in the prediction data set. In comparison, the official USDA yield grade as applied by online graders accounted for 73% of the variation in calculated yield grade. The technology described herein could be used by the beef industry to more accurately determine beef yield grades; however, this system does not provide an accurate enough prediction of marbling score to be used without USDA grader interaction for USDA quality grading.  相似文献   

12.
Feedlot producers could optimize the value of cattle in a given market grid if they were able to improve the uniformity of the body composition between cattle among loads. Allelic variation due to a single nucleotide transition (cytosine [C] to thymine [T] transition that results in a Arg25Cys) has been demonstrated to be associated with higher leptin mRNA levels in adipose tissue and increased fat deposition in mature beef, but the effect on economically important carcass traits has not been investigated in either market-ready steers or heifers. Therefore, the objective of this study was to determine the effects of a leptin SNP on the quality grade (QG), yield grade (YG), and weight of beef carcasses. A slaughter trial was conducted using 1,435 crossbred finished heifers and 142 crossbred finished steers as they entered the slaughter facility. Canada QG tended (main effect of genotype P = 0.16, but P < 0.01 for both CC vs. TT and CT vs. TT) to be affected by leptin genotype. Specifically, 7.6 and 7.1% more TT carcasses graded Canada AAA or higher than the CT and CC carcasses, respectively, which supports the suggestion that the leptin SNP is associated with carcass fat. The proportion of carcasses grading Canada YG 1, 2, or 3 was affected (P < 0.01, P = 0.05, and P = 0.02 for YG 1, 2, and 3) by leptin genotype. The proportion of TT carcasses of Canada YG 1 was 12.5 and 15.1% lower than that of CT and CC carcasses, respectively, indicating that rearing animals under the same management and feeding system may result in greater carcass fat and a lower probability of the proportion of carcasses grading YG 1 within certain genotypes. The carcass weights of animals with the CC genotype tended (P = 0.07) to be higher than those of the TT genotype (365.5 vs. 362.3 kg). No significant difference was observed between the TT and CT genotypes in carcass weight. The observed associations between leptin genotype and carcass characteristics may represent an opportunity to genetically identify animals that are most likely to reach specific marketing groups.  相似文献   

13.
One hundred beef carcasses were selected to represent the mix of cattle slaughtered across the United States. Selection criteria included breed type (60% British/continental European, 20% Bos indicus, and 20% dairy carcasses), sex class (beef and Bos indicus: 67% steers, 33% heifers; dairy: 100% steers), USDA quality grade (4% Prime, 53% Choice, and 43% Select), USDA yield grade (10% YG 1, 43% YG 2, 40% YG 3, and 7% YG 4), and carcass weight (steers: 272.2 to 385.6 kg, heifers: 226.8 to 340.2 kg). One side of each carcass was fabricated into boneless subprimals and minor cuts following Institutional Meat Purchase Specifications. After fabrication, subprimals were trimmed progressively of fat in .64-cm increments beginning with a maximum of 2.54 cm and ending with .64 cm. Linear regression models were developed for each individual cut, including fabrication byproduct items (bone, fat trim) to estimate the percentage yield of those cuts reported by USDA Market News. Strip loin, top sirloin butt, and gooseneck rounds from heifers tended to have a higher percentage yield at the same USDA yield grade than the same cuts from steers, possibly resulting from increased fat deposition on heifers. Percentage of fat trimmed from dairy steers was 2 to 3% lower than that from other sex-class/carcass types; however, due to increased percentage of bone and less muscle, dairy steers were lower-yielding. Fat trimmed from carcasses ranged from 7.9 to 15.6% as the maximum trim level decreased from 2.54 to .64 cm.  相似文献   

14.
The National Beef Quality Audit-2005 assessed the current status of quality and consistency of US fed steers and heifers. Hide colors or breed type were black (56.3%), red (18.6%), Holstein (7.9%), gray (6.0%), yellow (4.9%), brown (3.0%), white (2.3%), and brindle (1.0%). Identification method and frequency were lot visual tags (63.2%), individual visual tags (38.7%), metal-clip tags (11.8%), electronic tags (3.5%), bar-coded tags (0.3%), by other means (2.5%), and without identification (9.7%). Brand frequencies were no (61.3%), 1 (35.1%), and 2 or more (3.6%), and brands were located on the butt (26.5%), side (7.4%), and shoulder (1.2%). There were 22.3% of cattle without horns, and the majority of those with horns (52.2%) were between 2.54 and 12.7 cm in length. Percentages of animals with mud or manure on specific body locations were none (25.8%), legs (61.4%), belly (55.9%), side (22.6%), and top-line (10.0%). Permanent incisor number and occurrence were zero (82.2%), 1 (5.2%), 2 (9.9%), 3 (0.4%), 4 (1.2%), 5 (0.1%), 6 (0.3%), 7 (0.0%), and 8 (0.7%). Most carcasses (64.8%) were not bruised, 25.8% had one bruise, and 9.4% had multiple bruises. Bruise location and incidence were round (10.6%), loin (32.6%), rib (19.5%), chuck (27.0%), and brisket, flank, and plate (10.3%). Condemnation item and incidence were liver (24.7%), lungs (11.5%), tripe (11.6%), heads (6.0%), tongues (9.7%), and carcasses (0.0%). Carcass evaluation revealed these traits and frequencies: steer (63.7%), heifer (36.2%), bullock (0.05%), and cow (0.04%) sex classes; dark-cutters (1.9%); A (97.1%), B (1.7%), and C or older (1.2%) overall maturities; and native (90.9%), dairy-type (8.3%), and Bos indicus (0.8%) estimated breed types. Mean USDA yield grade (YG) traits were USDA YG (2.9), HCW (359.9 kg), adjusted fat thickness (1.3 cm), LM area (86.4 cm(2)), and KPH (2.3%). The USDA YG were YG 1 (16.5%), YG 2 (36.3%), YG 3 (33.1%), YG 4 (11.8%), and YG 5 (2.3%). Mean USDA quality grade traits were USDA quality grade (Select(90)), marbling score (Small(32)), overall maturity (A(64)), lean maturity (A(57)), and skeletal maturity (A(68)). Marbling score distribution was Slightly Abundant or greater (2.7%), Moderate (4.3%), Modest (14.4%), Small (34.5%), Slight (41.2%), and Traces or less (2.9%). This information helps the beef industry measure progress and provides a benchmark for future educational and research activities.  相似文献   

15.
Beef carcasses (129 steers and 80 heifers) differing in weight, muscling, fatness and marbling score were selected to represent the full spectrum of USDA yield grades; one side was fabricated into boneless primal cuts. Primals were trimmed of all external fat and intermuscular (seam) fat and all components were weighed. Regression equations were developed to predict the percentage of seam fat on an external fat-free primal basis using USDA yield grade (YG), marbling score and a squared function of YG as the independent variables. YG (.77) and marbling score (.67) were highly correlated to seam fat. Heifers tended to have a higher predicted percentage of seam fat than did steers across all YG. Primals from USDA Choice carcasses had approximately 1.0 percentage point more predicted seam fat than did USDA Select primals at the same YG and sex-class. The YG 2.5 heifers had similar proportions of predicted seam fat from primals as YG 3.5 steers, but YG 3.5 heifers tended to have more seam fat than YG 4.5 steers. The same trend was noted between YG 4.5 heifers and YG 5.5 steers, indicating a sex-related deposition of seam fat in fed cattle.  相似文献   

16.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

17.
This research was conducted to determine whether objective measures of muscle color, muscle pH, and(or) electrical impedance are useful in segregating palatable beef from unpalatable beef, and to determine whether the current USDA quality grading standards for beef carcasses could be revised to improve their effectiveness at distinguishing palatable from unpalatable beef. One hundred beef carcasses were selected from packing plants in Texas, Illinois, and Ohio to represent the full range of muscle color observed in the U.S. beef carcass population. Steaks from these 100 carcasses were used to determine shear force on eight cooked beef muscles and taste panel ratings on three cooked beef muscles. It was discovered that the darkest-colored 20 to 25% of the beef carcasses sampled were less palatable and considerably less consistent than the other 75 to 80% sampled. Marbling score, by itself, explained 12% of the variation in beef palatability; hump height, by itself, explained 8% of the variation in beef palatability; measures of muscle color or pH, by themselves, explained 15 to 23% of the variation in beef palatability. When combined together, marbling score, hump height, and some measure of muscle color or pH explained 36 to 46% of the variation in beef palatability. Alternative quality grading systems were proposed to improve the accuracy and precision of sorting carcasses into palatability groups. The two proposed grading systems decreased palatability variation by 29% and 39%, respectively, within the Choice grade and decreased palatability variation by 37% and 12%, respectively, within the Select grade, when compared with current USDA standards. The percentage of unpalatable Choice carcasses was reduced from 14% under the current USDA grading standards to 4% and 1%, respectively, for the two proposed systems. The percentage of unpalatable Select carcasses was reduced from 36% under the current USDA standards to 7% and 29%, respectively, for the proposed systems. These grading systems, which included requirements for maturity, marbling, hump height, and colorimeter readings, could be implemented into the current USDA beef quality grading standards and improve the accuracy and precision of sorting beef carcasses into palatability groups. At the least, measurements of muscle color or pH could be used in a branded-beef program to increase the palatability consistency of its beef products.  相似文献   

18.
Video image analysis (VIA) images from grain-finished beef carcasses [n = 211; of which 63 did not receive zilpaterol hydrochloride (ZIL) and 148 received ZIL before harvest] were analyzed for indicators of muscle and fat to illustrate the ability to improve methodology to predict saleable meat yield of cattle fed and not fed ZIL. Carcasses were processed in large commercial beef processing facilities and were fabricated into standard subprimals, fat, and bone. Images taken by VIA technology were evaluated using computer image analysis software to quantify fat and lean parameters which were subsequently used in multiple-linear regression models to predict percentage of saleable meat yield for each carcass. Prediction models included variables currently quantified by VIA technology such as LM area (LMA), subcutaneous (SC) fat thickness at 75% the length of the LM (SFT75), and intramuscular fat score (IMF). Additional distance and area measures included LM width (LW), LM depth (LD), iliocostalis muscle area (IA), SC fat thickness at 25, 50, and 100% the length of the LM (SFT25, SFT50, SFT100), SC fat area from 25 to 100% the length of the LM (SCFA), and SC fat area adjacent to the 75% length of the LM from the spinous processes (SCFA75). Multiple ratio and product variables were also created from distance and area measures. For carcasses in this investigation, a 6 variable equation (Adj. R(2) = 0.62, MSE = 0.022) was calculated which included coefficients for ZIL treatment, SCFA75, LW, SCFA, SCFA/HCW, and SFT100/HCW. Use of parameters in the U.S. (Adj. R(2) = 0.39, MSE = 0.028) and Canadian [Adj. R(2) = 0.10, root mean square error (MSE) = 0.034] yield grade equations lack the predictability of the newly adapted equations developed for ZIL-fed and non-ZIL-fed cattle. Prediction equations developed in this study indicate that the use of VIA technology to quantify measurements taken at the 12th/13th rib separation could be used to predict saleable meat yield more accurately than those currently in use by U.S. and Canadian grading systems. Improvement in saleable meat yield prediction has the potential to decrease boxed beef variability via more homogeneous classification of carcass fabrication yield.  相似文献   

19.
Lamb carcasses (n = 278) were selected immediately after slaughter and fat thickness was measured with the SP2 Hennessy grading probe (HP) at the interface of the 12th and 13th ribs, 3.8 cm from the backbone. After a 24-h chilling period, carcasses were graded by a USDA grader and probed with the HP to obtain a fat thickness measure on the chilled carcass. One hundred sixty-five carcasses were fabricated into wholesale cuts (.64 cm of external fat trim), and 113 carcasses were fabricated into tray-ready retail cuts (.25 cm of external fat trim). Carcass weight, fat thickness (metal probe), adjusted fat thickness, hot and chilled carcass HP fat measures, as well as kidney and pelvic fat percentage and USDA yield grade, were highly correlated to cutting yield for both fabrication methods. Regression models developed to predict wholesale cut yields using HP or grader-collected measures were similar with respect to predictive accuracy. Fat thickness explained most of the variation in wholesale and tray-ready cut yields among the variables collected by the grader. Kidney and pelvic fat accounted for more of the variation in yield of wholesale cuts during stepwise regression to determine HP equations, but for predicting tray-ready yields, fat thickness taken with the HP accounted for the largest amount of variation. Equations developed to predict tray-ready retail cut yields using the HP or USDA grader-collected carcass measures were similar in the amount of variation explained. Kidney and pelvic fat percentage must be included in equations to maximize predictive accuracy when this depot site is left in carcasses.  相似文献   

20.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号